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Abstract

The ongoing degradation of natural systems and other environ-
mental changes has put our society at a crossroad with respect to
our future relationship with our planet. While the concept of One
Health describes how human health is inextricably linked with
environmental health, many of these complex interdependencies
are still not well-understood. Here, we describe how the advent of
real-time genomic analyses can benefit One Health and how it can
enable timely, in-depth ecosystem health assessments. We intro-
duce nanopore sequencing as the only disruptive technology that
currently allows for real-time genomic analyses and that is already
being used worldwide to improve the accessibility and versatility
of genomic sequencing. We showcase real-time genomic studies
on zoonotic disease, food security, environmental microbiome,
emerging pathogens, and their antimicrobial resistances, and on
environmental health itself – from genomic resource creation for
wildlife conservation to the monitoring of biodiversity, invasive
species, and wildlife trafficking. We stress why equitable access to
real-time genomics in the context of One Health will be para-
mount and discuss related practical, legal, and ethical limitations.
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Introduction

The COVID-19 pandemic has catapulted the concept of One Health

into the center of public attention, showcasing how human health is

inextricably linked with the health of our planet (de Le�on

et al, 2021; van Oosterhout, 2021; One Health High-Level Expert

Panel et al, 2022). Although we do not fully understand the connec-

tion between the emergence of zoonotic diseases, wild habitat

destruction, and biodiversity loss (Keesing & Ostfeld, 2021),

projected environmental changes will undoubtedly place an addi-

tional burden on planetary and human health. Society is now at a

crossroad with respect to our future relationship with planetary

health, and our window to act is rapidly closing. This urgency is

reflected by the ongoing political, public, and scientific discussions

led by the United Nations (UN) Convention on Biological Diversity

(CBD), the International Union for Conservation of Nature (IUCN

Red List, 2012), the Rockefeller Foundation–Lancet Commission on
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Planetary Health (Whitmee et al, 2015), the Earth Biogenome Pro-

ject (EBP; Lewin et al, 2018), and governing bodies such as the UN

Conferences of the Parties (COP) for biodiversity protection

(COP15, 2022) and climate changes (COP26, 2021).

Molecular biology can offer practical solutions to environmental

challenges, yet it is often discounted by many frontline strategies

(Rodr�ıguez-Mart�ınez et al, 2022). Here, we describe how the advent

of real-time genomic analyses can benefit One Health, showing how

it enables timely and in-depth ecosystem health assessments. We

discuss how real-time genomics is becoming instrumental in guiding

efficient intervention strategies, presenting examples and highlight-

ing potential future trajectories and limiting factors (Fig 1).

Real-time genomics

The need for real-time genomics has been made clear by recent out-

breaks of emerging infectious diseases. Given the exponential

growth rates, high transmission potential, and frequent instances of

drug resistance of the causative pathogens, it is important to achieve

diagnosis turnaround times of hours rather than days or weeks,

which precludes the option of transporting samples to large interna-

tional centers (Gardy & Loman, 2018). In the past two decades, the

development of increasingly smaller and cheaper bench-top

sequencing instruments for the first time allowed the use of next-

generation sequencing technologies in local laboratories and clinical

settings (Quick et al, 2014).

A new milestone was reached nearly a decade ago when Oxford

Nanopore Technologies released its highly portable and cost-

efficient real-time genomic sequencing device, the MinION (Quick

et al, 2014; Ip et al, 2015; Fig 2A). Nanopores are tiny purpose-

mutated protein pores that enable the sequencing of nucleotides by

measuring the disruption of their internal ionic current while DNA

and RNA strands pass through them as “squiggle” signal. As specific

combinations of nucleotides result in characteristic disruptions of

the ionic current, this squiggle signal can be base called rapidly into

genomic data using dedicated algorithms such as efficient neural

networks (Wick et al, 2019; Fig 2B). As such, squiggle signal is

model-free and can incorporate any chemical characteristics of the

DNA and RNA strands down to atomic resolution, such as epige-

nomic modifications. In combination with powerful and paralleliz-

able computers such as graphics processing units (GPUs), this

basecalling can happen rapidly, at the speed of sequencing itself.

Genomic data can thus both be generated and analyzed in real time

and at the point-of-care, for example, in the clinical or fieldwork set-

ting (Quick et al, 2016). As nanopore sequencing remains the only

Figure 1. The One Health concept.
The One Health concept affirms that global human, organismal, and ecosystem health are inextricably linked (inner circle). The application of real-time genomic
approaches can help us understand and support One Health at the intersection of these different health concepts (outer circle).

