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Abstract

Infrared (IR) spectroscopic imaging records spatially resolved molecular vibrational spectra, 

enabling a comprehensive measurement of the chemical makeup and heterogeneity of biological 

tissues. Combining this novel contrast mechanism in microscopy with the use of artificial 

intelligence can transform the practice of histopathology, which currently relies largely on human 

examination of morphologic patterns within stained tissue. First, this review summarizes IR 

imaging instrumentation especially suited to histopathology, analyses of its performance, and 

major trends. Second, an overview of data processing methods and application of machine 

learning is given, with an emphasis on the emerging use of deep learning. Third, a discussion 

on workflows in pathology is provided, with four categories proposed based on the complexity 

of methods and the analytical performance needed. Last, a set of guidelines, termed experimental 

and analytical specifications for spectroscopic imaging in histopathology, are proposed to help 

standardize the diversity of approaches in this emerging area.
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INTRODUCTION

Histopathology is a cornerstone of clinical decision-making and an important component 

of biomedical research in development and disease (1). Major milestones in histopathology 

can be directly related to the development of technology. Dating back to the seventeenth 

century, microscopes enabled the study of morphology at the cellular level and the 

structure of organs. The development of microtomes in the nineteenth century was followed 

by the use of paraffin wax for infiltration and support during sectioning and the use 
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of formalin as a fixative. Automated tissue processors to replace manual processing 

(1940s), cryosection technologies (1950s), immunohistochemistry (1970s), and revolutions 

in electron microscopy (1980s) rounded out the twentieth century. Now, a transformation 

driven by advances in optical microscopy, information technology, computing, and data 

storage is underway. These developments largely compose the practices of modern-day 

histopathology. Digital pathology is an overarching term for the use of these modern 

methods that seek to increase the information content from tissues and use digitization 

and computerized analysis of images. While many new capabilities have been introduced, 

the key processes in pathology for acquiring data—sample preparation, staining, and optical 

microscopy—have remained remarkably consistent for over 125 years. In this review, I focus 

on infrared (IR) spectroscopic imaging as a source of new contrast and its potential role in 

enabling digital pathology.

IR spectroscopy has been used for biological analyses for over 125 years as well. Average 

tissue spectra get confounded by cellular composition or other factors (2), and the need 

for spatially resolved IR spectra has been recognized since the 1950s (3). However, few 

spatially resolved measurements could be conducted for several decades due to limitations 

of instruments and data interpretation. The intervening invention of the fast Fourier 

transform (FT), development of FT-IR spectrometers, and coupling of spectrometers to 

microscopes coincided with increased computational and data handling capability. Point-

scanning FT-IR microscopes reignited an interest in histopathology (4, 5), and the use of 

pattern recognition enabled correlations of spectra to histopathologic identity in a map (6, 

7). Other than using synchrotrons as sources (8), however, the data had to be acquired from 

regions that were tens of micrometers wide, from a few hundred spectra per sample, and 

from a few tens of samples at best, often necessitating spectral analysis from tissue units 

rather than from small pixels (9). The development of FT-IR imaging using array detectors 

led to images that resembled optical microscopy images and numerous applications to 

studying tissue (10–12). A turning point for histopathology was the use of small (~5 μm) 

pixels in large spatial scans that sought to produce images resembling those in pathology, 

proof of concept with statistically large and diverse samples using tissue microarrays, 

and design of fast machine learning (ML) workflows specifically for this data type (13). 

Millions of pixels per sample, diverse data sets from tens to hundreds of samples, and 

ML workflows with multiple steps to provide rigorous training and validation are generally 

recognized as the contemporary approach to tissue histopathology studies. Reviews (14–20) 

and compilations (21–23) that cover the evolution of technology (24) and progress toward 

translation (25) describe the development arc of the field until a few years ago. Here, the 

focus is on describing the main analytical considerations in technology and computational 

methods, application themes, design of workflows, and emerging directions.

THE POTENTIAL ROLE OF INFRARED IMAGING IN PATHOLOGY

The primary role of histopathologic analyses is to provide powerful visual evidence of 

altered tissue structure and, less frequently, of molecular composition. To appreciate the role 

of IR imaging, key trends that pave the way for utility of this technique are summarized 

next. Histopathologic images have traditionally provided qualitative evidence that was 

interpreted in terms of broad guidelines that characterize disease severity or development 
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stage, with common numbers often serving as surrogates for outcome of the disease. For 

example, prostate carcinomas are classified (26) in the Gleason grading system using a 

five-point scale (grades 1–5), with the higher number indicating a more lethal phenotype. 

However, this broad classification does not adequately serve an individual patient (27). 

These measures were designed to be not too complex so that they are interpretable by 

humans, are broadly recognizable in most cases, and serve to educate and train clinicians 

and researchers to a common standard. Understanding the full complement of the disease 

and precision medicine were not the goals then, as they are today, in guiding patient choices 

and therapeutic strategies (28). Thus, there is an unmet need for new measures that go 

beyond established pathology practice. In addition to molecular markers, awareness of the 

importance of diversity in spatial expression of molecular markers has grown (29) and 

knowledge of the involvement of the microenvironment in disease progression has greatly 

increased (30–32). Measures of disease severity that focused largely on a single cell type are 

now recognized as suboptimal in understanding and prognostication (33). In this milieu, two 

major directions have emerged: first, the use of ML to better interpret tissue structure and 

disease state, resulting in the emergence of digital pathology (34, 35), and second, increased 

molecular measurement capability to augment morphologic analyses (36). Driving both 

directions are the explosive rise in computing capability, including faster processors, cloud 

computing, and use of graphical processing units or cluster computing; the ready availability 

of massive digital storage at ever-decreasing costs; increasingly sophisticated and capable 

ML tools, including deep learning (DL); and a broad acceptance of digital methods in 

pathology. While molecular methods were hypothesized to transform pathology with the 

dawn of the genomic age, trends in computing have ensured that optical microscopy, stains, 

and morphologic evaluation remain preeminent, with molecular expressions used largely for 

confirmatory tests (37).

