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The immune system plays a key role in the suppression and progression of basal cell carci-
noma (BCC). The primary aetiological factor for BCC development is exposure to ultraviolet 
radiation (UVR) which, particularly in lighter Fitzpatrick skin types, leads to the accumula-
tion of DNA damage. UVR has roles in the generation of an immunosuppressive environ-
ment, facilitating cancer progression. Rates of BCC are elevated in immunosuppressed 
patients, and BCC may undergo spontaneous immune-mediated regression. Histologic 
and immunohistochemical profiling of BCCs consistently demonstrates the presence of an 
immune infiltrate and associated immune proteins. Early studies of immune checkpoint 
inhibitors reveal promising results in BCC. Therefore, the host immune system and tumor 
responses to it are important in BCC pathogenesis. Understanding these interactions will be 
beneficial for disease prognostication and therapeutic decisions.
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EPIDEMIOLOGY AND CLINICAL FEATURES

Basal cell carcinoma (BCC) is the most common malignancy, 
and its overall incidence continues to rise1,2. Several studies 
suggest incidence is increasing in Asian populations with 
lighter Fitzpatrick skin types3,4. Overall, the disease is most 
prevalent in older age groups and men5. Skin, hair, and eye 
phenotype are independent risk factors for the development 
of BCC, with the disease occurring more frequently in people 
with lighter skin (i.e. Fitzpatrick skin type I-III), red or blonde 
hair color, and light eye colour6-9. The most common site for 
BCC, in all ethnicities, is the head and neck10-13.

Patients typically present with slow-growing lesions (fre-
quently on sun-damaged skin), that may be ulcerated, bleed-
ing, pruritic, or entirely asymptomatic6. Pigmented BCC rep-
resents 50% to 75% of tumors in Asians; more than 10 times 
the number observed in Caucasians10,11,14. Pigmented BCC is 
less aggressive. These lesions require fewer Mohs stages for 
excision, have reduced subclinical infiltration and are associ-
ated with less aggressive histologic subtypes15,16. Nodular BCC 
is the most common histological subtype across all ethnici-

ties—representing up to 80% of cases, followed by superficial 
BCC10,12,17. Less frequent histologic subtypes are associated 
with clinically aggressive behavior and recurrent disease18. 
These include—morpheaform, sclerosing, infiltrative, mi-
cronodular, and basosquamous18. The presence of perineural 
invasion is also a high-risk finding18. High-risk clinical factors 
include—location on the head and neck, size ≥2 cm, poorly 
defined borders, recurrent tumors, and lesions at sites of pre-
vious radiation therapy18.

LYMPHOMA TO  
LYMPHOPROLIFERATIVE DISORDERS

BCC appears to be chief ly caused by ultraviolet radiation 
(UVR)19. BCC occurs most frequently on sun-exposed sites 
(i.e. head and neck) and rates are higher in individuals with 
greater susceptibility to ultraviolet (UV)-induced DNA dam-
age (i.e. lighter Fitzpatrick skin types)6,7. BCC is characterized 
by a typical UV mutation signature, namely C>T transitions 
occurring at dipyrimidine sites, and sporadic BCC has the 
highest mutation burden of any malignancy20,21.
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Iatrogenic radiation and arsenic exposure have also been 
established as causes of BCC22-24. Iatrogenic radiation to the 
head and neck leads to a relative risk for BCC development of 
3.623. Arsenic-induced BCC often develops after a long latency 
period and frequently occurs on non-sun exposed sites24.

Commonly mutated genes in BCC have been described. 
Genetic profiling of patients with Basal Cell Naevus Syn-
drome, who develop multiple BCCs from a young age, iden-
tified mutations in the PTCH1 gene25,26 which encodes a 
transmembrane receptor involved in the Hedgehog signaling 
pathway27. Studies of sporadic BCC have mapped driver muta-
tions to PTCH1 and other components of the Hedgehog path-
way including SMO and GLI28-30. Other recurrently mutated 
driver genes include TP53 and members of the RAS proto-
oncogene family21.

UVR suppresses cutaneous immunity. Early studies by 
Kripke31 demonstrated that transplantation of UV-induced 
tumors into immunocompetent mice resulted in the immune 
rejection of tumors. Similar transplantation experiments 
with immunosuppressed or UVB-irradiated mice maintained 
tumor survival31. The induction and elicitation of contact hy-
persensitivity are suppressed when hapten is applied to a site 
irradiated by either UVB or UVA radiation32,33.