2 of 12 Molecular Systems Biology 19: e11686 | 2023 � 2023 The Authors

Molecular Systems Biology Lara Urban et al



disruptive technology to date that allows for portable real-time

genomic analyses, it has been leveraged worldwide to break down

barriers and improve the accessibility and versatility of genomic

sequencing.

Advantages of real-time genomics
Nanopore-based real-time genomics offers unique advantages. First,

real-time sequencing and basecalling allow for selective sequencing

(aka “adaptive sampling”) by rejecting or accepting nucleotide

sequences after minimal sequencing effort when the sequence

matches a target of interest (Kovaka et al, 2021; Payne et al, 2021).

Such computationally informed enrichment enables researchers to

cost-effectively sequence the genomic data from a specific organism

(Urban et al, 2023), taxonomic group (Bao et al, 2021), or genomic

region (Payne et al, 2021).

Real-time sequencing of native DNA strands further enables the

retrieval of long sequencing reads including “ultra-long” reads of

several hundred kilobases (kb; Jain et al, 2018) and “whales” of sev-

eral Megabases (Mb) in length (Payne et al, 2019). Such long reads

enable previously impossible genomic assemblies (e.g., of centro-

meres and other long tandem repeat arrays) and can improve the

quality and contiguity of existing assemblies. They furthermore

allow for the phasing of variants and the creation of near-complete

metagenome-assembled genomes (MAGs) from mixed organismal

communities (Jain et al, 2018; Nurk et al, 2022; Sereika et al, 2022).

The native sequencing extends to RNA sequencing, where nano-

pore sequencing can yield reliable abundance estimates of full-

length transcripts, without introducing biases due to reverse tran-

scription or amplification (Garalde et al, 2018). Direct RNA sequenc-

ing has, for example, led to the fast discovery of previously

undetected viral quasi-species (Viehweger et al, 2019). Finally, the

model-free nature of nanopore squiggle data means that raw data

can a posteriori be used to retrieve more accurate data and more

information than just nucleotide sequence composition, just by

training new basecalling algorithms (preprint: Stoiber et al, 2017;

Wan et al, 2022).

Monitoring environmental health

Species extinction
The present rate of environmental change is the fastest the Earth

has experienced since the last mass extinction approximately 65 mil-

lion years ago (Mya). Climate change, habitat destruction, pollution,

invasive species, overexploitation, and other human-mediated

threats have already resulted in a significantly elevated extinction

rate of species which has been recognized as the planet’s 6th mass

extinction (Barnosky et al, 2011; IUCN Red List, 2012). According to

the Red List, the population size of 34,432 species (47.6%) is declin-

ing, compared to only 1,271 species (1.8%) with increasing popula-

tion numbers and 36,636 (50.6%) that are stable (IUCN Red List,

2012). The reduction in the effective population size increases

genetic drift and the rate of inbreeding, resulting in a loss of genetic

diversity. Inbreeding further leads to an increase in the genetic load

that becomes expressed (i.e., the realized load; Bertorelle

et al, 2022), resulting in inbreeding depression. The effects of such

genomic erosion can be felt many generations after immediate

threats have abated. Even when successful conservation manages to

recover the population numbers after a bottleneck, the species may

still be at high risk of extinction (Jackson et al, 2022). As current

policy-making heavily depends on present and past estimates of spe-

cies extinction risks (COP15, 2022), real-time genomic approaches

can help rapidly assess the true impact of environmental change on

ecosystem composition and functioning by comprehensively

describing the genomic erosion of species that could spiral them into

an extinction vortex and thereby remedying its potential impacts

(preprint: van Oosterhout et al, 2022; Theissinger et al, 2023).

Cataloging reference data
Whole-genome data of threatened species are urgently needed to

assess such genomic erosion (preprint: van Oosterhout et al, 2022;

Theissinger et al, 2023). Importantly, existing conservation and

extinction assessments are taxonomically biased to well-studied taxa

such as vertebrates (Cowie et al, 2022). Ambitious projects such as

Figure 2. Real-time nanopore sequencing technology.

