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Abstract

Effective drug delivery requires ample dosing at the target tissue while minimizing negative side 

effects. Drug delivery vehicles such as polymeric nanoparticles (NPs) are often employed to 

accomplish this challenge. In this work, drug release of numerous drugs from surface eroding 

polymeric NPs was evaluated in vitro in physiologically relevant pH 5 and neutral buffers. NPs 

were loaded with paclitaxel, rapamycin, resiquimod, or doxorubicin and made from an FDA 

approved polyanhydride or from acetalated dextran (Ace-DEX), which has tunable degradation 

rates based on cyclic acetal coverage (CAC). By varying encapsulate, pH condition, and polymer, 

a range of distinct drug release profiles were achieved. To model the obtained drug release 

curves, a mechanistic mathematical model was constructed based on drug diffusion and polymer 

degradation. The resulting diffusion-erosion model accurately described drug release from the 

variety of surface eroding NPs. For drug release from varied CAC Ace-DEX NPs, the goodness 

of fit of the developed diffusion-erosion model was compared to several conventional drug release 
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models. The diffusion-erosion model maintained optimal fit compared to conventional models 

across a range of conditions. Machine learning was then employed to estimate effective diffusion 

coefficients for the diffusion-erosion model, resulting in accurate prediction of in vitro release 

of dexamethasone and 3′ 3’-cyclic guanosine monophosphate–adenosine monophosphate from 

Ace-DEX NPs. This predictive modeling has potential to aid in the design of future Ace-DEX 

formulations where optimized drug release kinetics can lead to a desired therapeutic effect.

Keywords

Polyanhydride; Acetalated dextran; pH responsive; Fickian diffusion; Machine learning; Neural 
network

1. Introduction

For drugs with a narrow therapeutic index, traditional systemic administration can harm 

the patient due to dose limiting toxicities. At lower doses, an insufficient amount of drug 

arrives at the intended delivery site, rendering the treatment ineffective. At higher doses, 

therapeutic effects can be achieved, but increased systemic drug concentrations can cause 

adverse off-target effects. These dosing problems are observed for a variety of therapeutics 

and are especially prevalent with chemotherapeutics and immunotherapies [1–6]. In order 

to overcome these shortcomings and improve therapeutic outcome, drug delivery vehicles 

are often employed to enhance the local delivery of drug while reducing adverse off-target 

effects [7]. Various drug delivery platforms have been shown to protect sensitive drugs from 

premature degradation in the body and provide controlled release of the drug over time, 

resulting in less frequent dosing [7].

While there are a multitude of drug delivery platforms, polymeric nanoparticles (NPs) 

are one of the most common [7]. NPs are commonly comprised of degradable polymers 

that break down through bulk degradation or surface erosion. Bulk degrading NPs lose 

their density and become porous over time whereas surface eroding NPs maintain their 

density with the radius decreasing as the surface erodes. An example of a bulk degrading 

polymer is the FDA approved biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) 

[8]. Two examples of surface eroding polymers are polyanhydrides and acetalated dextran 

(Ace-DEX).

As PLGA bulk degrades it does so through an autocatalytic reaction mediated by its acidic 

degradation products [9]. The degradation rate of PLGA is somewhat tunable based on the 

ratio of lactic to glycolic acid with most formulations degrading on the order of months 

[8,10]. While sustained drug release on this timeline can be favorable in some instances, 

there are other instances where quicker release or combined fast and slow kinetics are more 

favorable [10,11].

Surface eroding behavior has been previously documented for hydrophobic polymers 

such as polyanhydrides due to minimal fluid penetration into the polymer matrix [12]. 

FDA approved polyanhydrides have also been evaluated for the formulation of NPs 

[13,14]. Compared to PLGA, polyanhydrides maintain their bulk material properties during 
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degradation, but they have limited storage options and a poor shelf life [15,16]. As a 

result, polyanhydrides have had limited commercial applications, with the most notable 

being larger implants such as Gliadel: a chemotherapeutic-loaded wafer made of 20:80 poly 

(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride) (20:80 poly(CPP:SA)) [15,16].

Ace-DEX has been used pre-clinically and degrades by surface erosion. Iťs pH-neutral 

degradation products and stability under various storage conditions make Ace-DEX ideal 

for a variety of cargoes [17,18]. Furthermore, Ace-DEX uniquely has tunable degradation 

kinetics that range from hours to months, allowing for a range of drug release profiles to 

meet a variety of clinical needs. Reaction time during polymer synthesis determines the 

ratio of cyclic to acyclic acetal groups, where a longer reaction time yields a higher cyclic 

acetal coverage (CAC) and a slower degrading polymer [18,19]. Furthermore, Ace-DEX is 

acid sensitive, making it an ideal biopolymer for enhanced drug delivery in the endosome 

of phagocytic cells, tumor microenvironments (TMEs), and sites of inflammation [18]. Due 

to its unique acid sensitivity and range of degradation kinetics, Ace-DEX has been applied 

in numerous therapeutic elements including drug and vaccine delivery as well as tissue 

engineering [20].

Applications using Ace-DEX have illustrated favorable outcomes in both vaccine and 

chemotherapeutic delivery because of the polymer's tunable and more rapid degradation 

kinetics. For example, ovalbumin (OVA) loaded Ace-DEX NPs with a degradation half-life 

(t1/2) of 1.7 h demonstrated increased antigen cross presentation compared to OVA loaded 

NPs made with slower degrading Ace-DEX (t1/2 = 16 h), PLGA, and iron oxide [10]. Chen 

et al. reported similar findings when OVA, universal influenza antigen Matrix 2 ectoprotein 

(M2e), and adjuvants cGAMP and murabutide were individually encapsulated in Ace-DEX 

NPs with varied CAC. Antibody production, cellular responses, and survival after challenge 

were observed to be dependent on NP degradation rate (at pH 5: 20% CAC t1/2 = 0.25 h, 40% 

CAC t1/2 = 2.9 h, 60% CAC t1/2 = 21.3 h) [21,22]. Additionally, drug release from Ace-DEX 

scaffolds used to treat glioblastoma have demonstrated varying efficacy based on drug 

delivery kinetics. In this instance, the combination of a quick degrading scaffold and a slow 

degrading scaffold resulted in improved survival, perhaps due to an initial burst of drug to 

immediately treat the present tumor as well as sustained drug release to prevent recurrence 

[11]. The quick degrading scaffold released 14.1% of loaded drug per day while the slow 

degrading scaffold released 1.3% per day [11]. Due to the high versatility of Ace-DEX 

as a drug delivery platform, there is value in developing a mathematical model to aid in 

optimization of drug-loaded Ace-DEX formulations.

