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Background: Cytoplasmic polyadenylation element binding (CPEB) proteins are sequence-
specific RNA-binding proteins that control translation via cytoplasmic polyadenylation. We 
previously reported that CPEB1 or CPEB4 knockdown suppresses TAK1 and SMAD signal-
ing in an in vitro study.
Objective: This study aimed to investigate whether suppression of CPEB1 or CPEB4 expres-
sion inhibits scar formation in a mice model of acute dermal wound healing.
Methods: CPEB1 and CPEB4 expression levels were suppressed by siRNA treatment. Skin 
wounds were created by pressure-induced ulcers in mice. Images of the wound healing were 
obtained using a digital camera and contraction was measured by ImageJ. mRNA and pro-
tein expression was analyzed using quantitative real time polymerase chain reaction and 
western blotting, respectively.
Results: Wound contraction was significantly decreased by pre-treatment with CPEB1 or 
CPEB4 siRNA compared to the control. Suppression of CPEB1 or CPEB4 expression de-
creased TAK1 signaling by reducing the levels of TLR4 and TNF-α, phosphorylated TAK1, 
p38, ERK, JNK, and NF-κB-p65. Decreased levels of phosphorylated SMAD2 and SMAD3 
indicated a reduction in SMAD signaling as well. Consequently, the expression of α-SMA, 
fibronectin, and type I collagen decreased.
Conclusion: CPEB1 siRNA or CPEB4 siRNA inhibit scar formation by modulating the 
TAK1 and SMAD signaling pathways. Our study highlights CPEB1 and CPEB4 as potential 
therapeutic targets for the treatment of scar formation.
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INTRODUCTION

Wound healing is a complex, well-orchestrated, multicellular 
process usually characterized by three phases: inflammation, 
proliferation, and remodeling1. These processes are involved in 
the communication and interplay between several cell types, 
including keratinocytes, fibroblasts, endothelial cells, macro-
phages, and platelets1. Moreover, multiple signaling pathways 
participate in the healing process and are regulated by numer-

ous growth factors, cytokines and chemokines2. Deregulation 
of any of these steps can ultimately delay healing or lead to 
excessive scar formation such as hypertrophic scars (HTS)1.

Upon skin injury, when toll-like receptors (TLRs) are acti-
vated by danger signals, a series of intracellular signaling path-
ways involving the nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) and mitogen-activated protein kinases 
(MAPKs), which induce the expression of many TLR target 
genes, are activated3. Transforming growth factor-β1 activated 
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kinase 1 (TAK1), also known as mitogen-activated protein ki-
nase kinase kinase (MAP3K7), is a downstream molecule of 
the TLR signaling pathway. It is important for the activation of 
the transcription factor, NF-κB, and for that of p38 MAPK, c-
Jun terminal kinase (JNK), and extracellular signal-regulated 
kinase 1/2 (ERK1/2) signaling3,4. Transforming growth factor-β1 
(TGF-β1) is a potent inducer of fibroblast proliferation and/or 
differentiation into myofibroblasts that produce extracellular 
matrix (ECM), composed of collagen, fibronectin, connective 
tissue growth factor, etc., to form the clot in the wound5. Howev-
er, excessive TGF-β1 produced from an unbalanced healing pro-
cess leads to over-scarring, called as HTS, a serious burn sequela 
in clinical practice5. TGF-β1 acts through SMAD-dependent 
pathways, including phosphorylation and activation of SMAD 2 
and SMAD 3 by TGF-β receptor 1 (TGFR1)6. However, TGF-β1 
can also activate SMAD-independent pathways to modify cel-
lular functions, including the TAK1, phosphatidylinositol 3-ki-
nase/AKT, and Rho-like GTPase signaling pathways6.

The mammalian cytoplasmic polyadenylation element 
binding (CPEB) protein is a sequence-specific RNA-binding 
protein that controls poly(A) tail length and polyadenylation-
induced translation of mRNAs. It is important for cell pro-
liferation and differentiation, cellular senescence, neuronal 
synaptic plasticity, and immune response7. In vertebrates, 
CPEB-like proteins are composed of four paralogs (CPEB1~4), 
and many studies have elucidated the biological functions of 
CPEB1 and CPEB4 in health and disease7,8.