(A) The portable nanopore sequencing device MinION (version Mk1b); the disposable flow cell consists of a fluid-impermeable polymer membrane with sequencing wells
that contain nanopores and that are connected to electrical current sensing circuits to take snapshots of the electrical state of the well at a fixed sampling rate (cur-
rently 4 or 5 kHz). (B) An electrical potential across the membrane ensures an ionic flow through the nanopores. When a single-nucleotide strand passes through the
nanopore at a controlled translocation speed, this results in a characteristic disruption of the ionic current that can be basecalled into genomic information such as
nucleotide sequence composition and epigenetic modifications. As nucleotides would naturally move through the nanopores too fast for the electrical circuits to detect
differences in the ionic current due to individual bases, a helicase is added to the nucleotide strands as an adapter protein. This helicase docks to the nanopores,
unwinds the double-stranded DNA if applicable, and ratchets a single-nucleotide strand through the nanopore at a controlled translocation speed. While the standard
speed has been set to 400 b/s, temperature control can marginally impact translocation speed and, with that, sequencing accuracy. At a sampling rate of 4 kHz, each
base is therefore assessed by approximately 10 electrical snapshots.
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the EBP intend to catalog all eukaryotic biodiversity and provide a

reference for future genomics-based biodiversity studies (Lewin

et al, 2018; Ebenezer et al, 2022; Formenti et al, 2022). While the

real-time component can speed up such efforts, the long and ultra-

long reads produced by nanopore sequencing can greatly facilitate

the generation of reference genomic data across the tree of life by

providing an anchor for high-quality, haplotype-resolved reference

genomes. This is particularly relevant to polyploid taxa which repre-

sent a significant proportion of eukaryotic life and are particularly

difficult to assemble. Moreover, single reference genomes represent

a very limited portion of all genomic variation within a species. To

better identify structural variation relevant for conservation (Qin

et al, 2021), it will be necessary to expand from simplified haploid

reference genome toward characterizing pan-genomes (Bayer

et al, 2020).

The portability of nanopore sequencers hereby enables generat-

ing such reference data in situ, meaning that, for the first time in the

genomic era, the data can be produced close to the species’ origin,

putting such research in line with CITES (CITES, 1983) and CARE

(Global Indigenous Data Alliance, 2022) initiatives as well as data

sovereignty principles, as, for example, specified by the Nagoya Pro-

tocol on Access and Benefit Sharing (CBD, 2010). The recently

launched ORG.one project is an initiative that promotes the uptake

of reference genomic data production for endangered animal spe-

cies. It does this by facilitating the usage of nanopore sequencing for

creating high-quality data with additional support for downstream

computational processing and assembly of such data through tai-

lored algorithms and provision of adequate computing power

(Oxford Nanopore Technologies, 2022b).

In situ biodiversity monitoring
The portable character of real-time nanopore sequencing allows for

fast in situ biodiversity assessments, with the potential to directly

impact wildlife conservation decisions in the field (Blanco

et al, 2020; Pomerantz et al, 2022). Nanopore sequencing has

already been leveraged for species identification in the field, to gen-

erate genomic data for endangered and cryptic species, perform

rapid census reports, monitor hybridization zones, and detect the

presence of invasive species (Menegon et al, 2017; Pomerantz

et al, 2018; Maestri et al, 2019; Blanco et al, 2020; Egeter et al, 2022;

Urban et al, 2023). These applications have proven especially valu-

able when it comes to direct conservation management adjustments

in remote environments, where sample storage and transport would

be prohibitive for any genomic study (Krehenwinkel et al, 2019;

Watsa et al, 2020), and in countries where access to laboratory facil-

ities and conventional genomic sequencing approaches remains

challenging (Hetu et al, 2019). This holds the promise of having

local conservationists and communities of indigenous people moni-

tor and manage the biodiversity of the ecosystems they live in, and

of supporting the democratization of molecular analyses through

local research and teaching (Blanco et al, 2020; Watsa et al, 2020)

as well as data and benefit sharing (Mc Cartney et al, 2022) (Box 1).

Long nanopore sequencing reads further assist such biodiversity

assessments by allowing targeting full-length marker genes in meta-

barcoding studies (Krehenwinkel et al, 2019) or complete mitochon-

drial genomes (Malukiewicz et al, 2021), which can increase the

taxonomic resolution of genetic studies. Thanks to the advent

of nanopore selective sequencing based on digital sequence

information, it has become feasible to enrich environmental geno-

mic material extracted from water, soil, or fecal samples for gene

region- or species-specific targets, allowing for non-invasive geno-

mic biodiversity monitoring (Wanner et al, 2021). Given that long

reads contain several genetic variants, they can not only distinguish

between species but also reliably perform individual identification

based on haplotypes of several kb in length. This has been shown to

work for soil environmental DNA monitoring of the critically endan-

gered k�ak�ap�o (Strigops habroptilus) in Aotear New Zealand (Fig 3A;

Urban et al, 2023), with the potential promise of extending non-

invasive biodiversity monitoring to within-species assessments of

genetic diversity and genomic erosion.