Various mathematical models have been developed previously to model drug release from 

degradable NPs. These models have been employed to gain insight to the role of individual 

inputs of an experimental system [23,24]. As such, an effective model can be used to predict 

the behavior of similar systems and reduce future experimental trial and error, saving time 

and resources. A robust model can also aid in translation from in vitro to in vivo experiments 

[25]. Five of the most employed drug release models include the zero order, first order, 

Korsmeyer-Peppas, Higuchi, and Hixson-Crowell models [26–28]. In general, each of these 

models focuses primarily on either diffusion effects or carrier degradation [27,29–36]. While 

each of these models are well established, and have advantages, they were based on various 
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assumptions and they may not fully encompass the release mechanisms of both diffusion 

and polymer degradation needed to describe surface eroding NPs.

In this work, a mechanistic model was derived to primarily describe drug release from 

surface eroding NPs. The rate of diffusion of drug out of the polymer matrix is expected 

to vary based on drug properties [37,38], and further drug release is expected to be reliant 

on polymer degradation, which for Ace-DEX occurs at a rate dependent on CAC [19]. A 

similar mechanistic approach has previously been utilized to model drug release from PLGA 

NPs [9,23]; however, these models contain parameters reliant on bulk degradation effects 

and are therefore not mechanistically appropriate for surface eroding polymers. Other drug 

release models have previously been employed to describe surface eroding polyanhydride 

drug carriers [12,39,40], but they do not characterize both diffusion and degradation effects. 

As such, these models may not adequately apply to a broad range of drug encapsulates 

with varied diffusivities or to alternate polymer formulations. Indeed, it has been previously 

shown that different polyanhydride polymers as well as varied drug cargo can produce 

drug release curves with unique kinetic profiles [40,41]. Furthermore, most applications of 

mathematical modeling to polyanhydride systems appear to focus on larger implants and 

may not always translate to NP systems [12,39,40]. As such, the model derived herein 

aims to overcome these challenges by encompassing the surface erosion of a variety of 

polymeric NPs as well as simple diffusion of numerous drugs through the polymer matrix. 

The development of this mechanistic model addresses a gap in the field in modeling drug 

release from polyanhydride NPs, and to our knowledge, this work is the first application of 

mathematical modeling to describe drug release from Ace-DEX.

In order to evaluate the developed model, herein referred to as the diffusion-erosion model, 

drug release curves were obtained for a variety of polymeric NP formulations, including 

NPs made with 20:80 poly(CPP: SA) and with varied CAC Ace-DEX achieving a range of 

degradation profiles on the order of minutes to months [13,18,19]. 20:80 Poly(CPP: SA) 

NPs were loaded with resiquimod (R-848), and Ace-DEX NPs were loaded with paclitaxel 

(PTX), rapamycin (Rapa), R-848, doxorubicin (DXR), and dexamethasone (DXM). The 

selected drugs have varied physicochemical properties and have been successfully applied 

in Ace-DEX platforms overcoming drug delivery challenges [11,42–47]. Drug release was 

evaluated in vitro in neutral pH buffer to mimic the extracellular space as well as pH 5 

buffer to mimic the endosome, sites of inflammation, or TMEs. The diffusion-erosion model 

was then fit against PTX, Rapa, R-848, and DXR release curves. The goodness of fit of 

the developed model was then compared to commonly employed drug release models. The 

variety of conditions applied to the drug release curves and the multiple model comparisons 

allowed for a high level of rigor in evaluating the diffusion-erosion model for drug release 

from surface eroding NPs. Machine learning was then employed to increase predictive 

power of the diffusion-erosion model. Predicted drug release curves were compared to 

DXM release and previously published 3′ 3’-cyclic guanosine monophosphate–adenosine 

monophosphate (cGAMP) release [47] from varied CAC Ace-DEX NPs in vitro. Overall, 

the work herein encompasses the generation of experimental drug release data, derivation of 

the diffusion-erosion model, selection of the best fit drug release model, and implementation 

of machine learning for predictive modeling (Supplemental Fig. 1).
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2. Materials and methods

Unless otherwise noted, all materials were obtained from Sigma Aldrich (St. Louis, MO).

2.1. Acetalated dextran synthesis

Ace-DEX was synthesized as previously described [18]. As such, 71 kDa dextran was 

dissolved in dimethyl sulfoxide (DMSO) along with catalyst pyridinium p-toluenesulfonate 

before being reacted with 2-ethoxypropene (Matrix Scientific, Columbia, SC) under 

anhydrous conditions. This reaction was quenched with triethylamine (TEA) after 3 min, 

20 min, and 8 h for 20%, 40%, and 60% CAC Ace-DEX, respectively (CAC confirmed by 

Inova 400 MHz NMR). Each of these Ace-DEX polymers are herein referred to as 20, 40, 

and 60 CAC. Ace-DEX was then precipitated in basic water (0.04% v/v TEA in water) and 

lyophilized. On day 2, Ace-DEX was dissolved in ethanol and centrifuged to spin down 

impurities. Ace-DEX was then re-precipitated from the supernatant in basic water before 

being lyophilized again and stored at −20 °C.

2.2. Synthesis of 20:80 poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)

20:80 poly(CPP-SA) was synthesized by a two-step method, as previously reported 

[13,14,48]. Sebacic acid (SA) and 1,3-bis-(4-carboxy-phenoxy)propane (CPP) monomers 

were first oligomerized and acetylated at their terminal carboxylic acids (Supplemental 

Fig. 2). SA and CPP were each refluxed in a 1:10 w/v mixture with acetic anhydride 

at 140 °C for 20 min. Excess acetic anhydride was removed under vacuum at 60 °C 

using a rotary evaporator. The resulting prepolymers (pSA and pCPP) were dissolved in 

dry toluene and precipitated in a 1:1 v/v solution of dry petroleum ether and ethyl ether. 

The precipitate was left overnight in the ether solution before being vacuum filtered then 

dried by lyophilization. Successful acetylation was confirmed via Inova 400 MHz H NMR, 

and degree of oligomerization was quantified (Supplemental Fig. 3A–B). pSA and pCPP 

prepolymers were then reacted in a melt polycondensation to prepare poly(CPP:SA). A 

20:80 M mixture of pCPP:pSA was heated at 180 °C for 90 min under vacuum and flushed 

with nitrogen every 15 min. The copolymer was precipitated in dry petroleum ether from 

DCM, washed twice with diethyl ether, and lyophilized for 24 h. Copolymerization was 

assessed via Inova 400 MHz H NMR, and the 20:80 CPP:SA ratio was confirmed in the 

final polymer (Supplemental Fig. 3C). pSA, pCPP, and 20:80 poly(CPP:SA) were stored at 

−80 °C.