There are many mechanisms of UV-mediated immuno-
suppression. Locally, UVR affects chromophores in the skin, 
changing the molecular configuration and altering function. 
Urocanic acid is found predominantly in the stratum corne-
um34,35. It is a chromophore that undergoes UV-mediated con-
version from trans-urocanic acid to cis-urocanic acid36. The 
roles of these isomers differ. While trans-urocanic acid appears 
to have a photoprotective role—there is an accumulation of 
UVB-mediated DNA damage in mice deficient in the enzyme 
necessary for its production37—cis-UCA has deleterious effects 
through its promotion of cutaneous immunosuppression. Cis-
UCA increases TNFα levels38. TNFα traps Langerhans cells 
within the epidermis, impairing migration to draining lymph 
nodes and subsequent generation of specific T cells38. Cis-UCA 
has roles in promoting mast cell degranulation39.

UVR promotes the formation of reactive oxygen species, 
which oxidize esterified fatty acyl residues and create platelet-
activating factor-like (PAF-like) ligands40. These stimulate the 
PAF pathway, producing cyclooxygenase (COX) 2 and mast 
cell activation41.

Experimental studies have implicated COX2 overexpres-

sion in BCC cell lines with increased angiogenesis and resis-
tance to regulated cell death following UVR42. Higher expres-
sion of COX2 in BCC has been associated with increased 
invasion and angiogenesis43.

Nucleotide lesions, specifically UVR-induced cyclobutane 
pyrimidine dimers (CPDs), may have immunosuppressive 
properties44,45. In mouse models and human skin, repair of 
CPD lesions by endonucleases facilitated systemic and lo-
cal hypersensitivity reactions46,47, prevented erythema and 
sunburn, and increased production of interferon (IFN)-γ-
mediated cell adhesion molecule ICAM-146.

Vitamin D (activated by UVR) has roles in immunosup-
pression48,49. When applied topically in high doses, calcitriol, 
the active form of vitamin D, suppresses delayed-type hyper-
sensitivity reactions48. Calcitriol binds dendritic cells and sup-
presses their maturation50. The outcome is a reduced antigen-
presenting capability and an increased differentiation of T-
regulatory cells51. Vitamin D intake has been reported as 
modestly associated with BCC but not cutaneous squamous 
cell carcinoma (cSCC) risk52,53.

IMMUNOSUPPRESSION AND BCC

Immunosuppression is associated with an elevated risk of ke-
ratinocyte cancer (KC) development. Organ-transplant recipi-
ents (OTRs) are a high-risk group for the development of KC54. 
cSCC incidence in OTRs is up to 250 times that of the general 
population55. BCC incidence is around 10 times that of the 
general population55. This may be explained by the differences 
in immunogenicity of each tumor. The cumulative dose of im-
munosuppressive medication in OTRs has a greater effect on 
cSCC risk than BCC risk56,57. Heart/lung and renal transplant 
recipients have higher KC rates compared to liver transplant 
recipients58-60 and the BCC:cSCC in liver transplant patients 
appears to be closer to that of the general population60,61. This 
may be due to reduced cumulative immunosuppressive doses 
in liver transplant recipients60.

Unlike cSCC, there is no strong evidence supporting that 
BCCs in OTRs display aggressive disease. A study examining 
176 cases of BCC from OTRs identified certain features unique 
to OTR BCCs, including the development of lesions at a signif-
icantly younger age, presence of significantly more lesions on 
extra-cephalic locations, and identification of lesions at unusu-
al sites including genitalia and axillae62. A retrospective study 
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of 69 renal transplant recipients did not identify differences in 
localization or clinicopathologic presentation of BCCs63.

LYMPHOMA

Non-Hodgkin lymphoma (NHL) encompasses a group of 
lymphoproliferative disorders which induce immunosuppres-
sion. The neoplastic immune cells alter the expression of cell 
surface markers, leading to reduced recognition and inhibi-
tion of effector cells64,65. Locally and systemically B-cell NHL 
patients have an expansion of CD14+ HLA-DRlow monocytes 
with immunosuppressive properties and elevated CD4+ CD25+ 
T-regulatory cells66,67. Chronic lymphocytic leukemia (CLL) 
patients are at an increased risk of developing many cancers68. 
Compared to the general population, the standardized cancer 
incidence ratio (all cancers) is 2.0 for men and 1.2 for women68. 
Rates of KC (both cSCC and BCC) are elevated in patients 
with NHL68-71. In a recent study, BCC incidence was calculated 
for CLL and non-CLL-NHL72. Both groups demonstrated an 
elevated incidence of BCC compared to the general popula-
tion72, with a greater difference observed in the CLL group72.