Combating wildlife trafficking
International wildlife trafficking is one of the largest organized transna-

tional crimes, involving the smuggling, poaching, capture, or collection

of protected species (Smart et al, 2021). Besides representing one of

the major threats to biodiversity, it also entails a biosecurity risk

because the unregulated trade of animals can mediate disease trans-

mission (Rush et al, 2021). While local and international laws and

regulations prosecute wildlife trafficking (CITES, 1983), actual prose-

cution of wildlife crime is very often impaired due to improper identifi-

cation of the species or population, and as a result the country or area

of origin after confiscation (Gouda et al, 2020).

The in situ application of real-time nanopore sequencing to wild-

life trafficking opens new avenues for direct application to confiscated

samples at borders and airports. Traditional genetic methods such as

the sequencing of targeted marker genes or of mitochondrial DNA

have become part of the daily toolkit of wildlife forensics (Wasser

et al, 2015; Smart et al, 2021). Portable sequencing technologies that

Box 1. The In Situ Lab Initiative

The In Situ Lab Initiative (ISL) was established in 2020 as a comple-
mentary model to present-day global One Health programs for
emerging disease detection in humans that are implemented in a
centralized, top–down fashion. The ISL aims to empower local
stakeholders such as universities, zoos, conservation non-
governmental organizations, and governments to update their
wildlife or environmental surveillance efforts with modern, low-
cost, and portable molecular toolkits to engage in One Health pro-
jects in ways that are meaningful to their constituents – which is
not necessarily in accordance with the goals of the international
community. The ISL facilitates efforts to establish decentralized
wildlife surveillance labs worldwide by fostering a network of labs
that curate, standardize, and share protocols. Participants of the
ISL agree to maintain certain standards of biosafety, data manage-
ment, protocol sharing, and project management. Over time, as the
diffuse partner network expands, and projects in one location over-
lap with those in another, collaboration results in convergence on
best practices. A versatile and competent network of locally run
laboratories can redirect resources and respond effectively to gather
information on emergent diseases or ecological threats. With func-
tioning labs in Peru, Ecuador (Fig 3C), and soon Indonesia, Vietnam,
and Rwanda, the ISL aligns with the Nagoya Protocol by avoiding
the exportation of genetic samples and focusing on benefit sharing
within communities by centering their participation in community-
driven laboratory-based investigations. Central to this effort is
nanopore sequencing, which allows for all genetic research to be
carried out at the site of sample origin, creating positive conserva-
tion incentives for genetic resources.
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produce long reads can further increase the taxonomic resolution and

accuracy when determining the place of origin of the confiscated sam-

ple. This has previously been demonstrated through ex situ next-

generation sequencing of confiscated live chimpanzees (Fontsere

et al, 2022). Here, long-read sequencing can potentially be applied for

reintroducing such confiscated individuals to their populations of ori-

gin, as well as for detecting poaching hotspots so that authorities can

enforce laws in order to protect wildlife. The same technology has

been used to help identify CITES-listed shark species on a food mar-

ket in India through genome skimming (Johri et al, 2019). Such in

situ monitoring at locations of high human and trade traffic can be

extended to monitor the spread of invasive species and infectious dis-

ease, which might be associated with any wildlife material.

Application of model-free sequencing
The model-free nature of nanopore sequencing means that any mod-

ification of the genomic or transcriptomic material can be detected –

as long as a basecalling algorithm can be trained to detect such a

modification beyond the variation in the sequence composition (pre-

print: Stoiber et al, 2017; Wan et al, 2022). This has been leveraged

to call epigenetic modifications such as DNA methylation and his-

tone modifications (Simpson et al, 2017; preprint: Stoiber et al,

2017; Yue et al, 2022), which provide another rich level of informa-

tion for assessing biodiversity and its function. Epigenetic variation

represents an important part of biodiversity and can provide infor-

mation about the ecological or environmental components of spe-

cies and populations (Moore et al, 2013; Lacal & Ventura, 2018).

Such modifications can influence an offspring’s attributes and fit-

ness conditions, potentially impacting several generations (Bo�skovi�c

& Rando, 2018) and further contributing to a potential extinction

vortex. Epigenetic changes can further be used to identify species-

and population-specific adaptations to changing environments such

as climate change (Lighten et al, 2016), or exposure to toxic sub-

stances (Fern�andez et al, 2014). Nanopore sequencing has already

been used to study the epigenomic landscape of medaka fish (Leger

et al, 2022) and to evaluate functionally important phenotypes in

bacteria (Beaulaurier et al, 2019).

Model-free sequencing of native genomic material has the poten-

tial to de novo discover any modification of the nucleotide strand

down to the atomic level (preprint: Stoiber et al, 2017). This has, for

example, been leveraged to distinguish bacterial from human DNA

on the squiggle signal level, allowing for efficient enrichment of

microbial genomic information through nanopore selective sequenc-

ing (Bao et al, 2021). In such cases, the analysis of the basecalling

algorithms through explainable machine learning (ML) approaches

can teach us more about hidden molecular differences between tax-

onomic groups. We envision that the usage of squiggle data for

functional assessments of genomic data will open up new possibili-

ties for epigenetic and comparative genomic research.