Our previous work showed that CPEB1 or CPEB4 knockdown 
inhibits TAK1 and SMAD signaling in lipopolysaccharide (LPS)-
induced human macrophages and TGF-β1-induced fibroblasts 
that are derived from human skin, respectively9. Therefore, in the 
present study, we investigated the effects of suppression of CPEB1 
or CPEB4 expression on wound healing in mice models of pres-
sure ulcers. Our findings indicate that suppression of CPEB1 or 
CPEB4 expression inhibited TAK1 and SMAD signaling led to 
decreased scar formation. These results, combined with previous 
in vitro studies, indicate that CPEB1 and CPEB4 could be poten-
tial targets for the treatment of dermal fibrotic scarring.

MATERIALS AND METHODS

siRNA transfection and pressure ulcer mouse model
SMARTpool siRNAs for the negative control, and knockdown 
of CPEB1 and CPEB4, were purchased from Dharmacon (La-

fayette). ICR mice (8-week-old) were purchased from Korean 
Animal Technology (Koatech). All animal experiments were 
conducted in the animal laboratory of Hangang Sacred Heart 
Hospital, Hallym University, in accordance with the Guidelines 
for the Care and Use of Laboratory Animals of the National 
Institutes of Health. The animal protocols were approved 
by the Animal Research Ethics Board of Hallym University 
(HMC2017-2-1121-30). Mice were randomly classified into 
four groups: (1) without any intervention (NC), (2) treated with 
the negative control siRNA (si-Ct)/atelocollagen mixture, (3) 
treated with CPEB1 siRNA (si-CP1)/atelocollagen mixture, and 
(4) treated with CPEB4 siRNA (si-CP4)/atelocollagen mixture. 
Each siRNA was mixed with atelocollagen, according to the 
manufacturer’s instructions (Koken)10. Mice were injected with 
100 μl of atelocollagen containing 3 μg11 of CPEB1 or CPEB4 
siRNA, or negative control siRNA intravenously (i.v.) via the 
tail vein, once every three days for nine consecutive times (Fig. 
1A). After the fifth injection (day 14), mice were anesthetized 
and maintained using 100% oxygen with 2.5% isoflurane (Hana 
Pharm). The dorsal skins of mice were shaved and sterilized 
with 70% alcohol. Then it was gently pulled up and loaded with 
two circular ceramic magnetic plates (1.2 g, 1500.0 Gauss, 8.0 
mm diameter, and 2.0 mm thickness) as Fig. 1B, to creating 
a 5.0 mm of skin thick bridge between the two magnets. The 
magnets were placed for 12 hours, and the removal time was 
12 hours as a single ischemia-reperfusion (I/R) cycle. The mice 
were provided food and water ad libitum. After three cycles, a 
complete pressure ulcer (P. U.) was created12. Wounds were al-
lowed to be exposed to air, and dry naturally forming a scab.

Measurement of wound contraction
To analyze wound contraction, images were captured using a 
digital camera (Nikon) on days 0, 2, 5, and 10 post-wounding. 
Quantification of wound closure was carried out by Image J 
software (National Institutes of Health) and normalized with 
the wound size at day 0 being taken as 100% (https://imagej.
nih.gov/ij).

Quantitative polymerase chain reaction (qPCR)
Wound tissues were obtained 2, 5, and 10 days after wound 
formation. Total RNA was extracted, concentration was mea-
sured and RNA was reverse-transcribed to cDNA, for qPCR 
as previously described9. The following primers were used: 
CPEB1, 5′-TTTCAAGCCTTCG CATTTCCC-3′ (forward) 

https://imagej.nih.gov/ij
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and 5′-GGACCCAACGCCCATCTTTA-3′ (reverse); CPEB4, 
5′-CCTTCTTCCTCCACTATA-3′ (forward) and 5′-GAGAG-
CACCATTAT TAGC-3′. The relative fold mRNA expression 
of each target gene was evaluated by the 2-ΔΔCt method, us-
ing glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as 
the normalization control13.