IR Imaging Offers an Information-Rich and Streamlined Histopathologic Workflow that 
Combines Morphologic and Molecular Domains

A comparison of the current histopathology workflow and possibilities with IR imaging 

is shown in Figure 1. The multistep nature of the illustrated current workflow (see Steps 

1–5) requires physical transport of the sample, synchronization of reagents, human resources 

and measurement tools, and an application of digital methods. In contrast, IR measurement 

(Step 6) and application of ML (Steps 7a–c) form a compact, two-step workflow to reduce 

effort and yield fit-for-purpose visualizations that are more informative. Since the sample 

is unstained, one direction has been to generate stainless images that resemble pathology 

images (Step 7a). A second direction is to afford rapid visualization of composition and 

disease, for example, allowing for identification of epithelial cells in which most cancers 

occur (Step 7b) and using a different ML model (Step 7c) to identify disease in an accurate, 

objective, and automated manner. The combination of IR imaging and AI promises to 

provide to the pathologist both old and new information arising from the native chemical 

composition of the material. It can save experts time and effort and provide benefits in 

time-critical settings such as intraoperative venues. Because it does not require a reagent, 

IR imaging can save on material costs and on process and labor costs needed for staining, 

as well as avoid variability arising from technician, sample batch, and specific protocols to 

provide more consistent data. Since IR imaging is nonperturbative to the sample, the tissue 
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is preserved for other analyses. Because it is applicable to fresh, frozen, or archival tissue, 

the same method can be used, and information from one type of sample can be transferred 

to another type with ML. Finally, significantly more information is obtainable from within 

the same spatial context in one measurement. Color-coded images, as opposed to the limited 

palette of dyes conventionally used, make interpretation easy and provide an opportunity 

to study each cellular component individually or in the spatial-chemical context of other 

components. The goal of spectral analyses for pathology is also unlike that of conventional 

molecular spectroscopy, in which the spectrum is related to the identity and molecular 

structure of a single chemical. Instead, ML relates tissue composition to its functional end 

points (e.g., cell identity, physiology, or disease). While these benefits contrast IR imaging 

with current microscopy and spectroscopy, it can also be compared with other techniques’ 

benefits and drawbacks.

IR imaging is a unique and complementary approach compared with other 
optical techniques.—A brief description of the context of other approaches relevant 

to pathology is useful for understanding the potential developmental directions for IR 

imaging. Optical microscopy continues to be a mainstay of imaging; recent developments 

include compact, lens-free systems (39) and ptychography (40), which IR imaging at 

present cannot beat in terms of cost and speed. Microscopy with surface excitation offers a 

slide-free approach with high-resolution imaging (41). Likewise, quantitative phase imaging 

(42, 43) can rapidly define fine structures and orientation in thin sections without the 

use of dyes. Light sheet microscopy (44) can provide volumetric images (45, 46) that 

open up the third spatial dimension for histopathology, and tissue clearing and virtual 3D 

reconstructions are active areas of investigation (47). Although these techniques provide 

new spatial capabilities, they do not have chemical specificity. While autofluorescence 

imaging is simpler and of higher resolution (48), IR data have much greater native chemical 

detail and the chance to confound algorithms is consequently lower. IR spectroscopy 

is sensitive (38) to all biological building blocks (i.e., proteins, nucleic acids, lipids, 

carbohydrates, and other small molecules), presenting the strongest molecularly sensitive 

signals of any optical method, as electromagnetic frequencies are directly resonant with 

molecular vibrational frequencies. The strong absorption provides a quantitative measure 

of a species’ concentration and the environment of vibrational modes is manifest in the 

features of the absorption peak. Raman spectroscopy offers a potentially similar benefit, 

but because the Raman effect is much weaker, it requires either fast scanning approaches 

or more expensive nonlinear Raman imaging (49, 50). Raman imaging–based histology 

(51, 52) can probe within the body (53, 54) and two-photon approaches provide exquisite 

spatial detail (55–58), but neither has yet approached the level of chemical detail and 

spatial coverage of IR imaging. The broad field of nonlinear multiphoton microscopy is 

not covered here but offers a large menu of opportunities that can interrogate physiology, 

local organization, and chemical detail in living tissue and in real time. In general, these 

approaches are based on complicated and expensive instruments compared with IR imaging 

and are more suited to in vivo imaging rather than the archival pathology workflow in Figure 

1, wherein thin sections, fixation, and the need for chemical detail beyond morphology 

reduce many of their advantages. Spatial transcriptomics (59) and molecular ion beam (60) 

approaches can provide ultrahigh spatial and molecular detail but at considerably higher 
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costs and with greater complexity in interpreting the results. Similarly, mass spectrometry 

(61) can provide high molecular detail but is destructive and slower and pixel sizes are 

larger. Altogether, IR imaging presents a balanced approach to rapid spatial coverage with 

high chemical sensitivity with sample handling that is compatible with pathology. The 

most crucial need in IR imaging today is to harness these advantages and devise solutions 

that lead to higher-quality, accessible, and equitable care at lower cost. The analytical 

workflow—measurement technology, data handling, computerized interpretation, validation, 

and presentation of results—is critical toward that goal. Since data handling and obtaining 

results are determined largely by the technology used, I focus first on instrumentation.

INFRARED SPECTROSCOPIC IMAGING TECHNOLOGY

Recording data of spatial-spectral characteristics that allow problems to be solved, with 

sufficient robustness and accuracy and in acceptable measurement and analysis times, is 

the central aim of IR methods for pathology. Thus, understanding the performance of 

measurement technology is critical (20, 24, 62, 63). The most common approach is to 

measure IR light transmitted through the sample to record absorbance.