2.3. Formation and characterization of nanoparticles

Varied CAC Ace-DEX NPs were made with target weight loadings: blank, 1% Rapa, 

1% R-848, 1% DXR, 1% PTX, 5% PTX, and 1% DXM. For 20:80 poly(CPP:SA) NPs, 

blank, 1% wt/wt R-848, and 5% wt/wt R-848 were made. All NPs were all made via 

homogenization, utilizing a previously described double emulsion procedure [42]. Ace-DEX 

was dissolved in ethyl acetate (EA) then homogenized at 18,000 rpm (IKA T25 Digital 

Ultra-Turrax, Cole Parmer, Vernon Hills, IL) with a small volume of phosphate buffered 

saline (PBS). Drugs were either included in the EA or the PBS where applicable. The 

resulting emulsion was homogenized again with 3% polyvinyl alcohol (PVA) in PBS. The 

final emulsion was stirred in 0.3% PVA in PBS at room temperature to allow the EA to 
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evaporate. NPs were washed with basic water before being frozen and lyophilized. 20:80 

poly(CPP:SA) NPs were fabricated similarly to the Ace-DEX NPs, but with DCM instead of 

EA and water instead of basic water. Emulsions containing R-848 or DXR were protected 

from light. The encapsulation efficiency (EE) of Rapa, PTX, and DXM were determined 

with high performance liquid chromatography (HPLC, 1100 Series, Agilent Technologies, 

Santa Clara, California) with a C18 column (Aquasil 77,505–154,630 C18 Column, 5 μm 

Pore; 150 mm L x 4.6 mm ID, Thermo Fisher Scientific). Conversely, the EE of R-848 and 

DXR were determined via plate reader (SpectraMax M2, Molecular Devices, San Jose, CA) 

with excitation/emission (ex/em) 260/370 and 480/580 for R-848 and DXR, respectively. 

The morphology of all NPs was assessed via scanning electron microscopy (SEM, Hitachi 

S-4700 Cold Cathode Field Emission). SEM images were then analyzed in ImageJ 1.52a to 

determine NP initial radii. Ace-DEX NPs were stored at −20 °C, and 20:80 poly(CPP:SA) 

NPs were stored at −80 °C.

2.4. Assessment of nanoparticle degradation

Blank Ace-DEX NP degradation was assessed at neutral and acidic pH. 1 mg/mL 

suspensions with 20, 40, and 60 CAC NPs were prepared in pH 7.4 PBS or in pH 5 0.3 M 

sodium acetate buffer. Suspensions were prepared in triplicate in Eppendorf tubes and placed 

on a shaker plate at 37 °C. At each timepoint (0, 0.5, 2, 4, 8, 24, 48, 72, 96, 168, 336, 504, 

672, and 840 h) suspensions were vortexed briefly, then aliquots were taken and centrifuged. 

Supernatant was collected and degraded Ace-DEX was measured by bicinchoninic acid 

assay (BCA, Thermo Scientific, Rockford, IL). BCA data was normalized to fully degraded 

samples for each CAC and buffer. The degradation of PTX-loaded NPs was visualized by 

SEM at 0, 0.5, and 168 h for 40 CAC NPs at pH 7.4. Blank 20:80 poly(CPP:SA) NP
degradation was similarly assessed at pH 7.4. To quantify degradation, SA was measured 

in the supernatant via HPLC with a PRP-1 column (Hamilton, 4.1 × 150 mm, 5 μm), UV 

detection at 210 nm, and a mobile phase of 50:50 acetonitrile:water with 1% phosphoric 

acid. Data was graphed as percent degraded over time, and a nonlinear fit was done to a one 

phase decay model in GraphPad 7.00 to determine NP t1/2.

2.5. Assessment of drug release from nanoparticles

Release curves for PTX were obtained at pH 7.4. PTX-loaded Ace-DEX NPs were 

suspended in triplicate at 1 mg/mL in PBS in a Slide-A-Lyzer Mini Dialysis Unit with a 

7 k MW cut off. One dialysis unit was prepared for each timepoint and placed into 1 L of 

PBS at 37 °C with sink conditions maintained. At each timepoint, aliquots were taken from 

the dialysis unit and centrifuged. The supernatant was removed and the remaining PTX in 

the NPs was measured from the pellet via HPLC. Release curves for Rapa, R-848, DXR, and 

DXM from Ace-DEX NPs were obtained at neutral pH, and additional release curves for 

Rapa, R-848, and DXR were obtained at pH 5. Suspensions were prepared in triplicate and 

samples were taken at each timepoint as done in the assessment of blank NP degradation. 

After centrifuging, the supernatant was separated from the pellet. The remaining drug in the 

Rapa NPs was measured from the pellet, and the drug released from the R-848, DXR, and 

DXM NPs was measured from the supernatant. R-848 release from 20:80 poly(CPP:SA) 

NPs was assessed at pH 7.4 similarly to drug release from Ace-DEX NPs.
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2.6. Development of mathematical model

The constitutive equations for the mathematical model developed herein were derived 

manually. The first constitutive equation describes drug diffusion, and the second 

constitutive equation describes NP degradation. The following simplifying assumptions were 

made: (1) the drug is evenly incorporated throughout the polymer matrix, (2) diffusion only 

occurs in the radial direction, (3) diffusion cannot be negligible, (4) once the drug leaves the 

NP it falls away from the surface under sink conditions, and (5) the system has symmetry.

The first constitutive equation, representing drug diffusion, was developed similarly to 

previously described Fickian models [9,49–51]. In brief, the continuity equation in spherical 

coordinates with one-dimensional motion in the radial direction combined with Fick's first 

law of diffusion yields Fick's second law in spherical coordinates:

dCA

dt = Dd2CA

dr2 + 2D
r

dCA

dr (1)

where CA is the concentration of drug in the NP at time t, D is the effective diffusion 

coefficient for drug moving through polymer, and r is the radial coordinate. An initial 

condition and boundary conditions were defined to develop the model (Table 1).