Western blot
Wound tissue samples were obtained 2 and 5 days after 
wounding. Total protein sample preparation, electrophoresis, 
development, and imaging analyses were performed as previ-
ously described9. The primary antibodies used were rabbit 
polyclonal anti-CPEB1 and anti-CPEB4 (Thermo Fisher Sci-
entific); rabbit polyclonal anti-TLR4 (Cusabio Biotech); rabbit 
polyclonal anti-phospho-TAK1, anti-TAK1, anti-p38, anti-
phospho-JNK, anti-JNK, anti-phospho-ERK, anti-phospho-
NF-κB-p65, anti-β-actin, and anti-phospho-SMAD2; rabbit 
polyclonal anti-phospho-SMAD3 and anti-SMAD3 (ST John’s 
laboratory); rabbit polyclonal anti-SMAD2, mouse polyclonal 
anti-phospho-p38, and anti-ERK (Cell Signaling Technology); 
rabbit polyclonal anti-NF-κB-p65, anti-type І collagen, mouse 
polyclonal anti-α-SMA, and monoclonal anti-fibronectin (Ab-
cam); and mouse monoclonal anti-phospho-IκBα, anti-IκBα, 
and anti-GAPDH (Santa Cruz Biotechnology). The secondary 
antibodies used were peroxidase-conjugated anti-mouse IgG 
and anti-rabbit IgG (Merck Millipore).

Statistical analysis
All results are presented as the mean±standard error of 
the mean (SEM). The Mann–Whitney U test was used for 

comparisons between two groups. Statistical analyses were 
performed using PASW Statistics 24 (IBM Corp.), and signifi-
cance was set to p<0.05.

RESULTS

Atelocollagen-mediated siRNA transfer suppression of 
CPEB1 or CPEB4 expression in wound tissues of mice
To confirm efficiency of atelocollagen-mediated siRNA trans-
fer via tail vein on mouse, we examined mRNA and protein 
expression of CPEB1 and CPEB4 by qRT-PCR and western 
blotting respectively, in wound tissues obtained on day 2 (in-
flammation phase), 5 (proliferation phase), and 10 (remodeling 
phase) after wound creation. The mRNA and protein expres-
sion of CPEB1 or CPEB4 was significantly higher in the wound 
tissue of control mice (si-Ct) than in the normal skin tissue (NC) 
in each healing phase (p<0.01) (Fig. 2). However, treatment with 
si-CP1 or si-CP4 significantly suppressed the mRNA and pro-
tein expression of CPEB1 or CPEB4 in wound tissues compared 
to si-Ct corresponding to each healing phase (p<0.01) (Fig. 2).

Suppression of CPEB1 and CPEB4 decreased wound 
contraction
Wound contraction was not significantly different on day 2 
for the comparison of si-Ct with si-CP1 and si-Ct with si-CP4 
groups (Fig. 3). Moreover, on days 5 and 10, contraction was 
remarkably decreased in the si-CP1 and si-CP4 groups com-
pared to that in the si-Ct group (p<0.05) (Fig. 3). These results 
suggested that the rate of wound healing was delayed by treat-
ment with si-CP1 or si-CP4.
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Fig. 1. Design of siRNA-treatment and 
wound model in mice. (A) Flowchart 
of atelocollagen-mediated siRNA 
transfer procedure, modeling of P.U. 
wound, and tissue preparation times. 
siRNA/atelocollagen mixture was in-
jected via the tail vein once in three 
days, nine times in total. On day 14, 
P.U. was modelled in mice using cir-
cular magnets on the dorsal skin for 3 
days. Wound tissues were collected 
on 0, 2, 5, and 10 days after wound 
creation. (B) Illustration showing the 
application of magnets for wound 
creation in mice. P.U.: pressure ulcer.
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Suppression of CPEB1 and CPEB4 decreased inflammation 
related-TAK1 signaling
To explore the functional mechanism of CPEB1 and CPEB4 in 
inflammation, we measured changes in TLR4-TAK1 signaling 
on day 2 after the wound creation. TLR4 and TNF-α protein 
expression levels were significantly decreased in the si-CP1 
and si-CP4 groups compared to the si-Ct group (p<0.05) (Fig. 
4A, B). The phosphorylation levels of TAK1 and p38 were de-
creased in the si-CP1 and si-CP4 groups compared to those in 
the si-Ct group (p<0.05) (Fig. 4C, D). Although phosphoryla-
tion of the JNK isoform at 54 kDa was decreased (p<0.05), the 
levels of the JNK isoform at 46 kDa unaltered in the si-CP4 
group (Fig. 4E). Moreover, phosphorylation of isoforms 54 and 
46 kDa of JNK was not affected in the si-CP1 group (Fig. 4E). 
Phosphorylation of ERK was significantly decreased in the si-