Established Technologies

The two broad classes of instrumentation measure either large contiguous regions of the 

spectrum (e.g., FT-IR spectroscopy) or a few features of interest [discrete frequency IR 

(DFIR)] for utility in histopathology (for a comparison, see Table 1).

FT-IR spectroscopic imaging is well-established, high-fidelity, and validated 
technology for histopathologic studies, but is slow.—The advantages of 

interferometry (64) for IR imaging are well described, and rigorous analysis (65) of the 

optical imaging system acting as a filter for spatial frequencies (66) has now provided a 

standard for high-definition images. Interferometry and the use of multichannel detectors 

provide high spatial and spectral fidelity data that are the gold standard for comparisons 

in developing new instruments and are useful for both discovery and initial exploration for 

histopathology. Figure 2a–d shows the theoretical limits of performance and the current 

state of the art. Changing the pixel sampling density, numerical aperture (NA), or detection 

wavelength can improve spatial quality (Figure 2e). However, the weak thermal source 

and relatively noisy and slow detectors remain a limitation for whole slide imaging (WSI) 

because of the need to signal average to obtain signal-to-noise ratios (SNRs) sufficient 

for tissue classification (67). With sufficiently large measurement times, FT-IR imaging 

is an exceptional technology by which to examine subtle changes in tissue and to use 

the data for high-quality predictions, as shown in Figure 2f (68). Emerging hardware 

developments promise to raise performance with broadband, supercontinuum laser sources 

(69, 70) and digital IR focal plane arrays (71). However, once analyses are conducted, 

typically only a few spectral features are required for many histopathologic examinations 

(13). The acquisition of large FT data sets may be expensive in terms of time, analysis, 

and data storage. Further, the availability of brighter, narrowband, and shot noise–limited 

sources argues against interferometry, which is ideally suited to weaker broadband sources. 

Regardless, FT-IR imaging, with its incoherent thermal source and ability to cover the 
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mid-IR region, remains the research method of choice to assess tissues for their chemical 

composition.

QCLs have enabled DFIR imaging and have greatly reduced times for 
histologic images.—With the realization that histologic analyses could be sped up by 

acquiring only relevant data, DFIR imaging was first introduced with narrowband filters (74, 

75) as a source. This alternative has been variously termed discrete chemical imaging, bond-

selective imaging, and vibrational mode imaging. The commercial availability of quantum 

cascade lasers (QCLs) (76, 77) as narrowband-emitting but wide-bandwidth tunable laser 

sources soon made them the source of choice for DFIR imaging. Though optical parameteric 

oscillator–based laser systems (78) are comparable spectral sources (and can provide some 

spectral coverage that QCLs cannot), the compact packaging, availability over the important 

fingerprint spectral region, and relatively simpler operation have made QCLs a widespread 

choice for IR imaging. The first IR imaging systems with QCLs (79) suffered from laser 

noise and instability, speckle, and suboptimal integration with existing microscopes.

Although speckle from beam coherence was mitigated with a rotating diffuser, the recorded 

data suffered from poor illumination and noise characteristics. Optical configurations have 

improved considerably since then and two directions have emerged: use of a widefield setup 

with a focal plane array detector (80) and confocal laser scanning (72). Widefield systems 

first utilized small, cooled detectors (128 × 128 pixels) for high SNR, but uncooled detection 

(81, 82) is also effective for histologic applications (83–85) and makes instrumentation 

simpler and cheaper while rapidly providing large images due to their larger format 

(typically 480 × 640 pixels). Widefield techniques generally use one or more optimally 

designed diffusers (86, 87), time delay and integration (88), spatial averaging, and spectral 

dithering to reduce speckle; however, the uncertainty introduced by speckles in quantifying 

spectra for histopathology has not been systematically examined. A net result is that large 

areas can be surveyed but the time to acquire high-SNR data increases while images are 

typically limited to ∼5 × 5 μm pixels. Laser scanning illuminates a single point at a 

time and largely avoids the complications of speckle while obtaining an SNR suitable for 

histopathology (89, 90), providing instrumentation whose spectral SNR and spatial quality 

are close to theoretical limits (Figure 2b–d). The downsides are a relatively lower pixel rate 

and the need to design microscopes that have large fields of view (to avoid frequent stage 

movements).

Emerging Techniques and Trends

The diversity and capability of instruments utilizing IR lasers are likely to increase greatly, 

and the capacity for translational histologic studies will dramatically improve (91). Some 

notable techniques related to the emergence of DFIR microscopy and lasers are discussed 

below.

AFM-IR can provide ultrastructural resolution.—The combination of atomic force 

microscopy (AFM) imaging and IR (92) excitation promises ultrastructural (currently as 

small as tens of nanometers) resolution (93) that can be important for identifying subcellular 

domains in pathology. Though there are few occasions that require resolution this fine in 
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clinical diagnostics, such a tool could prove valuable for research and for understanding the 

signals recorded in far-field modalities. Whereas AFM-IR has provided exquisite images 

of nanoscale materials, including plasmonic effects, detailed images of cells and tissues 

have been less common (94). Thicker samples imply that the resolution gets blurred; a 

signal deficiency for thinner samples is often a limit. Moreover, mechanical coupling (95) 

between the sample and the tip may affect or even dominate the signal. As opposed to other 

techniques, the mechanical detector involves a physical movement that can be susceptible 

to noise and other forces and measurements of small volumes are challenging. A technique 

of null-deflection that allows detailed nanoscale maps of cells with contact-mode AFM was 

proposed (96). The interactions and contact between the tip and the sample may cause shear 

deformation of the sample as the tip is scanned and may move small samples. Tapping-mode 

AFM-IR (and other new variants) was developed as an alternative and is being used for 

biological imaging (97), but its applicability may be limited for histopathology because 

it is significantly surface sensitive and does not sample the bulk. While applications in 

this area are still emerging and there are no obvious opportunities for direct application 

to histopathology, the availability of data from subcellular domains promises to greatly 

increase our understanding of microscopy data.