Separation of variables and conditions (Table 1) were applied to yield the first constitutive 

equation of the diffusion-erosion model, the unsteady state Fickian diffusion equation:

Mt

M0
= 6

π2 ∑
n = 1

∞ 1
n2exp − Dn2π2t

R2 (2)

where Mt is the mass of drug remaining in the NP at time t, and M0 is the initial mass loading. 

The percent of drug released from the NP is then calculated as follows, yielding the first 

constitutive equation:

% released = 1 − 6
π2 ∑

n = 1

∞ 1
n2exp − Dn2π2t

R2 ∗ 100% (3)

To develop the second constitutive equation, the degradation mechanism and kinetics 

observed for Ace-DEX NPs was considered. For simplicity, in a surface eroding system, 

it can be assumed that the NP size decreases proportionally to the NP mass [52], and the 

NP density can be considered constant. As a result, the effective diffusion coefficient was 

considered to be constant while the radius of the NP decreased over time. In line with the 

observed blank Ace-DEX NP degradation, the change in the NP radius was considered to 

follow first order degradation. As a result, the second constitutive equation of the model is as 

follows:

dR
dt = − kdeg  ∗ R (4)
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where kdeg is the degradation coefficient of the NP based on polymer CAC and the pH of the 

system. This equation was then simulated in tandem with the first constitutive equation.

Except for the effective diffusion coefficient, all model parameters and initial values were 

determined empirically based on standard NP characterization and blank NP degradation 

data. More detail on model derivation can be found in the supplementary materials.

2.7. Model simulations in MATLAB

The diffusion-erosion model as well as the zero order, first order, Korsmeyer-Peppas, 

Higuchi, and Hixson-Crowell models were simulated in MATLAB R2017b. For the 

diffusion-erosion model, the ode15s command was utilized on the second constitutive 

equation followed by the arrayfun command for the first constitutive equation. For the 

remaining models, an equation was manually developed to represent percent release and 

inputted into the MATLAB script. Parameters with unknown values at the time of simulation 

were determined with weighted least squares regression analysis using the nlinfit command 

and the drug release experimental data. Data points were weighted with the inverse of the 

variance at each timepoint. For previously published cGAMP release, where select data 

points had a reported standard deviation of 0, the value 0.1 was used as a proxy to calculate 

an approximate variance to return real numbers for weighting. The residual sum of squares 

(RSS) of each model was then calculated at the end of the script. The method was the same 

for models applied to 20:80 poly(CPP:SA), except that the nlinfit command was unweighted 

due to observed increases in error skewed to later timepoints for the polyanhydride system.

2.8. Statistical analysis

The mean square error (MSE) was calculated for each simulation and used to manually 

calculate the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC) according to the following equations:

AIC = 2k + n∗ln MSE (5)

BIC = k∗ln n + n∗ln MSE (6)

where k is the number of parameters in the model, and n is the number of experimental 

data points. To calculate AIC and BIC, k represented the number of unknown parameters at 

the time of MATLAB simulation. Any parameters determined empirically, independently of 

the drug release experimental data, were not counted. In order to compare the goodness of 

fit of the diffusion-erosion model against alternate, previously established models, an AIC
difference was calculated for each drug release curve where the AIC of the diffusion-erosion 

model was subtracted from the AIC of each alternate model. Positive values for the AIC
difference were considered an indication that the diffusion-erosion model was favorable 

over the alternate model. Conversely, negative values were considered an indication that the 

alternate model was a better choice. AIC differences of zero were considered an indication 

that the models were comparable. After assessing the AIC differences of all models at 

all drug release curves, the unknown parameters of the optimal models at both pHs were 
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correlated with drug properties. This was done for high and low CAC (20 and 60) NPs at 

both pHs with Rapa, R-848, and DXR. Drug properties were obtained from PubChem, and a 

Pearson's correlation was conducted in GraphPad Prism 7.00.

2.9. Machine learning in MATLAB

Supervised learning models were explored in MATLAB R2020b. The neural network (NN) 

model was selected to predict new effective diffusion coefficients. A NN was constructed 

with 4 hidden neurons, 2/3 the number of model inputs. In order to develop the NN, 

information was provided to the model from all PTX, Rapa, R-848, and DXR release 

curves from Ace-DEX (22 unique release curves). The following inputs were provided: 

drug polar surface area, drug logP, drug MW, polymer CAC, initial drug loading, and 

pH. Estimated effective diffusion coefficients were provided as outputs. The corresponding 

inputs and outputs from all 22 release curves were passed into the NN together where 

70% was randomly assigned as training data, 15% as validation data, and 15% as test 

data. Due to its efficiency as a training function, Levenberg-Marquadt backpropagation 

was performed with the trainlm command. Input-output processing functions were also 

applied to increase efficiency. For inputs, ‘mapminmax’ and ‘processpca’ were employed. 

For outputs, ‘mapminmax’ was employed. ‘Mapminmax’ normalizes inputs/outputs to fall in 

the range [−1,1], and ‘processpca’ applies principal component analysis. Model performance 

for each portion of the provided data (training, validation, and test) was measured as MSE. 

The finalized NN resulted from the epoch with the best validation performance. To further 

evaluate performance, a regression between predicted and actual outputs from the pooled 

training, validation, and test data was performed. The NN was then applied to predict 

effective diffusion coefficients for DXM and cGAMP release from varied CAC Ace-DEX 

NPs at pH 7.4. For cGAMP release from Ace-DEX NPs, previously published data was used 

[47].

3. Results and discussion

3.1. Acetalated dextran nanoparticles degrade by surface Erosion and first order kinetics

Polymeric NPs are expected to degrade by either surface erosion or bulk degradation. In 

the case of surface eroding polymers like polyanhydrides, the size of the NP decreases over 

time but the polymer molecular weight (MW) remains constant [12,52]. By comparison, 

NPs made from bulk-degrading polymers such as PLGA develop pores due to the decreasing 

polymer MW and NP density [9]. The NP degradation mechanism of 40 CAC NPs was 

visualized by SEM (Fig. 1A). Prior to incubation at pH 7.4, the spherical NPs displayed a 

largely smooth surface (Fig. 1A1). After 0.5 h, the NP surface is no longer smooth, and after 

168 h, layers of polymer appear to be sloughing off the surface (Fig. 1A2–3). Additionally, 

no visible pore formation was observed even after 168 h. Based on these observations, it was 

concluded that Ace-DEX NPs degrade primarily via surface erosion. As a result, polymer 

hydrolysis is expected to occur at a rate faster than fluid penetration into the polymer matrix, 

making bulk effects negligible [12,52].

