TABLE 1.
Quantitative study on proposed depth model on UCL 2019 synthetic data. Best values are in bold, and the second best values are underlined. Abs Rel, Sq Rel, RMSE, and RMSE log are in mm, and δ < 1.251 , δ < 1.252 , and δ < 1.253 are in percentage.
| Model | Abs Rel ↓ | Sq Rel ↓ | RMSE ↓ | RMSE log ↓ | δ < 1.251 ↑ | δ < 1.252 ↑ | δ < 1.253 ↑ |
|---|---|---|---|---|---|---|---|
| SfMLearner (Zhou et al., 2017) | 0.451 | 0.711 | 1.768 | 0.537 | 0.366 | 0.618 | 0.785 |
| Monodepth1 (Godard et al., 2017) | 0.444 | 0.752 | 1.755 | 0.531 | 0.371 | 0.625 | 0.790 |
| DDVO (Wang et al., 2018) | 0.452 | 0.772 | 1.768 | 0.538 | 0.366 | 0.618 | 0.785 |
| Monodepth2 (Godard et al., 2019) | 0.446 | 0.756 | 1.757 | 0.532 | 0.360 | 0.624 | 0.789 |
| HR Depth (Lyu et al., 2021) | 0.448 | 0.762 | 1.762 | 0.534 | 0.369 | 0.621 | 0.788 |
| AF-SfMLearner (Shao et al., 2021) | 0.387 | 0.618 | 1.648 | 0.480 | 0.420 | 0.686 | 0.831 |
| AF-SfMLearner2 (Shao et al., 2022) | 0.352 | 0.545 | 1.581 | 0.448 | 0.445 | 0.712 | 0.852 |
| Our | 0.141 | 0.115 | 0.669 | 0.179 | 0.828 | 0.959 | 0.985 |