The clinical behavior of KC in NHL patients is more ag-
gressive, and KC is associated with a poorer NHL prognosis73.  
Non-melanoma skin cancer may be a marker of poor progno-
sis in patients with non-Hodgkin’s lymphoma74. This relates 
to both BCC and cSCC. In patients with CLL and BCC man-
aged with Mohs micrographic surgery (MMS), 5-year local 
recurrence was 22%; 14 times higher than in patients without 
CLL75. Higher post-treatment recurrence rates were identified 
in another study assessing this population72.

HUMAN IMMUNODEFICIENCY VIRUS

HIV status has been associated with elevated rates of BCC and 
cSCC development76-78. In one large study HIV, positive indi-
viduals had a 2.1-fold increase in BCC76. Similar results were 
identified by Burgi et al.77. Crum-Cianflone et al.79 evaluated 
incidence rates and risk factors for the development of cuta-
neous malignancies in 4,490 HIV-infected patients. In HIV-
positive individuals, risk factors for the development of BCC, 
including skin, hair, and eye phenotype, are unchanged from 
those seen in the general population79. In their study, partici-
pants developed BCC at a significantly younger age than that 
observed in the general population79. They also noted a raised 

BCC:cSCC ratio, unlike the converse observed in OTRs where 
cSCC is the predominant KC. The most common location for 
BCCs was the head and neck79.

Studies have not identified an association between lower 
CD4+ T cell counts and higher viral load with increased risk of 
BCC76,77,79,80. 

IMMUNE INFILTRATE

T lymphocytes
Early studies consistently demonstrated a predominantly T 
cell infiltrate in BCC81-86 (Fig. 1)85. These tumor infiltrating 
lymphocytes (TILS) have various functions and may promote 
or inhibit tumor survival. Normal skin appears to have a pau-
city of infiltrating T cells—this includes a lack of CD8 and 
CD3 expression87.

A small proportion of BCCs undergo either partial or com-
plete spontaneous regression. Several immunologic differences 
have been described in this population. CD3+ and CD4+ cells 
are present in significantly higher numbers in the overlying 
epidermis of regressing BCC88. A case report of a regressing 
BCC described elevated levels of CD3+, CD4+, CD8+, and TIA-
1 (a marker of NK cells) in the immune infiltrate89. A case series 
of periorbital regressing BCC also demonstrated increased in-
filtration of CD4+ T cells around and into the tumor nests90. In 
addition, the IL-2 receptor, a marker of activated T cells, was 
elevated in regressing tumors88,91. These findings suggest that 
particular phenotypes of CD4+ expressing T cells may mediate 
tumor regression88. These may likely be Th1 CD4+ T cells—
reflected by the cytokine profile of regressing BCCs91.

CD4+ CD25+ FOXP3+ T-regulatory cells have been detected 
around BCC tumor aggregates87.

In facial BCC, nearly half of CD4+ cells were identified as be-
ing CD4+ FOXP3+ regulatory T cells86. This is in comparison to 
UV-protected skin which has a paucity of T-regulatory cells86. 
T-regulatory cells have immunosuppressive functions87. Elevat-
ed expression of CCL22, CCL18, and CCL17, chemokines that 
attract T-regulatory cells, have also been described in BCC87.

Kaporis et al.87 have described elevated levels of CD8+ T 
cells in BCC compared to normal skin, with high levels of 
IFN-associated gene interleukin (IL)-12 and IL-23 expression 
which together promote memory T cells and have anti-tumor 
properties. Other studies have reported the presence of these 
cytokines in BCC92,93. CD8 expression levels were reduced in 
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primary BCC tumors of patients who then went on to have 
recurrent disease94. In summary, there is relatively sparse 
knowledge of T cell infiltration in BCC lesions and how they 
affect clinicopathologic presentation and prognosis.

Mast cells
There is a significant mast cell infiltrate in BCC, especially 
at the periphery of tumors85,95-97. The number of mast cells is 
inversely proportional to TILs85, more aggressive tumors have 

greater mast cell numbers85,96.
While smoking does not appear to be a risk factor for the 

development of BCC98, it is associated with greater peritumor-
al mast cell numbers, which may explain the higher prevalence 
of aggressive morpheaform BCC variants in this population99.