Hybrid optical microscopes (light-IR, fluorescence-IR, and Raman-IR) seek 
to bridge the resolution gap while adding more information.—Absorption of 

light causes a rise in temperature and a concomitant change in physical and optical 

properties. Using these photothermal changes for microscopy has become an active area 

of investigation. Recent reviews summarize the development and current state of the art 

of these technologies (98, 99). While subcellular detail can be obtained for small regions 

(100–103), widefield approaches are promising for routine histopathology (73, 104, 105). 

IR–optical hybrid (IR-OH) microscopy, in particular, provided large-field-of-view data that 

could be virtually stained and that resembled stained images (73). These microscopies offer 

an exciting new direction in IR imaging, wherein numerous contrasts can be harnessed and 

IR images can be obtained that are comparable in resolution to their optical counterparts 

of much shorter wavelengths, instrumentation can become more compatible with other 

microscopes, and intact specimens can be imaged. These techniques also offer significant 

potential to develop theory models that link observed changes to spectral content and to 

understand the limits of performance. New applications are already emerging in which the 

spatial resolution is proving to be of value to histopathologic analyses (106, 107). Use of 

a confocal pulsed UV laser beam to detect the temperature rise upon absorption is a novel 

optic-acoustic measurement scheme (108) that promises histologic imaging in intact, living 

samples.

Linear and circular polarization measurements provide additional value.—Most 

applications have used isotropic absorbance of samples; however, many biological systems 

have orientation that is related to function (e.g., collagen fiber bundles) and most molecules 

of interest are chiral. Linear and circular dichroism can probe these properties of tissues 

as new information linked to disease progression. FT-IR imaging was too slow for rapid 

measurements, due to both the need to scan multiple optical states and the loss of light 

because of optics needed for polarization measurements. New microscopy designs measure 
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vibrational circular dichroism, allowing for measurement of spectra from small volumes 

and maps of chirality (109, 110). More detailed orientation maps for tissue (111, 112) that 

use linear dichroism imaging (113, 114) have been reported. These initial demonstrations 

are encouraging and are likely to spur the development of a full theoretical treatment 

for polarization-sensitive IR microscopy. With improved understanding, new measurement 

approaches and analyses of polarized IR microscopy data may contribute a new avenue to 

histopathology studies.

Postsample, wavelength-mixing innovations seek to harness the high SNR, 
large format, and speed capabilities of shorter-wavelength detectors.—IR array 

detector technology continues to improve but lags visible detectors in efficiency, cost, and 

size. An important bridge is to use upconversion techniques (115) wherein mixing with 

a stable narrowband laser (e.g., at 1,064 nm) via a nonlinear crystal conserves the IR 

image but now makes it detectable by sensitive detectors at shorter (visible) wavelengths. 

Recent progress has driven conversion efficiencies into a substantial fraction of incident 

photons (>0.2) and the low noise of the visible detector provides data of high SNR. The 

size of IR regions (which are ~20-fold larger than visible regions), accessing the broad 

bandwidth of spectra, speed, and resolution (still determined by IR illumination) are all 

factors for improvement. The use of nondegenerate two-photon absorption (116) with an 

InGaAs camera (117) has led to the fastest recorded (1 megapixel, 100 fps) IR images. 

The development of this technology promises to bring the benefits of visible-IR/near-IR 

detectors to the mid-IR regime.

Nonlinear imaging techniques promise measurements with special properties.
—Using third-order sum frequency generation (TSFG) in a laser-scanning microscope 

(118), one can probe an IR-driven coherence via a two-photon hyper-Raman interaction, 

producing an image in the visible part of the spectrum. This four-wave mixing technique is 

sensitive to the χ(3) properties of the sample and is not limited to certain symmetries such 

as second harmonic generation. TSFG signals carry vibrationally resonant and nonresonant 

contributions and high-speed modulation can potentially eliminate significant noise, but 

TSFG signals are limited by the bandwidth of visible light used to image relatively small IR 

spectral regions.

Both computational and physical methods are being developed to identify 
specific molecular species.—Whereas IR data rely on the spectrum at every pixel to 

act as a barcode of the physiologic or disease state, conventional pathology is more focused 

on specific molecular expression. Two approaches bridge this gap. The first is stainless 

staining (119), in which IR data can be related to molecular expression using ML. As shown 

in Figure 1, IR data can be correlated to the common hematoxylin and eosin (H&E) stain 

and generate images that resemble clinical images. IR-OH microscopy (73) provides pixel 

sizes directly matched to optical microscopy and a faithful representation of H&E images, 

even for relatively low-quality spectral data, likely because H&E is a rather simple stain 

and correlates with global protein and nuclear expression. More chemically specific stains to 

identify collagen (such as picrosirius red) can also be reproduced well by stainless staining 

(120). While highly effective for more abundant chemicals and when spectral absorbance 
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correlates with large chemical differences between cells, results from stainless staining for 

small, subtle changes in molecular expression are likely to get confounded. Specificity of 

molecular expression is a major concern, as the overall chemical state of a cell may not be 

reflective of a single species. Typically, a cascaded approach is used to reduce the risk of 

nonspecific expression. For example, cytokeratin is present only in epithelial cells; hence, 

a first step was to segment tissue into epithelial cells and then analyze epithelial spectra 

to predict the expression level (119). Similarly, a five-step scheme was used (121) in a 

carefully designed study that could achieve not only histologic and disease classification 

but also a sensitivity and specificity of 95% for each of the three mutations important in 

lung cancer. The second approach to bridge the molecular and spectral domains is to use 

IR tags or labels, wherein an IR reporter is attached to a specific molecule(s) of interest 

and the amplification of a signal can be achieved by using probes with IR absorption that 

can be tuned to be high and away from common tissues’ vibrational modes (122, 123). 