Environmental, organismal, and human health

The bidirectional relationship between environmental and
human health
In contrast to several organisms that face an elevated extinction

risk, many pathogenic organisms such as fungi, bacteria, and

viruses are thriving as a result of the rapidly changing

Figure 3. Applications of real-time genomics for One Health at the point-of-care.

(A) In situ applications on remote islands in Aotearoa New Zealand through the employment of portable laboratory, sequencing, and computational equipment (photo
credit: K�ak�ap�o Recovery Team, Department of Conservation, New Zealand). (B) Food security application and community involvement on subsistence farms in Tanzania
to rapidly diagnose African cassava mosaic viruses in cassava plants (photo credit: Laura Boykin Okalebo; Jo-Ann L Stanton). (C) Biodiversity monitoring applications for
the conservation of critically endangered wildlife in Ecuador (top) and Aotearoa New Zealand (bottom) (photo credits: The In Situ Laboratory Initiative; K�ak�ap�o Recovery
Team).

� 2023 The Authors Molecular Systems Biology 19: e11686 | 2023 5 of 12

Lara Urban et al Molecular Systems Biology



environmental conditions. The extremely high biomass and popula-

tion densities of our livestock and crops (Bar-On et al, 2018) in com-

bination with their relatively low levels of genetic diversity (Zhang

et al, 2018) make them susceptible to emerging infectious diseases

(van Oosterhout, 2021). Habitat destruction and wildlife trade fur-

ther increase the risk of pathogen spillover events from wildlife to

livestock (Rush et al, 2021). In turn, close contacts between humans

and our livestock promote the evolution of zoonotic disease.

Hybridization between previously isolated pathogens allows for

genetic introgression, potentially resulting in hybrid speciation in

pathogens of humans (Tichkule et al, 2022), animals (Borlase

et al, 2021), and plants (preprint: Mathers et al, 2022; Rog�erio

et al, 2022). All these developments are shifting the dynamic co-

evolutionary equilibria in favor of pathogens (van Oosterhout,

2021), putting severe pressure on our society and environment, both

now and in the future.

Given the global scale and complex nature of the interdepen-

dencies between environmental, organismal, and human health,

real-time genomics has the potential to provide fast diagnostic tools

at the point-of-care anywhere in the world. Nanopore sequencing

has been adopted by a wide variety of stakeholders, including envi-

ronmental scientists, conservationists, genetic engineers, and health

practitioners, to save valuable time and implement appropriate con-

trol measures – in the clinical, veterinarian, agricultural, environ-

mental, biodiversity monitoring, or wildlife health setting (Quick

et al, 2016, 2017; Vanmechelen et al, 2017; Theuns et al, 2018;

Kafetzopoulou et al, 2019; Freed et al, 2020; Rambo-Martin et al,

2020; Street et al, 2020; Charalampous et al, 2021; Vandenbogaert

et al, 2022).

Zoonotic disease
Zoonoses are infectious diseases caused by host switching of patho-

genic viruses, bacteria, fungi, or protists (Jones et al, 2008). The

spillover of a zoonotic virus from bats to humans via a still

unknown animal species has been suggested as the potential source

of the recent COVID-19 pandemic caused by the SARS-CoV-2 virus

(Yoo & Yoo, 2020; Temmam et al, 2022), showcasing the potential

impact of zoonoses on a global scale. In this context, real-time geno-

mics can tackle zoonoses in remote areas (Gardy & Loman, 2018),

while long sequencing reads can help identify novel genomic vari-

ants and distinguish genuine recombinants from chimeras, i.e.,

sequencing or assembly artifacts that can be generated when analyz-

ing mixed infections.

Shortly after the first release of nanopore sequencing technology,

an in situ real-time genomic surveillance program was established

to track the Ebola virus epidemic in West Africa (Quick et al, 2016).