Mast cells express VEGF and IL-8, suggesting that mast 
cells may have roles in the regulation of the immune cell 
infiltrate and angiogenesis95. Similarly, BCCs with greater 
microvessel density are more aggressive100. Mast cell-deficient 

Fig. 1. The immune response (tumor promoting and tumor inhibiting) to basal cell carcinoma (BCC). Tumor promoting: Ultraviolet 
radiation (UVR) damages DNA leading to mutagenesis. UVR suppresses cutaneous immunity through many mechanisms including 
promotion of mast cell degradation. Mast cells have roles in angiogenesis through expression of interleukin (IL)-8 and VEGF. Other 
mast cell mediators include heparin, tryptase, TGFβ and TNFα. These promote a Th2 environment, induce T-regulatory cells and recruit 
fibroblasts. CD4+ FOXP3+ T-regulatory cells are found in the immune infiltrate. These cells release suppressive cytokines and inhibit the 
Th1 response. IL-17 and IL-22 cytokines promote MAPK, NFκβ and STAT3 signaling. Chemokines CCL17, CCL18, CCL20 and immature 
dendritic cells have roles in attracting T-regulatory cells. The PD-1/PD-L1 pathway is an immune resistance mechanism promoting apop-
tosis of effector cells. High levels of PD-1 and PD-L1 are found on tumor cells and immune cells. This interaction is inhibited by immune 
checkpoint inhibitors. Tumor inhibiting: CD4+ and CD8+ helper T cells are present in the BCC immune infiltrate. These effector cells 
secrete Th1 cytokines including IL-2 and interferon (IFN)-γ. IL-12 and IL-23, cytokines involved in the regulation of the Th1 response, pro-
mote memory T cell differentiation and the anti-tumor response. MHC expression is low in BCC. Expression is increased after Imiqui-
mod treatment and Hedgehog Inhibitor treatment. Imiquimod increases levels of the anti-tumor cytokines IL-12 and IFN-γ. Mature den-
dritic cells have tumor inhibiting roles. Macrophages appear to have conflicting roles in BCC pathogenesis. ECM: extracellular matrix.
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mice inoculated with an aggressive melanoma variant have 
slower angiogenic responses and reduced rates of metastasis101.

Mast cell granules contain various substances including 
histamine, heparin, leukotrienes, prostaglandins, tryptase, 
TNFα, TGFβ, IL-3, and IL-4102. Histamine and TNFα have 
roles in local and systemic immunosuppression96,102-104. Hepa-
rin and tryptase are mitogens for fibroblasts and endothelial 
cells and increase regulatory T cell function105. IL-4 levels have 
been demonstrated to be upregulated in BCC and facilitate a 
Th2, immunosuppressive environment87.

Dermal mast cell prevalence is elevated in sun-protected 
skin of patients with a history of BCC, suggesting increasing 
mast cell density may be a risk factor for BCC development106. 
The authors proposed that given mast cells are facilitators of 
cutaneous immunosuppression, higher baseline dermal mast 
cell density may increase susceptibility for BCC develop-
ment106. Previously, the authors reported that UVB-induced 
systemic suppression of contact hypersensitivity is determined 
by dermal mast cell prevalence107.

Thus, mast cells may promote UVB-mediated immuno-
suppression, angiogenesis, and extracellular matrix degrada-
tion102. UVR itself also affects mast cells. UVR-induced me-
diators including cis-urocanic acid and endothelin-1 promote 
mast cell degranulation104,108.

Macrophages and dendritic cells
Macrophages and dendritic cells are antigen-presenting cells. 
They are consistently reported to be present in the BCC im-
mune infiltrate, but to a lesser extent than T cells81,109.

Macrophages can broadly be classified into two phenotypic 
subsets, M1 and M2. M1 macrophages have traditionally been 
viewed to have anti-tumor properties—i.e. phagocytosis of 
tumor cells, secretion of cytokines promoting cytotoxic lym-
phocytes within the tumor microenvironment (TME)110,111. 
However, secreted reactive oxidative species also cause tissue 
damage and promote malignancy112. M2 macrophages may 
release tumor-promoting growth factors and have roles in an-
giogenesis and cell proliferation113-115.