The degradation kinetics of blank 20, 40, and 60 CAC Ace-DEX NPs was assessed at pH 

5 (Fig. 1B) and pH 7.4 (Fig. 1C). All six of these degradation profiles could be fit with 
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a one phase decay model (Fig. 1B–C). The estimated t1/2s ranged from minutes to weeks 

across all three CACs at both pHs, with each CAC degrading more rapidly at pH 5 compared 

to pH 7.4 (Fig. 1D). These results are in agreement with previous reports of the t1/2s of 

sonicated Ace-DEX NPs [19]. Furthermore, this wide range of NP degradation rates allows 

for greater optimization of drug delivery kinetics compared to NPs made from PLGA or 

polyanhydrides. Compared to Ace-DEX, 80:20 poly(CPP:SA) NPs also follow first order 

degradation with a t1/2 comparable to 20 CAC NPs at pH 7.4 (t1/2 = 23.1 h) (Supplemental Fig. 

3, Fig. 1D).

Characterization of blank NP degradation kinetics informed the development of the 

diffusion-erosion model. It is widely accepted that drug can diffuse through polymer 

matrices [27,28,32,34], and the degradation of the NP can mediate further drug release [52]. 

The diffusion-erosion model developed herein encompasses both concepts. As a result, the 

first constitutive equation of the model was developed to encompass drug diffusion through 

the polymer matrix, while the second equation was developed to model surface erosion of 

NPs in a t1/2 (or CAC for Ace-DEX) dependent manner at physiologically relevant pH 7.4 

and 5 (Eqs. 3 and 4).

3.2. The diffusion-erosion model accurately fits drug release data from surface eroding 
nanoparticles under neutral and acidic conditions

Surface eroding NPs were made with 20:80 poly(CPP:SA) and with 20, 40, and 60 CAC 

Ace-DEX, encapsulating a variety of drugs with distinct physicochemical properties (Table 

2). 20:80 poly(CPP:SA) NPs encapsulating 1% or 5% by weight (wt/wt) R-848 and varied 

CAC Ace-DEX NPs encapsulating 1% or 5% wt/wt PTX were made for evaluation at 

neutral pH. Additionally, varied CAC Ace-DEX NPs encapsulating 1% wt/wt Rapa, R-848, 

or DXR were made for evaluation at both neutral and acidic pH. All NPs demonstrated 

a spherical morphology (Supplemental Fig. 4), and the final drug loading and average 

NP size for each batch was characterized (Supplemental Table 1, Supplemental Fig. 4). 

The empirically determined parameters and initial values applied to the diffusion-erosion 

model were obtained from a combination of drugloaded NP characterization and blank-MP 

degradation kinetics (Supplemental Table 1, Fig. 1D, and Supplemental Fig. 3F).

MPs of 20:80 poly(CPP:SA) or Ace-DEX of different CACs were loaded with R-848 

(1%) or PTX (1% and 5%) and release determined (Fig. 2). For the most part, release 

followed degradation kinetics for both drugs and polymers. Unexpectantly, the PTX release 

rate from 40 CAC NPs 1% PTX was the slowest among 20 and 60 CAC 1% PTX group 

(Fig. 2B1). This discrepancy may be attributed to variable diffusivity of each drug through 

each polymer. With PLGA NPs, it has been postulated that polymer/drug interactions, drug 

solubility in the bulk phase, and structural differences in the polymer matrix can affect the 

diffusivity of the cargo through the NP [53]. Since Ace-DEX NPs are hydrophobic and 

appear to degrade via surface erosion, water penetration is expected to be minimal [12]. 

As such, any suspected variation in PTX diffusivity through varied CAC Ace-DEX is more 

likely due to intermolecular interactions between the drug and each CAC Ace-DEX and not 

solely on the degradation rate. The diffusion-erosion model was then applied to each of the 

release curves from NPs with varied drug loading. In all cases, the model output appeared 
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to follow the same trends as the experimental data and demonstrated moderate to very high 

Pearson's correlations (Fig. 2, Supplemental Table 2).

Once the diffusion-erosion model was confirmed to adequately fit the release from surface 

eroding NPs with varied loading and polymer, release curves from a broader selection of 

drugs were obtained from varied CAC Ace-DEX NPs all fabricated with 1% wt/wt initial 

drug loading of R-848, DXR, or Rapa (Fig. 3). For all three drugs at neutral pH, release 

kinetics were notably quicker from 20 than 60 CAC NPs, in agreement with previous reports 

of drug release from varied CAC Ace-DEX formulations [10,11,19]. Additionally, release 

rates appeared to vary across drugs, likely as a result of the drugs' varied physicochemical 

properties [37,38,40]. The variation in drug physicochemical properties likely contributes to 

observed release kinetics from 40 CAC polymer, where some drugs appear to demonstrate 

stronger intermolecular interactions with 40 compared to 60 CAC. Simulations with the 

diffusion-erosion model appeared to follow the same trends as the neutral pH release data 

for all three drugs, and significant (p < 0.05) high to very high Pearson's correlations were 

observed (Fig. 3A–C, Supplemental Table 2). The successful characterization of drug release 

kinetics from a variety of Ace-DEX NPs at neutral pH is an essential step in optimizing drug 

delivery kinetics as in vitro drug release at neutral pH can mimic drug release kinetics in the 

extracellular space [19].

In order to further assess applications of the diffusion-erosion model for Ace-DEX NPs, 

release curves for the varied CAC NPs containing Rapa, R-848, or DXR were obtained at 

pH 5, mimicking physiologically relevant acidic conditions of common target delivery sites. 

Compared to the results at neutral pH (Fig. 3), all three drugs demonstrated notably quicker 

release kinetics (Fig. 4A1, B1, C1). The increase in release rates can be attributed to the acid 

sensitivity of Ace-DEX. Indeed, the increased polymer degradation has been previously 

shown to influence increased drug release kinetics [19]. Additionally, the correlations 

between release data at pH 5 and the diffusion-erosion model output were all significant 

(p < 0.05) (Supplemental Table 2). In vitro drug release at pH 5 mimics drug release in 

the endosome, sites of inflammation, and the TME of some tumors [19]. This is especially 

critical to characterize as these are target delivery sites for many applications [11,42–45].