It was further used to track the Zika virus epidemic in Brazil (Faria

et al, 2016; Quick et al, 2017), the COVID-19 pandemic (Fauver

et al, 2020; Freed et al, 2020; Meredith et al, 2020), and several

other pathogens, including viruses causing Lassa and yellow fever,

avian influenza, and rabies (Kafetzopoulou et al, 2019; Brunker

et al, 2020; Hill et al, 2020; Rambo-Martin et al, 2020; Crossley

et al, 2021). The rapid operability has also made nanopore technol-

ogy the first go-to tool in the multi-country monkeypox outbreak in

2022, resulting in the first draft genome of the virus shortly after the

beginning of the outbreak (Isidore et al, 2022). Real-time genomics

can help inform medical responses, vaccine development, and pub-

lic health management by providing a better understanding of

transmission routes and frequency. These whole-genome assess-

ments can detect various pathogenic species across diverse taxo-

nomic groups through metagenomic approaches, which can

simultaneously identify and characterize diverse microorganisms

(e.g., viral, bacterial, or fungal) with precision and even detect yet-

to-emerge pathogens (Ko et al, 2022).

In situ real-time genomics can generate genomic data of patho-

gens in a decentralized manner, improving the surveillance in previ-

ously neglected geographic regions and low-income countries.

Existing large-scale viral monitoring projects such as Prezode (Peyre

et al, 2021), the Global Virome Project (Carroll et al, 2018), or

Virion (Carlson et al, 2022) have already made use of publicly avail-

able big data to detect novel potentially pathogenic viruses or viral

variants (Carroll et al, 2018; Albery et al, 2021). Nanopore sequenc-

ing with its potential for automatization and decentralized deploy-

ment provides a unique opportunity to further augment and

federate worldwide data and use it to enable predictions of novel

threats to human health through ML applications (Carlson, 2020).

We envision that such decentralized data production in combination

with efficient ML can help enable instant, globalized communication

about public health risks.

Food security
The challenge of securing food supply for human society is growing

in both size and inequity and is directly linked to many other One

Health-related problems. Real-time genomics can improve global

food security and contribute to economic stability, for example, by

reducing crop loss through diagnosing plant diseases and pests

accurately and early (Boykin et al, 2018). The creation of global

genomic reference data can further inform and accelerate global

food production, ultimately democratizing the benefits of genomic

research. For example, nanopore sequencing has revolutionized

genome sequencing of important plant species such as crops,

enabling the accurate assembly of their often large and highly repeti-

tive genomes (Ibe, 2022). Nanopore sequencing has also shown a

link between antimicrobial resistance and bacterial virulence in live-

stock and their human farmers (Vi~nes et al, 2021), highlighting the

role of livestock as a reservoir of pathotypes with zoonotic potential

and as a potential source of food insecurity.

The potential impact of diagnostic sequencing in real time was

convincingly demonstrated in its application to the cassava plant

in Tanzania in 2017 and 2018, which feeds 800 million people

worldwide (Fig 3B; Boykin et al, 2019). During a visit to a subsis-

tence farm run by a women’s chama (Swahili for collective), porta-

ble DNA extraction and nanopore sequencing were used to identify

particular strains of African cassava mosaic virus in cassava plants.

Rapid diagnosis allowed replacing the crop with two cassava varie-

ties tolerant to the identified viral strains in time for the 2018 har-

vest. This ensured food security as the virus-tolerant cassava

varieties produced around 35 tons per hectare for sale, whereas

previous crops from the chama had not yielded enough harvest for

the market. When considering the average market value of cassava

in 2018, the associated production costs, and the household

incomes in Tanzania (National Bureau of Statistics, 2019), this

real-time genomics-informed intervention provided the chama with

surplus income equivalent to approximately 3.7 times the average

monthly income in Tanzania for 2018 (also see “Extant

Challenges”).
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The environmental microbiome
Real-time metagenomics surveillance approaches can also be used

to describe the natural environmental microbiome, for example,

from non-invasive samples such as air, water, or soil, and help us

better understand the functional interactions between humans, the

environmental microbiome, and ecological change (Gowers

et al, 2019; Haan & Drown, 2021; Edwards et al, 2022). Increased

anthropogenic pressures and rapid climate change can also leave

their footprint on these microbial communities. For example, anti-

microbials such as antibiotics, antifungals, and disinfectants have

been overused in the clinical and agricultural setting, leading to

resistances and environmental pollution. When coupled with

extreme weather patterns and higher temperatures, it can lead to

the spread of superbugs, i.e., microorganisms that are resistant to

most medications (UNEP, 2023).

Real-time environmental metagenomics has the potential to

unmask such complex relationships between human and environ-

mental health in the context of One Health. Known and novel patho-

gens and their transmission dynamics have been identified from

freshwater or wastewater sources to describe potential human

health consequences (Izquierdo-Lara et al, 2021; Urban et al, 2021),

and harmful algal blooms that can directly influence ecosystem ser-

vices have been detected early (Hatfield et al, 2020; preprint:

Koeppel et al, 2022). Beyond taxonomic assignments of microorgan-

isms, the long reads of nanopore sequencing have been used to

detect medical resistance- and virulence-associated genes and gene

clusters, allowing for direct functional predictions and transmission

surveillance – for example for drug resistance profiling of

tuberculosis-causing Mycobacterium (Chan et al, 2020), malaria-

causing Plasmodium falciparum (Runtuwene et al, 2018),

Leishmaniasis-causing Leishmania infantum (Mart�ı-Carreras et al,

2022), and a wide range of other taxa (Ashton et al, 2015; B�rinda

et al, 2020; Bokma et al, 2021).

