Table 4.
Regression results for moderating effects.
|
Dependent variable: TSGIa | |||||||||||||||||||||
|
(7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | ||||||||||||||
|
Timelag_3 | P value | Timelag_7 | P value | Timelag_3 | P value | Timelag_7 | P value | Timelag_3 | P value | Timelag_7 | P value | Timelag_3 | P value | Timelag_7 | P value | ||||||
Policy | 1.48 | .26 | 3.591 | .004 | 0.111 | .02 | 0.403 | .001 | 0.737 | .33 | 1.574 | <.001 | −0.783 | .45 | −2.387 | .006 | ||||||
Cases | −13.713 | .01 | −15.357 | .004 | −13.505 | .01 | −16.682 | .006 | −13.088 | .009 | −14.507 | .002 | −13.624 | .009 | −15.191 | .004 | ||||||
Policy*lnIncome | −0.136 | .27 | −0.335 | .004 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||
Policy*Gini |
|
|
|
|
−1.455 | .26 | −3.188 | .001 |
|
|
|
|
|
|
|
|
||||||
Policy*lnPopulation |
|
|
|
|
|
|
|
|
−0.011 | .58 | −0.064 | <.001 |
|
|
|
|
||||||
Policy*Sexratio |
|
|
|
|
|
|
|
|
|
|
|
|
0.009 | .42 | 0.025 | .005 | ||||||
Control FEb | Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
||||||
State FE | Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
||||||
Day FE | Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
Yes |
|
||||||
Constant | 56.145 | <.001 | 57.803 | <.001 | 56.144 | <.001 | 57.791 | <.001 | 56.144 | <.001 | 57.784 | <.001 | 56.143 | <.001 | 57.770 | <.001 | ||||||
Observations | 5048 |
|
4933 |
|
5048 |
|
4933 |
|
5048 |
|
4933 |
|
5048 |
|
4933 |
|
||||||
R 2 | 0.827 |
|
0.819 |
|
0.827 |
|
0.82 |
|
0.827 |
|
0.819 |
|
0.827 |
|
0.819 |
|
aTSGI: Twitter sentiment geographical index.
bFE: fixed effect.