CP4 group (p<0.05) but was unchanged in the si-CP1 group 
(Fig. 4F). Phosphorylation of both IKBα and NF-κB-p65 was 
decreased in the si-CP1 and si-CP4 groups compared to the 
si-Ct group (p<0.05) (Fig. 4G, H). These results indicated that 
si-CP1 and si-CP4 decreased the inflammatory response of 
wound healing by suppressing TLR-TAK1 signaling.

Suppression of CPEB1 and CPEB4 decreased SMAD and 
TAK1 signaling
We determined the changes in SMAD signaling and the ex-
pression of its related scarring markers in tissues obtained on 
day 5 and 10 after wound creation. The phosphorylation of 
SMAD2 and SMAD3 was significantly decreased in the si-
CP1 and si-CP4 groups compared to that in the si-Ct group 
(p<0.05) (Fig. 5A, B; Supplementary Fig. 1A, B). Moreover, the 
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Fig. 2. Treatment with si-CP1 or si-CP4 decreased mRNA and protein expression of CPEB1 or CPEB4 in wound tissues of mice. RT-
PCR and western blotting analysis for the expression of CPEB1 or CPEB4 on day 2, 5, and 10 in wound tissues undergoing the healing 
process. (A) RT-PCR result showing si-CP1 decreased the increased mRNA expression of CPEB1 in wound tissues compared to si-Ct 
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expression of the myofibroblast marker, α-SMA, was signifi-
cantly decreased in the si-CP1 and si-CP4 groups compared 
to that in the si-Ct group (p<0.05) (Fig. 5C; Supplementary 
Fig. 1C). Furthermore, the levels of fibronectin and collagen-
I, both novel marker of scars, were dramatically decreased 
in the si-CP1 and si-CP4 groups on day 5 (p<0.05) (Fig. 5D, 
E). In addition, the phosphorylation TAK1 was significantly 
decreased in the si-CP1 and si-CP4 groups compared to that 
in the si-Ct group on day 10 (p<0.05) (Supplementary Fig. 
1D). The pro-inflammatory cytokines, TNF-α and IL-6 were 
decreased in the si-CP1 and si-CP4 groups on day 10 (p<0.05) 
(Supplementary Fig. 1E, F). These results suggest that si-CP1 
or si-CP4 decreased the scarring response of wound healing 
by suppressing SMAD and TAK1 signaling.

DISCUSSION

In this study, we found that CPEB1 and CPEB4 were signifi-
cantly increased in the wound tissues of mice compared to 
normal tissues suggesting that CPEB1 and CPEB4 are involved 
in wound healing. However, RNAi-mediated suppression of 
CPEB1 or CPEB4 expression decreased wound contraction 
during TLR4-TAK1 signaling in inflammatory phases and 
SMAD signaling of proliferative phases during wound heal-
ing. These results indicate that CPEB1 and CPEB4 play impor-

tant roles in scar formation during wound healing.
In our previous study, we reported that levels of both 