Taken together, the successful model fits of drug release from surface eroding NPs with 

varied loading concentrations, cargo, polymer, and pH demonstrate the utility of the 

diffusion-erosion model. Across the conditions assessed herein, the diffusion-erosion model 

correlated with the experimental drug release data with most correlations being very high, 

and these correlations were significant (p < 0.05) for all data sets except for PTX release 

from 60 CAC (Supplemental Table 2). Based on the residual plot of each model simulation 

(Fig. 2–4), it appears as though most of the error in the model is associated with earlier 

data points. This early error is likely due to burst release where there is a rapid release of 

drug incorporated at or near the NP surface. Burst release is a common phenomenon for 

matrix drug delivery systems, and its behavior is often difficult to accurately predict [54,55]. 

To address this challenge, others have employed highly robust mechanistic models that 

incorporate a burst step [50,51], but these models also introduce more unknown parameters. 

For the diffusion-erosion model, simplicity was prioritized to allow for greater predictive 

potential, and despite burst release, the Pearson's correlations and overall residual plot 
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behavior indicate that the diffusion-erosion model adequately describes the drug release 

from surface eroding NPs across a variety of conditions.

In addition to correlating with drug release data, the diffusion-erosion model was used to 

determine effective diffusion coefficients of the encapsulated drugs through each polymer 

(Supplemental Table 3). Effective diffusion coefficients are often determined experimentally 

or estimated from existing release curves, with most available characterizations of drug-

polymer diffusion focusing on PLGA systems [9,53]. In evaluating drug release from 

Ace-DEX, it is notable that the estimated effective diffusion coefficient of each drug varies 

somewhat with polymer CAC. It has been shown previously in PLGA systems that polymer 

MW and other factors affecting the structure of the polymer matrix have an effect on the 

effective diffusion coefficient of the cargo [23,53,56]. Thus, it is possible that each CAC 

forms NPs with distinct polymer matrices. Additionally, it is possible that each CAC has 

varied intermolecular forces with each drug. In cases where the drug release mechanism 

is more heavily influenced by diffusion than polymer erosion, these effects may be more 

noticeable. As such, it is possible that the slower release kinetics observed from some of 

the 40 compared to 60 CAC NPs can be a result of lower diffusivity and a predominantly 

diffusion-based release mechanism, though more work is warranted to elucidate the roles of 

degradation and diffusion in drug release kinetics from Ace-DEX NPs.

3.3. Quality of fit of diffusion-erosion model was compared to alternative drug release 
models to describe drug release behavior from acetalated dextran nanoparticles

The diffusion-erosion model developed herein was compared to five models conventionally 

applied to drug delivery systems: the zero order, first order, Korsmeyer-Peppas, Higuchi, 

and Hixson-Crowell models (Supplemental Table 4). The alternate models were applied to 

all release curves from Ace-DEX NPs (Supplemental Fig. 5–12), and parameter estimates 

were generated for each model at each release curve (Supplemental Table 5). In addition 

to the diffusion-erosion model, the first order and Korsmeyer-Peppas models appeared to 

trend with the experimental data (Supplemental Fig. 5–12) Furthermore, for some of the 

drug release curves, the MSE associated with the first order and Korsmeyer-Peppas models 

were comparable to the diffusion-erosion model (Supplemental Table 6). Conversely, the 

zero order, Higuchi, and Hixson-Crowell models did not adequately capture drug release 

behavior from Ace-DEX NPs. Their underperformance aligns with the proposed mechanism 

of drug release from Ace-DEX NPs – diffusion paired with surface erosion. Zero order 

release kinetics is often exhibited by NPs with uneven drug distribution or layered structures 

[29,30]; however, the drug loaded into homogenized Ace-DEX NPs is expected to be evenly 

distributed. The Higuchi model has been developed for diffusion mediated release from 

spherical matrix systems [34]; however, this model does not account for degradation of the 

polymer matrix. Finally, the Hixson-Crowell model describes release from the decreasing 

surface area of the drug delivery device, but it does not emphasize diffusion effects 

[27,35,36,39].
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3.4. Statistical analysis supports diffusion-erosion model as optimal to describe drug 
release from acetalated dextran nanoparticles

The goodness of fit of the alternate models was compared to the diffusion-erosion model 

by taking a difference of the AIC and BIC values for each release curve, where the 

diffusion-erosion AIC or BIC is subtracted from that of the alternate model. A positive 

AIC or BIC difference indicates that the diffusion-erosion model is the preferred model, 

and a negative difference indicates that the alternate model is preferred. Though the BIC
formula issues a higher penalty for the number of unknown parameters compared to AIC, 

both model selection criteria agreed across all conditions (Supplemental Fig. 13). Of note, 

the Korsmeyer-Peppas model had two unknown parameters while all other models had one. 

For the drug release of 1% and 5% wt/wt PTX at neutral pH, the diffusion-erosion model 

outperformed all alternate models except for the Korsmeyer-Peppas model (Fig. 5A). The 

AIC differences between the diffusion-erosion model and Korsmeyer-Peppas model were 

within error of zero, indicating that the two models demonstrate comparable fits of the 

drug release data. Similarly, the Korsmeyer-Peppas model was the only alternate model 

comparable to the diffusion-erosion model in fitting the drug release curves for Rapa, 

R-848, and DXR at neutral pH as this was the only alternate model with AIC differences 

within error of zero (Fig. 5B). However, at acidic pH, both the Korsmeyer-Peppas and 

first order model were comparable to the diffusion-erosion model based on AIC differences 

(Fig. 5B). Although, compared to the diffusion-erosion model, the Korsmeyer-Peppas model 

demonstrated a weaker fit at acidic pH than it did at neutral pH (Fig. 5B).

The pH dependence of the accuracy of the Korsemeyer-Peppas and first order models 

may provide insight to drug delivery kinetics of Ace-DEX NPs. Notably, the n value in 

the Korsmeyer-Peppas model can indicate drug release mechanism. It has been reported 

that values of n < 0.43 indicate Fickian release while n between 0.43 and 0.85 indicate a 

non-Fickian mechanism [32,33,57–59]. Except for one release curve – 40 CAC 1% wt/wt 

PTX NPs at pH 7.4 – all of the n values estimated for drug release from Ace-DEX NPs were 

<0.43 (Supplemental Table 5). This indicates that drug release from a variety of Ace-DEX 

NPs relies on Fickian diffusion. Additionally, the increased accuracy of the first order model 

at pH 5 may indicate an increased contribution of polymer erosion on drug release kinetics 

at acidic pH. Considering the acid sensitivity of the polymer and the observed first order 

degradation kinetics of blank Ace-DEX NPs, it seems appropriate that the first order model 

can capture drug release from some NP formulations under acidic conditions. Conversely, 

the subpar fit of the first order model at neutral pH could indicate that drug release kinetics 

are more heavily influenced by diffusion under neutral conditions. Understanding the pH 

effects on drug release kinetics from Ace-DEX NPs can provide insight to drug delivery 

kinetics in target tissues. The acid sensitivity of the polymer can allow for triggered first-

order drug release in the endosome of phagocytic cells, sites of inflammation, or the TME, 

making Ace-DEX an optimal delivery system for chemotherapeutics and immunotherapies. 