Beksaç et al.94 identified a predominance of M2 macro-
phages in BCC. They did not identify an association of M2 
macrophage level with recurrence94. No association was iden-
tified between macrophage subtype or amount in recurrent vs 
non-recurrent BCC in another study116. However, contrasting 
findings have been reported by Tjiu et al.43, who identified 

the presence of M2 macrophages in BCC. Higher numbers of 
these TAMs were significantly associated with more aggressive 
disease—i.e. greater depth of invasion and higher microves-
sel density43. Exposure of BCC cell lines to M2 macrophages 
enhances invasion and angiogenesis in vitro43. Depletion of 
dermal dendritic cells, Langerhans cells and M1 macrophages 
in a PTCH-deficient mouse model resulted in enlargement of 
BCC lesions117.

In contrast, nicotinamide (NAM), a KC chemo-preventive 
agent, results in a significant reduction of CD68+ macrophages 
(a marker of M1 and M2 cells), but not of the M2-specific 
marker CD163+, in the tumor infiltrate118. Therefore, NAM may 
selectively deplete M1 macrophages118. The authors postulated 
that this may be one mechanism of its anti-tumor effect118.

CD1a is a marker of dendritic cells including Langerhans 
cells94. CD1a expression is relatively low in BCC94. Lower lev-
els have been identified in primary tumors of patients who 
developed recurrent disease94. In one study, there were fewer 
CD1a expressing cells in the epidermis adjacent to the tumor 
versus normal epidermis87. Higher levels of Langerhans cells, 
identified by the S-100 marker, have been associated with less 
aggressive BCC119. Therefore, the presence of mature dendritic 
cells in the BCC TME may have a protective role.

Dendritic cells lacking markers of maturation (i.e. CD40, 
CD83, and LAMP) have been described in BCC87. These im-
mature dendritic cells may have pro-tumorigenic functions 
by induction of T cell tolerance and production of suppressive 
cytokines87,120,121.

MHC molecules
The significantly elevated rates of cSCC in OTRs compared 
to BCC may be in part explained by reduced MHC1 levels in 
BCC, implying that the CD8+ cytotoxic immune response has 
a lesser role in BCC than in cSCC122.

If cancer is to survive it must evolve mechanisms to evade 
the immune response. MHC class 1 molecules are expressed 
on antigen-presenting cells123. They present abnormal pep-
tides synthesized by the cell itself and are presented to CD8+ 
T cells123. BCC has a relative lack of MHC expression122,124. 
Normal human skin constitutively expresses MHC 1124. Ex-
pression of β2-microglobulin, a component of the MHC 1 
molecule, is low in BCC125. Lower class 1 antigen expression 
in BCC is correlated with more aggressive tumors and lack of 
differentiation status124. Treatment with imiquimod increases 
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MHC 1 expression in BCC126. Treatment with hedgehog path-
way inhibitors also increases MHC 1 levels and infiltration of 
CD8+ T cells in BCC127. MHC class 2 expression is variable in 
BCC85,89 and is more commonly present on infiltrating T cells 
compared to tumor cells128,129.

HLA-G is a type of MHC class 1b antigen. Under physio-
logical conditions, it occurs in immune-privileged sites. It has 
been characterized in some tumors and has immunosuppres-
sive functions130,131. In BCC it is expressed on both neoplastic 
cells and inflammatory cells132.

Cytokine profile
The dominant cytokine expression profile in most untreated 
BCCs facilitates local immunosuppression and tumor surviv-
al133. This suppressive cytokine profile is altered during treat-
ment and in tumors which display spontaneous regression91,93.

Most studies report that BCC is characterized by the ex-
pression of Th2 cytokines87,133,134, including IL-4, IL-5, IL-13, 
and IL-10132,133. Compared to cSCC, BCC has significantly 
higher levels of Th2 cytokines: IL-4, IL-5, IL-6, and IL-1β133. 
ELISA assay of a BCC cell line demonstrated high levels of 
IL-10 and IL-4 production134. Tumor cell production of sup-
pressive cytokines is a mechanism of tumor survival in BCC; 
however, anti-tumor cytokines are also present in lesions87,91. 
Head and neck BCC exhibits a more aggressive and treatment-
resistive clinical course133. Higher numbers of suppressive cy-
tokines are found in head and neck BCC133.