Finally, photothermal approaches using fluorescent reporters or native species (124, 125) 

combine the best benefits of both microscopies, providing sensitive absorption and localized 

molecular reporting.

DATA HANDLING AND MACHINE LEARNING

IR spectra and their mathematical analyses have a deeply intertwined history. Methods 

developed over decades for high-quality, full spectra, however, are unsuited for imaging 

data. First, spatial-spectral correlations are significant and must be considered. Second, 

spectrum-by-spectrum computational operations (e.g., curve fitting) do not scale well 

with the number of pixels in histology imaging data. Third, the high dimensionality of 

data; the inherent complexity of tissue; and the variability arising from clinical, sample 

preparation, population diversity, and disease variables need to be considered. Fourth, 

biological knowledge or domain expertise from pathology is difficult to incorporate. Fifth, 

data from imaging systems have lower SNRs than do bulk spectrometers, and the image 

formation process may introduce sample-structure-dependent effects.

Finally, quality control and proof of concept are often carried out in the limit of small 

numbers of samples, which generally require careful assessment and development of 

appropriate ground truths. For example, ground truth in traditional spectral analyses may 

be a concentration of a specific species, which likely has a unique spectrum that is conserved 

in all formulations, whereas pathologic ground truth may be disease grade, with numerous 

chemical manifestations and large diversity. Consequently, workflows must be creatively 

and carefully designed to be tolerant of diversity (not just noise) in the data, uncertain 

ground truths, a range of possibilities in output with a confidence rating, robustness in 

application, and stability with respect to small changes in conditions. This analytical 

complexity, illustrated in Figure 3a, implies that study design and data handling must be 

closely related in light of variances from these factors (126). These considerations also 

mandate that developing an appropriate strategy is critical for the desired diagnostic test 

(vide infra). For most studies, the data processing workflow consists of several steps that 

are remarkably similar, with multiple, sequential operations (127) that require spectroscopy 

and pathology knowledge to ensure success (Figure 3b). One example of this success is 

depicted in Figure 4a, wherein a purpose-driven workflow yields clinically useful results 
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after training (of the algorithm to predict desired outputs) and validation (of the results). 

Given the increasing role of complex ML, a middle step of testing (the robustness and 

optimal nature of parameters) is often now included when developing workflows. While 

training and testing can be accomplished on the same data set and may include strategies 

such as dividing a single data set multiple times into parts to be used for testing and training 

(cross-validation), validation studies should be undertaken with an independent data set 

whenever possible. Given the largely statistical nature of the analysis, careful study and 

algorithm design, as well as appropriate sample size and diversity, are bulwarks against 

the results being influenced by chance or bias. Due to space limitations, this review does 

not discuss the major techniques and operations; numerous sources describe hyperspectral 

image analyses, ML, and various IR pathology–related aspects (128). Given the recent 

emergence of DL, I briefly describe its potential for IR histopathology.

Deep Learning

Details on DL fundamentals, capabilities, and applications can be found elsewhere (130) and 

in a review of spectroscopic imaging applications (131). The transformative development 

for IR histopathology is that DL provides an opportunity to change the development of 

protocols and validation. First, it can potentially reduce the burden on the spectroscopist 

to develop hand-crafted workflows, since its multiscale examination of the data yields 

automated predictive relationships. Second, significantly more powerful analyses of the 

spectral, spatial, spectral-spatial, and multimodal data will be possible. At the same time, 

however, interpretation of these analyses and assurance that they are not brittle in light of 

small analytical modifications will be major challenges. Third, the burden of computational 

design and progress is being borne by a much larger community, ensuring that extensive 

programming knowledge is not needed and that specialized, more powerful methods that 

are fit for purpose are becoming increasingly available. Fourth, computational power 

and storage power, including architectures devoted to DL, are rapidly increasing. These 

are particularly advantageous for IR imaging of large data sets and the complexity of 

biological samples. Fifth, advances in DL are also driving an increased realism in images 

and interactive augmented reality capabilities. The practice of pathology has been rich 

with both human interpretation and use of technology—the combination of powerful 

analyses and realistic, information-rich visualizations will be a useful direction. Finally, 

DL integrated with instrumentation can speed up data acquisition and alter the trade-offs in 

measurements that arise from physical factors alone, transitioning computational analyses 

from a postacquisition analytical role to an integral one in the entire measurement chain. 

Details on some of the major trends that are becoming apparent or will soon be significant 

directions are discussed next.

The limits of conventional physical trade-offs can be transformed by DL 
computational estimation.—Figure 4e shows three examples of how data may be 

augmented (129). First, histopathologic information may be obtained by DL with far greater 

ability and less data compared with conventional methods, including such steps as variable 

selection, scattering-induced baseline estimation, and noise rejection. Second, DL promises 

to complete the acquired imaging data set when fewer pixels than needed are acquired, when 

the SNR of acquired data is less than needed for accuracy dictated by the task, or when 
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pixel density is lower than desired. The ability to estimate missing data comes from the 

powerful correlations inherent in the latent space of the algorithm from many observations 

and can improve continually with more data. However, two considerations are critical to 

understand when applying such techniques. First, the confidence in interpolated or estimated 

data cannot be more than that obtained from the measurement itself.

Any such predictions necessarily draw from past behavior (e.g., database of spectra or 

images) or additional information (e.g., using visible images to infer IR spectral data) 

that may not add more certainty. Indeed, measurement is a form of estimation, often with 

well-defined uncertainty. Using ML to estimate gaps in capability or measurements is also 

an estimation, albeit with uncertainty that comes from the data, from the examples used 

for learning, and from the opacity of the predictive method itself. Second, the use of ML 

techniques to aid measurements must be conducted with the realization of the consequences 

of potential hallucinations or errors, as the use of these powerful techniques may lull the 

practitioner into disregarding notions of limits of their performance. This makes it essential 

to understand the information content of the data and to carefully apply ML techniques 

to enhance capability within these limits. For example, the resolution in IR imaging is 

determined by the optical system (optics, coherence of illumination, aberrations), the sample 

(geometry, separation from the analytical background, prior knowledge), and noise. The 

minimum resolvable distance, d, is often described byd = fr
λ

NA ,where fr ranges from 0.4 

to 0.61 for different criteria. However, these relationships are not derived from a specific 

rule other than separability of two identical objects. IR imaging follows the same rules for 

identical point absorbers; however, it is often the case that there are spectral differences in IR 

imaging between neighboring point absorbers. To understand the information limits of such 

data, a relationship (132) for far-field IR microscopes has been developed:

d = λ
NA

1
log2 1 + SNR 1 + 4Δ2 .