In contrast, in the pH-neutral extracellular space, drug release more reliant on diffusion may 

be tunable based on drug properties.

While both the diffusion-erosion and Korsmeyer-Peppas models provided adequate fit to 

drug release data from a variety of Ace-DEX NPs, the diffusion-erosion model has a greater 
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potential to be employed as a predictive model. Utilizing the effective diffusion coefficient 

to evaluate the drug release kinetics is simpler than utilizing two unknown parameters such 

as K and n. Furthermore, the effective diffusion coefficient may be considered a function 

of the interaction between physicochemical properties of the polymer matrix and the drug 

cargo. Indeed, in a Pearson's correlation comparing estimated model parameters against drug 

properties and loading, the effective diffusion coefficient had higher correlations to drug 

polar surface area than any other parameter comparison (Fig. 5C–D), which is in agreement 

with previous reports. It has previously been shown that higher drug polar surface area 

can allow for stronger dipole moments with the surrounding polymer matrix, slowing down 

release kinetics [60]. This effect may explain the differences in DXR and R-848 release 

kinetics from Ace-DEX NPs. Though some of the physicochemical properties of these two 

drugs are comparable, DXR has a notably higher polar surface area than R-848 (Table 2). 

This difference in polar surface area likely influenced the slower release kinetics observed 

for DXR compared to R-848.

3.5. Machine learning via a predictive neural network can be used to determine effective 
diffusion coefficients for further applications of the diffusion-erosion model

Effective diffusion coefficients for drug delivery systems are often determined 

experimentally, and in instances where mathematical modeling is employed, the models 

often rely on curve fitting, limiting further applications of these models to new systems 

[9,53]. For example, some previously reported modeling approaches to estimate effective 

diffusion coefficients have been dependent on parameters describing material interactions on 

an atomic level [61], which are not practical to characterize for a variety of drug delivery 

systems. Other modeling approaches have employed parameters relying on obstructive 

effects, requiring characterization of the structure and mesh size of the polymer matrix, 

while leaving out relevant effects from intermolecular forces [62]. The shortcomings of these 

approaches demonstrate the challenge in predicting accurate effective diffusion coefficients 

from measurable inputs.

In order to overcome modeling challenges and enhance the predictive potential of 

the diffusion-erosion model, a machine learning approach was employed to estimate 

effective diffusion coefficients of drugs through Ace-DEX NPs. Due to its utility in 

pattern recognition, a NN model was developed with inputs and outputs from all 22 

of the previously discussed release curves from Ace-DEX NPs (Supplemental Fig. 14A, 

Supplemental Table 7). The final NN demonstrates low MSE in the training, validation, 

and test data, indicating strong performance across the available data (Supplemental Fig. 

14B). To avoid overfitting the training data upon indefinitely repeated training loops, the 

best performance on the validation data was used as a stopping point, occurring at epoch 

42 (Supplemental Fig. 14C). From the resulting NN, the predicted effective diffusion 

coefficients were comparable to the actual effective diffusion coefficients estimated from 

fitting the 22 release curves. Indeed, the regression between the predicted versus actual 

outputs was approximate to the ideal case (Supplemental Fig. 14D).

To assess the utility of the NN, effective diffusion coefficients were predicted for DXM and 

cGAMP release from 20, 40, and 60 CAC Ace-DEX NPs at pH 7.4 (Supplemental Table 8). 
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The predicted effective diffusion coefficients were inputted into the diffusion-erosion model 

along with empirically determined parameters based on NP characterization (Supplemental 

Table 1). The model output demonstrated distinct DXM and cGAMP release curves at each 

CAC and appeared to accurately fit the experimental release data (Fig. 6A–B). At each 

CAC, the predicted model achieved significant (p <  0.05) high to very high correlation to 

the experimental release data (Supplemental Table 2). Furthermore, the plot of residuals 

demonstrates good fit of the predicted model, though some early error is observed for select 

curves, (Fig. 6A–B), likely due to higher burst release. The correlation between the predicted 

and actual effective diffusion coefficients is very high based on the Pearson's coefficient, 

and for the 4 release curves from 40 and 60 CAC NPs, the effective diffusion coefficient 

predictions appear nearly ideal (Fig. 6C, Supplemental Table 8). Overall, the NN predictions 

applied to the diffusion-erosion model were able to accurately describe DXM and cGAMP 

release from Ace-DEX NPs in vitro.

To further evaluate the NN results, the predicted output from the diffusion-erosion model 

was compared to curve fittings of alternate models (Supplemental Fig. 15–16). Compared to 

these ideal fits, the predicted output from the diffusion-erosion model largely outperformed 

the zero order, first order, Higuchi, and Hixson-Crowell models based on AIC and BIC
differences (Supplemental Fig. 15G, 16G). The predictive diffusion-erosion model also 

outperformed the Korsmeyer-Peppas curve fit for DXM, but it did not for cGAMP 

(Supplemental Fig. 15G, 16G). Of note, cGAMP is far more hydrophilic than any of the 

other cargoes evaluated herein (Table 2), yet the NN prediction resulted in sufficient model 

fits for this cargo. Accuracy of the effective diffusion coefficient predictions for hydrophilic 

cargoes may be further improved with additional training of the NN as more release data 

becomes available. Overall, the predictive diffusion-erosion model largely outperformed the 

ideal curve fits of alternate standard drug release models.

Though the utility and accuracy of the NN and diffusion-erosion model can be further 

increased as more drug release data becomes evaluated, the work described herein highlights 

the predictive potential of the diffusion-erosion model and fulfills a necessary step towards 

optimizing the controlled release of therapeutics from future Ace-DEX formulations. Future 

models can build upon the diffusion-erosion model developed herein to explore the roles 

of alternate degradation assumptions, drug-drug interactions, crystallization, drug-polymer 

interactions, and more. Additionally, future work is planned to apply the diffusion-erosion 

model to in vivo drug release and additional geometries of Ace-DEX drug delivery systems.