IL-17, IL-22, and IL-23 are present in higher levels in BCC 
compared to normal skin93. Exposure of BCC cell lines to IL-
17 and IL-22 cytokines results in cellular proliferation in vi-
tro92. These results were replicated in xenograft tumor mouse 
models92. Prior studies have demonstrated slower tumorigen-
esis in IL-17 deficient mice135. Exposure of BCC cell lines to 
IL-22 results in increased amount and duration of phosphory-
lated products within the STAT3 and MAPK pathways92. Con-
stitutive p65 phosphorylation, a proxy of NFκβ signaling , was 
identified following IL-17 exposure92. These findings imply 
that IL-17 and IL-22 play a role in BCC pathogenesis and likely 
promote tumor survival92.

IFN-γ is a Th1 cytokine with roles in promoting Th1 dif-
ferentiation136. Most studies report low IFN-γ levels in BCC, 
implying a reduced role for Th1 mediated immunity92,134. Flow 
cytometry analysis of isolated BCC immune infiltrates dem-
onstrated reduced IFN-γ-positive and CD8+ T cell levels com-

pared to peripheral blood mononuclear cells92.
Elevated IFN-γ in the tumor infiltrate is associated with 

regressing tumors91. A recent study has described presence of 
Th1 cytokines in BCC and peritumoral skin, however non-ir-
radiated (by UVR) skin lacked expression of these cytokines86.

Imiquimod is a standard treatment for superficial BCC. 
It has both direct and indirect effects on the skin immune 
system which leads to immune-mediated destruction of neo-
plastic cells. It binds to toll-like receptor 7/8 on inflammatory 
cells leading to the release of pro-inflammatory mediators, 
including IL-12 and IFN-γ, and activation of the cell-mediated 
immune response pathway126,137. It also results in elevation of 
CD68+ macrophages and plasmacytoid predendritic cell levels 
in the intra and peritumoral infiltrate138, and an increase in 
CD4+ T cells levels and MHC 1 expression93,126,139. These find-
ings suggest the immune mechanisms by which imiquimod 
induces an anti-tumor response.

IMMUNE CHECKPOINT INHIBITORS

The programmed cell death protein 1 (PD-1) and pro-
grammed death-ligand 1 (PD-L1) signaling pathway is an 
adaptive immune resistance mechanism that promotes apop-
tosis of effector immune cells140. In a series of 40 BCC’s, 22% 
of tumors demonstrated PD-L1 expression on tumor cells 
and 82% demonstrated PD-L1 expression on TILS or macro-
phages141. PD-1 expression was demonstrated on TILS in 100% 
of cases141. 82% of cases with PD-L1 expression on infiltrating 
immune cells were near a PD-1 expressing cell141. Case reports 
describe mixed, but predominantly favorable, responses to 
immunotherapy142-144.

A patient with metastatic BCC demonstrated a favorable 
response after 14 months of pembrolizumab143. Ikeda et al.142 
present a Hedgehog-inhibitor-resistant metastatic BCC treated 
with nivolumab. A near-complete remission at 4 months was 
achieved142. Amplification of a chromosomal region containing 
PDL1/PDL2/JAK2 genes and a high mutation burden was de-
tected142. A vismodegib-resistant metastatic BCC attained partial 
response to a trial PD-1 inhibitor REGN2810145. Goodman et al.146 
reported on four patients with locally advanced/metastatic BCC, 
with three of four demonstrating complete or partial responses to 
anti-PD-1 therapies. A recent phase 2 trial of the PD-1 antibody 
cemiplimab demonstrated clinically significant anti-tumor activ-
ity in locally advanced and metastatic BCC, with 21% of patients 
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demonstrating a partial response and 6% of patients demon-
strating complete response147. In late 2021, the FDA approved 
cemiplimab for use in locally advanced and metastatic BCC148.

The role of CTLA4-inhibitors in BCC is poorly character-
ized. A case report of a locally advanced BCC of the head and 
neck in a patient with BRAF-negative metastatic melanoma 
was commenced on ipilimumab with subsequent shrinkage of 
the BCC149.

Inoperable or metastatic BCC may be a good candidate for 
immune checkpoint inhibitors; however, understanding the 
prognostic role of the immune infiltrate is imperative in the 
selection of these agents.

CONCLUSION

There are multiple mechanisms by which BCC evades the an-
ti-tumor immune response. UVR facilitates the creation of an 
immunosuppressive environment. BCC tumors express sup-
pressive cytokines and may downregulate MHC expression on 
tumor cells. BCC may undergo spontaneous regression and 
the immune profile of regressing tumors differs from that of 
progressing tumors. Treatments alter the immune infiltrate 
and cytokine profile of BCC, promoting an anti-TME.
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