The equation shows the familiar dependence on wavelength and NA but now explicitly 

describes the relationship between SNR and material properties (Δ, or spectral distance) 

as well. This relationship is of the same simple form as common microscopy resolution 

criteria but is rigorously accurate in terms of information content. Deconvolution methods, 

for example, should not attempt pixels finer than dictated by the data. However, DL offers 

the intriguing possibility of adding new, orthogonal information. As shown in Figure 4e, the 

inclusion of features from a visible microscopy image potentially provides textures beyond 

these limits. As seen from this example, DL has the potential to redefine the capability of 

histologic segmentation by reducing the need for data acquisition, to reduce experimental 

parameter range by estimation, and to overcome information content limits by injecting new 

information.

Highly accurate histopathology with IR contributions to multimodal 
histopathology will become more useful and common.—Carefully crafted 

workflows have dominated studies thus far and have moved accuracies from approximately 

70% to more than 90%. DL protocols now promise nearly perfect histologic recognition due 
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to their complexity, inclusion of spatial-spectral textures, and use of large training data. With 

fast imaging, it can be reasonably expected that high-accuracy studies of different tissues 

will result for a wide range of pathologies. Caution is needed when evaluating uncommon 

occurrences, and the lack of accuracy will likely arise from these outliers that were not in the 

training database. In an interesting crossover, IR data were used to generate deepfake H&E 

images (133) that were practically indistinguishable from real images by board-certified 

pathologists. By subtle changes in the IR map, new H&E pathologies that are not commonly 

encountered could be generated, thus increasing the predictive ability of morphology-based 

algorithms. This integration will likely be driven further as multimodal information becomes 

more common in pathology.

Increasing measurement capability will provide more data to address 
confounding variables.—The combination of different models, effect sizes, and data 

used, including the numbers of tissue samples, makes it challenging to provide a ready 

guideline for a satisfactorily robust algorithm (134). A general consensus is that modern 

imaging and tissue microarrays allow data to be recorded from hundreds of patients’ 

(relatively small) samples. Since spectral features are central to DFIR imaging, the desire 

to reduce computational effort and data size while maintaining high accuracy is important 

(135). This interplay of sufficient samples to make workflows robust yet minimize the effort 

for data acquisition will be a major theme. Samples from at least 50 patients, with multiple 

samples per patient, is a reasonable number to obtain initial data and estimate accuracy and 

robustness for most protocols. Extensive, independent validation with sample numbers and 

statistics dictated by the task would then be appropriate.

Interpretability and robustness in application will require method 
development.—Each instrument configuration will slightly change the data recorded, 

which can now be rigorously predicted by theory (136). Though instrumentation can vary, 

high accuracy can be obtained for most current configurations (137). However, the issue 

of robustness of prediction algorithms across instrument configurations is not fully settled 

(138). The SNR of recorded data influences classification results, but there is likely a 

limit for most applications in which further increases in accuracy are not possible by 

increasing the SNR (67). For the sake of stability of the results, this limit should be found 

for each workflow and the data checks implemented to ensure the SNR is sufficiently high. 

While significant work has focused on the batch effect in histopathology with DL, the 

small number of configurations and the need for the development of workflows for each 

application imply that this issue is not likely to be an active area. Given the still-early 

stage of application development, demonstration of robustness of algorithms for a complete 

solution (instrument, analysis and visualization) for multiple clinical settings, demonstration 

of robustness in operation by nonexpert users, integration with clinical workflows, and more 

applications are likely to dominate activities in the near future.

Increasing chemical detail and precision of spectroscopic imaging will be 
possible with a combination of physics-based modeling and DL.—Tissues are 

well known to have multiscale organization. At the molecular level, chirality may be 

apparent, subcellular organization is influenced by function (e.g., cytoskeleton), cellular 
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organization is often dictated by organ functions and determines tissue architecture (e.g., 

apical and basal organization of epithelial cells), and the tissue matrix often involves 

molecular to multilength scale physical orientation (e.g., collagen bundles in the stroma). 

In addition to advances in instrumentation, computational algorithms must be harnessed if 

this additional information is to be used in histopathology. Since the additional data needs 

more acquisition time, one goal is to speed up information recovery. Another emerging goal 

is to use the additional information to correct sample-dependent distortions in recorded data, 

recovering the morphologic structure and spectra simultaneously. Though IR spectroscopic 

imaging is often described as a straightforward combination of IR spectroscopy’s molecular 

selectivity and optical microscopy’s spatial specificity, our understanding of the recorded 

data is not as straightforward. The complex interplay of sample structure, beam effects 

arising from coherence, thermal lensing, and the impact of changing optical configurations 

might all be amenable to DL treatments. However, a significant database of samples and 

applications must be built first.

PATHOLOGY WORKFLOWS AND TRANSLATION: OUTLOOK

With large areas being imaged rapidly (139), IR imaging is showing signs of considerably 

shortening and integrating workflows for pathology by eliminating the need for staining, 

automating microscopy, and integrating knowledge extraction. However, the burden of proof 

and the barrier to entry for all applications are not equal. One knowledge gap is the lack of 

a relationship between the complexity of the problem and the evidence needed for successful 

IR imaging. At this emergent state of the field, it is important to categorize studies, as well 

as choices from the diversity of instrumentation and methods developed in broad categories 

of use, so that they can be systematically understood and developed for pathology.