A vision for equitable and inclusive One Health

Accessibility
Real-time genomics has the potential to increase equity and inclu-

sion with respect to access to One Health research through its dis-

ruptive and distributed nature. Nanopore sequencing has been

developed with the aim of being accessible to “anyone, anywhere”,

which has been achieved through reduced upfront investment costs

and by pairing it with portable DNA and RNA extraction and data

analysis approaches (Palatnick et al, 2020; Oxford Nanopore

Technologies, 2022b). This has had important implications for

shifting the current hierarchical genomic framework with high-

volume large sequencing centers to highly distributed low-volume

bespoke sequencing. This solves logistically difficult storage and

transport of samples, reduces the risk of invasive pathogens being

transported along with the samples, and circumvents issues related

to permits and travel restrictions.

Community
The in situ application of real-time genomics for One Health enables

its uptake by communities themselves, reducing the harmful prac-

tices of neocolonialism and helicopter science (Adame, 2021; Haele-

waters et al, 2021), with the potential to democratize and diversify

scientific practice (Nagaraj et al, 2020). If used in the right way,

in situ applications can support indigenous rights – such as demon-

strated by the concept of “ahi k�a” or “keeping the home fires burn-

ing” by M�aori communities in Aotearoa New Zealand. This means

that genomic material and data can remain in the hands of the

involved communities, who can subsequently be in control of their

own diagnostics and maintain self-determination.

M�aori, like many other indigenous communities globally, are a

recognized force in the front lines of biosecurity surveillance and

conservation management (Lambert & Mark-Shadbolt, 2021). In Te

Ao M�aori (the world of the Mori), the entire Earth is known as

Papat�u�anuku, the Earth mother, and all life depends upon

Papat�u�anuku for their wellbeing. People have the option of caring

for her to maintain their own health or abandoning her to concen-

trate on their own short-term needs. By always keeping in mind the

needs of Papat�u�anuku and the requirements of her immediate

wh�anau, M�aori have for a long time been advocates of the impor-

tance of One Health, while these interdependencies between envi-

ronmental and human health have been gradually de-emphasized

by many other cultures.

However, M�aori continue to have limited access to the latest

technologies in disease diagnostics (Palmer et al, 2020), often due to

financial and technical limitations. Efforts to protect their culturally

significant species, the environments they exist in, and customary

harvesting practices require more accessible tools and training

opportunities so that indigenous communities can contribute to, and

benefit from, a better, more inclusive biosecurity and conservation

system. Emerging pests and pathogens are of great concern both

economically as well as presenting a conservation threat to already

endangered species. One example is the plant pathogen

Phytophthora agathidicida, which is the accepted causal agent of

kauri (Agathis australis) forest diebacks (Weir et al, 2015), but

which is not well-understood with respect to transmission and pos-

sible prevention. As many of the infected and vulnerable kauri for-

ests are managed by M�aori, portable real-time genomics can provide

an accessible and accurate diagnostic tool for the effective identifica-

tion of emerging pests and pathogens of economic and cultural

importance.

Extant challenges
While real-time portable genomics through nanopore sequencing

has led to increased accessibility, decreased initial financial invest-

ment, and offers many opportunities for improving our global

understanding of One Health, nanopore sequencing still faces sub-

stantial financial, technological, and ethical limitations.

Nanopore sequencing does not require immense upfront invest-

ment costs when the freely available portable sequencing devices

are being used, but the regular consumable costs can be substantial,

especially for low- and middle-income countries. For portable appli-

cations, the lowest-capacity sequencing flow cell is called a Flongle,

which costs about US$ 7 each, has an output of hundreds of Mb,

and does not have any specific storage requirements. The MinION

flow cell costs about US$ 900, has a typical yield of about 5–15 Gb,

and has to be stored at fridge temperature. For high-throughput

sequencing devices, the P2 Solo (US$ 10,455 + 1,000 USD per year)

is the most affordable, with additional costs of US$ 1,400 per

PromethION flow cell resulting in a yield of 50–150 Gb. While opti-

mization of these costs through multiplexing, re-usage of flow cells,
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and optimization of DNA extraction and sequencing protocols can

result in reasonable costs per base (Blanco et al, 2020), pilot studies

usually have to be conducted to understand the sequencing through-

put and the necessary sequencing depth for each new sample type.