4. Conclusion

This work describes the first report of mathematical modeling applied to Ace-DEX drug 

delivery systems. Upon evaluating the degradation mechanism of Ace-DEX NPs, the 

diffusion-erosion model was developed to fit a variety of drug release curves from surface 

eroding NPs. Relatively fast-degrading 20:80 poly(CPP:SA) NPs were loaded with 1% 

and 5% wt/wt R-848. Ace-DEX NPs were made with varied degradation rates based on 

polymer CAC, achieving fast, medium, and slow degrading acid sensitive polymer at 20, 

40, and 60 CAC, respectively. Varied CAC NPs were successfully loaded with two different 

concentrations of PTX as well as 1% wt/wt Rapa, R-848, DXR, or DXM. In addition to 
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evaluating drug release from NPs with varied polymer, loading, and drug cargo, drug release 

from Ace-DEX NPs was evaluated at both neutral and acidic pH. Across all conditions, 

the diffusion-erosion model was able to accurately fit drug release data. When compared 

to five of the most common drug release models applied to Ace-DEX NPs, the diffusion-

erosion model outperformed the zero order, Higuchi, and Hixson-Crowell models for all 

conditions and outperformed the first order model at neutral pH. The diffusion-erosion 

model fit the drug release curves comparably to the Korsmeyer-Peppas model; however, 

the diffusion-erosion model had higher predictive potential. Subsequently, a NN model was 

developed from PTX, Rapa, R-848, and DXR release data in order to predict effective 

diffusion coefficients for DXM release. With the addition of the NN, the diffusion-erosion 

model was able to successfully predict DXM and cGAMP release curves from varied CAC 

Ace-DEX NPs. These results are encouraging for the diffusion-erosion model. Further work 

may result in applications in vivo and aid in the optimization of drug delivery from future 

Ace-DEX formulations.
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Fig. 1. 
Visualization of NP degradation and measurement of blank NP degradation rates at varied 

CACs. (A) NP surface at pH 7.4 for (A1) t = 0 h, (A2) t = 0.5 h, and (A3) t = 168 h. (B,C) 

Percent of Ace-DEX NPs remaining and nonlinear fit of one phase decay of 20, 40, and 

60 CAC NPs in (B) pH 5 and (C) pH 7.4 buffer at sink conditions and 37 ◦C. Percent 

remaining represents the percent of original polymer remaining and is calculated by 100% 

minus percent degraded as measured by BCA. (D) Summary of estimated NP t1/2s in hours 

and R2 values from the one phase decay model. NP degradation coefficients kdeg  for the 

diffusion-erosion model are calculated from t1/2s via the Arrhenius equation.

Stiepel et al. Page 20

J Control Release. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Diffusion-erosion model applied to drug release from surface eroding NPs with varied initial 

loading at pH 7.4 for A) 1% and 5% R-848 NPs made with 20:80 poly(CPP:SA), B) 

1% PTX NPs made with varied CAC Ace-DEX, and C) 5% PTX NPs made with varied 

CAC Ace-DEX. 1) Experimental results (data points and error bars representing average 

± standard deviation) and diffusion-erosion model simulations (lines) of drug release from 

NPs. 2) Residual plots for each model simulation compared to average experimental values.
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Fig. 3. 
Diffusion-erosion model at neutral pH for A) 1% Rapa, B) 1% R-848, and C) 1% DXR 

NPs. 1) Experimental results (data points and error bars representing average ± standard 

deviation) and diffusion-erosion model simulations (lines) of drug release from varied CAC 

NPs. 2) Residual plots for each model simulation compared to average experimental values.
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Fig. 4. 
Diffusion-erosion model at acidic pH for A) 1% Rapa, B) 1% R-848, and C) 1% DXR 

NPs. 1) Experimental results (data points and error bars representing average ± standard 

deviation) and diffusion-erosion model simulations (lines) of drug release from varied CAC 

NPs. 2) Residual plots for each model simulation compared to average experimental values.
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Fig. 5. 
Drug release model comparisons. A) AIC difference for PTX data sets by loading. B) AIC
difference for Rapa, R-848, and DXR data sets together at pH 5 and at pH 7–7.4. AIC
difference describes the AIC of the alternate model minus the AIC of the diffusion-erosion 

model. The average and standard deviations of AIC difference is presented per alternate 

model. C) Correlation of initial loading or drug properties to estimated effective diffusion 

coefficients and D) to estimated Korsmeyer-Peppas model parameters. W0 refers to initial 

drug loading, and MW refers to drug molecular weight. Correlations are represented with 

Pearson's coefficients and are highlighted in green such that darker pigment indicates 

higher correlation and no pigment indicates negligible correlation. Each Pearson's coefficient 

represents correlations for Rapa, R-848, and DXR together at one release condition at a time 

(per CAC per pH). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 6. 
Application of NN to predict drug release from Ace-DEX NPs containing A) DXM or B) 

cGAMP. 1) Release experimental results (data points and error bars) and model simulations 

(lines) with NN predicted D parameter values. 2) Residual plot. C) Predicted vs actual 

(curve fit) effective diffusion coefficients. The “Ideal” line represents a perfect prediction 

where predicted = actual.
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Table 1

Initial condition (IC) and boundary conditions (BCs) for diffusion-erosion model derivation based on the 

simplifying assumptions. R is the NP radius, r is the radial coordinate, CA is the concentration of drug in the NP
at time t, and CA0 is initial concentration of drug in the NP.

Diffusion-Erosion Model IC and BCs  

IC: t = 0 0 ≤ r ≤ R CA = CA0

BC1: t > 0 r>R CA = 0
BC2: t > 0 r = 0 dCA

dr = 0
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Table 2

Summary of selected drugs. Values for logP, molecular weight (MW), and polar surface area were obtained 

from PubChem. PTX = paclitaxel, Rapa = rapamycin, R-848 = resiquimod, DXR = doxorubicin, DXM = 

dexamethasone, cGAMP = 3′ 3’-cyclic guanosine monophosphate–adenosine monophosphate.

Drug LogP MW (g/mol) Polar Surface Area (Å2) Application

PTX 2.5 853.9 221.3 Chemotherapeutic

Rapa 6.0 914.2 195.0 Immunosuppressant

R-848 1.3 314.4 86.2 Vaccine Adjuvant

DXR 1.3 543.5 206.1 Chemotherapeutic

DXM 1.9 392.5 94.8 Immunosuppressant

cGAMP −5.9 674.4 325.0 Vaccine Adjuvant
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