Categories for Applications of IR Imaging in Pathology

While it is not possible to delineate each use case, this review suggests a broad 

categorization (Table 2) and provides several examples to illustrate commonalities within 

the categories. Category I includes applications to identify cells that are cumbersome by 

traditional techniques [e.g., high-definition profiling of lymph nodes for all cells (140) or 

providing specific biochemical insights such as metabolism in glioblastoma cells (141)]. 

Stain-free identifications can also be used to condition accurate and detailed molecular 

analyses (e.g., with mass spectrometry) (142). Category II applications include the use of 

chemical information to recognize disease or physiologic states within specific cells. Tissue 

fibrosis, for example, is often associated with disease progression and is detectable (143) 

in the manner of immunofluorescence microscopy (144). Measuring the fibrotic reaction 

highlights the biochemical nature of processes [e.g., between liver diseases and diabetes 

(145)] and reduces the effort needed to obtain molecularly specific results (146). Category 

III applications use chemical and spatial information to provide objective and automated 

subclasses of disease (e.g., grade) that can aid or confirm clinical diagnoses [e.g., sub-

classification of lung cancer (147) or prostate cancer grading and staging (148)]. In Category 

IV applications, chemical imaging data can be used for prognostic or predictive applications, 

for example, to deduce the spatial-chemical syntax of prostate tumors to define potentially 

recurrent ones (149) or to assess moderate-grade colon tumors to determine more aggressive 
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ones (68). Many of these applications highlight that IR imaging can measure all cells 

simultaneously and some disease-associated changes in each cell as well. This capability can 

allow researchers to study disease processes based on the microenvironment, adding more 

information than is currently available. This ability for comprehensive analysis also makes 

spatial coverage an important consideration. WSI is typical in optical microscopy, in which 

slides are scanned in minutes. Although IR images smaller than 1 × 1 mm are typical today, 

greater integration with pathology will require the typical standard for WSI (15 × 15 mm) to 

be measured in less than 10 min.

Guidelines for Reporting Studies Using IR Imaging in Pathology

The design of studies, the performance needed for instrumentation, the complexity of 

algorithms, and the strength of the evidence are all dependent on the complexity and 

importance of each category listed above. With the categorization of applications, a 

coalesced set of guidelines for studies (Table 3), termed experimental and analytical 

specifications for spectroscopic imaging in histopathology (EASSI-H), can also be proposed. 

Although not every recommendation may be applicable to each study, the hope of this 

proposal is to provide practitioners with a checklist of information that should be included 

to provide readers with a complete picture of the study. With clear explanations of the work 

done, and with access to data and facilitation of interstudy comparisons, adopting these 

guidelines can help accelerate progress with better communication and a common platform 

to judge the strength of the evidence in the context of the study design and claims of its 

success.

The Potential Impact of IR Imaging in Pathology

Introducing IR images and the visualizations they enable can greatly reduce the focus 

in pathology from hunting for occurrences of disease or specific cells to interpreting 

the data. This could be a paradigm shift enabled by IR spectroscopy. It is natural to 

expect digital methods applied to conventional pathology images to precede the use of 

IR imaging. Driven by advances in technology, approvals by the US Food and Drug 

Administration, development of workflows for many use cases, and a general acceptance of 

cyber resources for (remote) work, digital methods have now become the primary diagnostic 

tools at some organizations (150). In the opinion of the author, the paramount challenge 

for IR imaging today is demonstrating utility. Before undertaking translation, a specific and 

practical workflow needs to be developed for a use case that can be standardized, and the 

reproducibility of this workflow within and between clinical settings as well as over time 

needs to be carefully demonstrated. Each workflow should be suited to a specific problem 

and its accuracy needs to be validated in a clinical context with multiple independent cohorts 

of samples and operations in actual use settings. Currently, no developments meet these 

standards. Yet another step that needs to be proven is that the research or clinical utility 

of IR imaging must make activities more productive. In research, this might imply more 

information, fewer resources, or more accuracy for assays. For clinical diagnostics, these 

methods should improve decision-making compared with extant methods alone and lead 

to better patient outcomes. Several groups are focusing on innovative solutions to clinical 

pain points, and development of integrated hardware-software protocols that are easy to use 

and cost-effective are also needed. New technologies based on IR imaging will replace the 
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common microscope and extant methods only if the knowledge they yield is more valuable 

and more cost-effective than the state of the art. IR imaging has now matured to the extent 

that contemplating a radical change in diagnostic and research pathology is possible by this 

simple and integrative means to record relevant data, parse this knowledge, and make it 

useful. With many advantages, IR imaging offers a potential route to add to and even replace 

some of the methods that have been prevalent for decades.
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SUMMARY POINTS

1. Infrared (IR) spectroscopic imaging combines the molecular selectivity 

of mid-IR vibrational spectroscopy and the spatial specificity of optical 

microscopy.

2. Application of IR imaging to pathology can simplify workflows by 

eliminating the need for staining and by providing informative, color-coded 

images that can be used for decision-making.

3. IR spectroscopic imaging is a rapidly evolving technology, with several 

variants providing high SNR, high resolution, and expanded molecular 

information, including orientation and chiral composition.

4. Machine learning, including deep learning (DL), is necessary and powerful 

for extracting information from spectra, and emerging approaches can harness 

spectral-spatial correlations as well.

5. One of the most fruitful areas of application will be to reframe the prevalent 

view of cancer, from a mass of cells of uncontrolled proliferation to a 

complex society of cells (e.g., stromal changes, blood vessels, and immune 

cells) that compose the microenvironment.

6. Four categories of applications, with increasing complexity and analytical 

demands, are proposed for IR imaging.

7. Guidelines for studies reporting the use of IR imaging for histopathology are 

proposed.
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FUTURE ISSUES

1. Technology development for IR imaging has greatly accelerated, and 

further increases in speed, resolution, and chemical detail will lead to new 

applications.