This creates uncertainty for the user with respect to financial consid-

erations and data storage. Simultaneously, many countries do not

yet have access to reliable suppliers of nanopore sequencing mate-

rial, resulting in often substantially increased material and shipping

costs, or a complete lack of accessibility.

While these financial limitations will have to be resolved in the

future, the advantage of real-time in situ application has to be taken

into account for any economic considerations. For example, if we

consider sequencing costs in the African cassava mosaic virus study

described earlier (see “Food security”), we estimated processing

costs of US$ 42 per sample. These costs were about a tenth the cost

of Illumina sequencing in Tanzania (quoted at US$ 386 in 2018),

and the additional turn-around time of Illumina sequencing at an

offshore site would have prevented the replanting of different cas-

sava varieties and therefore any immediate economic and societal

benefits for the chama. In other words, where the costs can be met,

the benefit of in situ sequencing is substantial.

Many practical challenges prevent the widespread and large-scale

uptake of real-time genomic technology. The lack of stable electrical

supply can negatively affect the storage of temperature-sensitive

reagents, which poses a big limitation on long-term field studies in

remote areas (Pomerantz et al, 2018; Blanco et al, 2020). A lack of

internet connection and large amounts of data that accumulate over

long periods of time can be limiting factors for the subsequent bioin-

formatic analysis of sequencing data (Blanco et al, 2020). Another

important technological limitation of nanopore sequencing has been

the inflated sequencing read error rate of up to 8% (Urban

et al, 2021), which mainly stemmed from difficulties of the nano-

pores to accurately distinguish homopolymers (Delahaye &

Nicolas, 2021) with potential implications for faulty assemblies,

false-positive variant calling, and frameshift errors. Thanks to the

latest Kit 14 nanopore sequencing chemistry (introduced in 2022)

together with duplex sequencing (basecalling the forward and

reverse-complementary DNA strands in tandem), this sequencing

read error rate has decreased to 0.6% (Oxford Nanopore Technol-

ogies, 2022a). This means that it is now possible to generate

highly accurate and complete assemblies without the need for

short-read polishing (Sereika et al, 2022). This high sequencing

accuracy is very promising for any future application of nanopore

sequencing in the space of One Health.

Community uptake and empowerment to routinely use real-

time genomic-based diagnostics remain difficult. Access to real-

time genomic technology remains hampered by a lack of automati-

zation, both on the laboratory and on the computational level.

Therefore, the actual application of nanopore sequencing still

requires advanced molecular biology and analytical skills. Even

the application of standard bioinformatic pipelines implemented

in Oxford Nanopore Technologies’ EPI2ME (EPI2ME Labs, 2023)

still requires knowledge about the underlying analysis pipeline

and databases for comprehensive interpretation. If this, however,

leads to the application of a “lab-in-a-suitcase” without appropri-

ate community engagement and involvement, it could threaten the

idea of self-determined independent applications by local commu-

nities and researchers and further perpetuate helicopter research

(Haelewaters et al, 2021). The difficulty of analyzing and inter-

preting nanopore data has, for example, been highlighted after in-

field sequencing in Africa (Boykin et al, 2019). Subsequent

courses organized by the African BecA-ILRI hub as a 3-month

hybrid training program for African scientists allowed them to

learn the basic applications of nanopore sequencing and to simul-

taneously apply this real-time genomic technology to study the

genetic potential of crops and livestock in the context of food secu-

rity (BecA-ILRI hub, 2023). Such training needs to be standardized

and made available worldwide (at community-affordable costs) to

enable truly global and equitable access to the advances of real-

time genomic research for One Health.

Conclusion

We envision that the use of real-time genomic technologies and

their application at the point-of-care can improve our understanding

of complex interdependencies within the One Health concept,

directly informing management decisions in situ in clinical, veteri-

narian, agricultural, conservation, and environmental applications.

A paradigm shift is required to really ensure an equitable and global

uptake of real-time genomics. To support decentralized capacities,

this will have to involve tackling global disadvantages and render-

ing the technology flexible with respect to commercialization, and

compatible with different cultural models and infrastructure. To

increase the accessibility of the technology, further development

and automation are required, which would enable its application at

airports, in hospitals, at remote wildlife camps, in local communi-

ties, or in daily conservation and biosecurity surveillance. The

global and decentralized genomic data created this way hold the

promise of widening our horizon to implications of the One Health

concept that have so far been hidden from us, and would enable us

to further adapt our attitude towards the interdependencies between

human and environmental health.
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