CPEB1 and CPEB4 were increased in LPS-treated macro-
phages; however, knockdown of their expression suppressed 
TAK1 signaling by reducing the phosphorylation levels of 
TAK1, p38, ERK, JNK, IkBα, as well as NF-κB-p65 in LPS-
treated macrophages9. Accumulating evidence supports the 
pathological roles of TAK1 signaling in the inf lammatory 
response, which is becoming a potential therapeutic target for 
inflammatory disorders6. Suppression or deletion of TAK1 
prevents neuronal death in cerebral ischemia or inhibits renal 
and pulmonary inflammation14-16. Inflammatory response is 
the first essential stage and plays an important role in the nor-
mal wound healing process. An acute inflammatory reaction 
generates an antimicrobial host defense, resulting in the elimi-
nation of infectious pathogens and wound debris, followed by 
resolution, which is mediated mainly by tissue-resident and 
recruited macrophages, both originating from embryonic and 
circulating monocytes, respectively4. M1 macrophages accu-
mulate and are activated in the inflammatory phase of wound 
healing and produce pro-inflammatory cytokines, including 
IL-1, IL-6, and TNF-α7. These pro-inflammatory cytokines 
have a positive therapeutic effect on wound healing, particu-
larly TNF-α, which exerts a growth-promoting activity on fi-
broblasts and enhances collagen deposition17. Clinical research 
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has indicated that prolonged inflammation is a risk factor 
for the pathological development of HTS; therefore, they are 
defined as weakly inflamed pathological scars18. It has been 
observed that most of the intervention modalities for the clini-
cal treatment of HTS are accompanied by reducing inflamma-
tion18.

The wound healing proliferative phase consists of granula-
tion tissue formation, angiogenesis, and re-epithelialization4,5. 
Granulation tissue formation is characterized by a high density 
of fibroblasts, macrophages, capillaries, and ECM4,5. Scarring 
is a fibrous tissue that is physiologically essential for dermal 
wound healing in adults. However, excessive fibrotic scarring 
often leads to HTS, which has a high incidence of up to 91% 
in burn patients with deep dermal injuries7. It is well accepted 
in HTS formation that M2 macrophage-produced TGF-β1 is 
a theoretical basis, which acts through SMAD-dependent or 
independent pathways and stimulates secretion and deposi-
tion of excessive ECM protein by fibroblasts (myofibroblasts), 

that raises the normal skin surface area7. In addition, HTS-
derived fibroblasts overexpress TGF-β1, α-SMA, type I and III 
collagen, and fibronectin19. A previous in vitro study reported 
that protein expression of both CPEB1 and CPEB4 increased 
in TGF-β1–induced human dermal fibroblasts; knockdown of 
their expression by siRNA decreased phosphorylation levels 
of SMAD2 and inhibited the expression of α-SMA, type I col-
lagen, and fibronectin in fibroblasts treated with TGF-β19.

In the present study, we observed that CPEB1 and CPEB4 
were upregulated on day 2 (inflammatory stage) and day 5 
(proliferative stage) in the process of wound healing. Our 
previous work indicated that mRNA levels of CPEB1 and 
CPEB4 in HTS tissues are 1.8 and 2.2 times higher than those 
in normal skin tissues, respectively9. Other studies have also 
reported that the levels of both CPEB1 and CPEB4 were in-
creased in human cirrhotic liver tissues compared with those 
in control tissues20. These evidences indicate that both CPEB1 
and CPEB4 are involved in tissue repair or fibrotic scarring. 
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Fig. 5. Treatment with si-CP1 or si-CP4 decreased SMAD signaling and expression of scar markers in the mouse model of P.U. Protein 
expression was measured by western blot analysis on day 5 after wound creation. (A) CPEB1 or CPEB4 siRNA decreased phosphoryla-
tion of SMAD2 in wound tissues compared to si-Ct. (B) CPEB1 or CPEB4 siRNA decreased phosphorylation of SMAD3 in wound tissues 
compared to si-Ct. (C) CPEB1 or CPEB4 siRNA decreased protein expression of α-SMA in wound tissues compared to si-Ct. (D) CPEB1 
or CPEB4 siRNA decreased protein expression of fibronectin in wound tissues compared to si-Ct. (E) CPEB1 or CPEB4 siRNA decreased 
protein expression of collagen-I in wound tissues compared to si-Ct. Data are expressed as mean±standard error (n=10). si-Ct: negative 
control siRNA, si-CP1: CPEB1 siRNA, si-CP4: CPEB4 siRNA, P.U.: pressure ulcer. *p<0.05 for comparison with si-Ct.
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CPEB1 depletion inhibits up-regulation of iNOS, NO, and 
ROS production that are induced by LPS stimulation21. CPEB1 
activation induces angiogenesis by promoting the expression 
of vascular endothelial growth factor (VEGF); conversely, 
knockdown of CPEB1 downregulates angiogenic capacity20. 
A recent study showed that in an LPS-induced sepsis model, 
depletion of CPEB4 in mouse macrophages impaired resolu-
tion of inflammation22. However, CPEB4 is necessary for IL-
22 production in CD4+T and innate lymphoid (ILC3) cells23. 
Moreover, CPEB4 promotes tissue regeneration in acute tran-
sient intestinal inflammation and is conducive to the develop-
ment of colorectal cancer23. In addition, knockdown of all the 
subtypes of CPEB proteins (CPEB1, 2, 3, and 4) increases the 
phosphorylation levels of TAK1 and p38, activates NF-κB, 
and augments the production of IL-6 in mouse RAW 264.7 
macrophages24. It is well known that CPEBs bind to CPEs lo-
cated in the 3′ untranslated region (UTR) of specific mRNAs 
and control their translation by favoring their poly(A) tail 
elongation. Furthermore, they modulate the formation of 
alternative 3′-UTRs, which contain AU-rich elements, and 
mediate mRNA stability of several pro-inflammatory or anti-
inflammatory cytokines25,26. However, to date, the mechanism 
by which CPEB regulates TAK1 and SMAD signaling is un-
clear and is a task for future studies. In addition, the CPEB2 
regulate hippocampus-dependent synaptic plasticity and long-
term memory27, controls translation of hypoxia-inducible fac-
tor 1α (hif-1α) mRNA in response to oxidative stress28, and 
suppress tumorigenesis in breast epithelial cells by inhibit the 
EMT, migration, invasion, and proliferation29. The CPEB3 
also involved in synaptic plasticity and spatial memory27. 
Circular RNA, mmu-Cpeb3_0007 was related to cardiac hy-
pertrophy and cardiac fibrosis based on gene set enrichment 
analysis in mouse model of cardiac hypertrophy30. In addition, 
CPEB3 suppresses EMT by blocking the interaction between 
colorectal cancer cells and tumor-associated macrophages via 
decreasing the IL-6/STAT3 signaling31.

In present study, suppression of CPEB1 or CPEB4 expres-
sion by RNAi inhibited wound scar formation, which seems to 
delay the wound healing rather than inhibits HTS formation. 
In vitro study, we demonstrated that the CPEB1 or CPEB4 
knockdown suppressed TGF-β1–induced fibrosis9. Moreover, 
mRNA expression of CPEB1 and CPEB4 are significantly 
higher in HTS of patients compared to normal skin, they 
matched with HTS9. The results of both in vitro and vivo 

study suggest CPEB1 or CPEB4 is related to HTS formation. 
Wound healing of mice is mediated by the panniculus carno-
sus muscle, which, importantly, the skin of mice is structurally 
and functionally different with humans. Therefore, the wound 
of mice cannot form HTS32. Nevertheless, mice models can 
help to understand the skin diseases and predict treatment ef-
ficacy. In the future, it is worthwhile to evaluate the inhibition 
of CPEB1 or CPEB4 on the formation of HTS in HTS models 
using medium or large mammals.

In conclusion, this study reported that CPEB1 or CPEB4 
were upregulated in the process of wound healing, and 
siRNA-mediated suppression of CPEB1 or CPEB4 inhib-
ited inf lammation and scar formation through TAK1 and 
SMAD signaling in a mice model of pressure-induced wounds 
(Supplementary Fig. 2). Our findings indicate that CPEB1 and 
CPEB4 are involved in the scarring response, providing new 
insights into the pathogenesis of dermal fibrosis.
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