2. Practical technology that can be incorporated into existing diagnostic or 

research workflows is needed.

3. Digital pathology methods are becoming more accepted, and additional useful 

information and ease of use of IR imaging will need to be demonstrated.

4. DL offers a powerful means to leverage both spatial and structural 

information from IR imaging and will be a significant forum for enabling 

its use for pathology.

5. Utility of IR imaging to solve clinical problems is the starting step for 

translation, and use cases need to be developed.
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Figure 1. 
Current histopathologic evaluation process and the proposed process based on IR imaging. 

Tissue is first obtained, fixed, and embedded in a cutting medium, and a thin section 

is obtained on a slide as the sample. (Step 1) The sample is stained, commonly with 

H&E. (Step 2) Optical microscopy is the mainstay for visualizing tissue morphology to 

diagnose disease or for research assessments, providing (Step 3) images in which contrast 

is enhanced by the stain. (Step 4a) Images are assessed by a pathologist. (Step 4b) Digital 

pathology, wherein computer algorithms are used to assist the pathologist by quantitative 

morphological information, is an emerging aid. (Step 5) Tissue evaluations can then provide 

input for clinical diagnoses or research insights. In contrast, steps 6 and 7 show the 

workflow possible with IR imaging. (Step 6) An IR microscope, providing the benefits 

of microscopy and spectroscopy, integrally uses a computer because of the large volume 

of data and impracticality of manual interpretation. The data have two spatial dimensions, 

similar to optical microscopy, but a much larger spectral dimension. Machine learning is 

applied in two important areas: (Step 7a) stainless staining, to reproduce the stained images 

commonly used in pathology, and (Steps 7b and 7c) chemical histopathology, to gain novel 

information over present methods and visualization that eliminates the need for painstaking 

examination of tissues. (Step 7b) Segmentation of tissue into epithelial cells and other 

components (collectively, the stroma), and (Step 7c) comprehensive examination of breast 

tissue for disease and stromal reaction. In Step 6, the image is adapted from Reference 24 

and the spectrum is adapted from Reference 38. Abbreviations: DCIS, ductal carcinoma 

in situ; Desmo., desmoplastic stroma; H&E, hematoxylin and eosin; IBC, invasive breast 

cancer; IR, infrared.
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Figure 2. 
IR spectroscopic imaging measurements and use. (a) Theoretical prediction of the smallest 

pixel size to achieve the highest spatial fidelity. Panel a adapted from Reference 65. The 

graph provides a guide to designing IR imaging systems. (b) A custom-built DFIR imaging 

system, showing the essential components of an IR imaging system. (c) Evaluation of the 

spatial quality of the imaging system with two different objective lenses. (d) Spatial (top) 

and spectral (bottom) performance can be quantified. Panels b–d adapted from Reference 72. 

(e) Augmented performance of optimal optical design (i) compared with that of commercial 

systems (ii). Use of a solid immersion lens can increase the quality of images, providing 

higher resolution (iii) than standard images (iv). Using a hybrid microscopy format can 

provide optical microscopy resolution (v) compared with the optimal all-IR resolution 
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(vi). Panel e, subpanels v and vi, adapted from Reference 73. ( f ) FT-IR imaging data 

provide high-quality spectral and spatial information that can provide color-coded pictures 

of the colon tumor microenvironment. (g) Statistical accuracy of detecting tumor and 

microenvironmental cells. (h) Prediction of risk for moderate-grade tumors. Panels f–h 
adapted from Reference 68. Abbreviations: Abs., absorbance; AUC, area under the curve; 

DAQ, data acquisition; DFIR, discrete frequency IR; FT-IR, Fourier transform–IR; H&E, 

hematoxylin and eosin; HR, hazard ratio; IR, infrared; MCT, mercury-cadmium-telluride; 

NA, numerical aperture; Preamp.; pre-amplifier; QCL, quantum cascade laser.
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Figure 3. 
Study design and data workflows in infrared (IR)-based pathology. (a) General idea of 

a study design. A population of specific disease states is identified from several clinical 

systems for the study to assure a diversity of patients and practices. Representative cases 

for IR imaging are identified and tissue samples are prepared, often building in sampling 

redundancy (i.e., sampling from the same patients), use of matched cases (from the same 

patient or matching for known variables), and high statistical numbers. From each sample 

used in the study, an IR imaging data set is obtained. (b) A computational pipeline is then 

devised to assess the use of a histopathology model along with analytical parameters to 

process the data and extract information, with statistical validation. Multistep processing 

workflows are designed for specific cases as needed and benefit from the opportunity to 

include substantial spectroscopy and pathology knowledge. Colors of the population indicate 

the natural variation as well as variation due to disease, while variation introduced by 

clinical settings and sampling is indicated by additional colors.
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Figure 4. 
Designer workflows and use of deep learning for histopathology. Carefully crafted studies 

focus on a specific problem with custom design and statistical measures that relate back 

to the imaging data. (a) A well-crafted workflow for classification clearly listing the 

study design and experimental steps, including statistically valid results with independent 

validation. One workflow distinguishes healthy from cancer samples (purple boxes). The 

middle workflow (blue boxes) distinguishes MSS patients from MSI-H ones. The IR 

analyses are validated by clinical molecular analyses (gray boxes, right). (b) Explicit 

differences between MSS and MSI-H cohorts for training/testing (40 samples, 21 MSS 

and 19 MSI-H) and for verification (60 samples). The gray dashed line represents a 

threshold (63%) that segments the two groups. (c) Receiver operating curve with AUC 
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demonstrating high accuracy. (d) Projection of classification back to images (top; IR 

images in which MSS is indicated by blue and MSI-H by orange) and comparison with 

H&E images (bottom), demonstrating the ease of conveying information with IR-classified 

images. Panels a–d adapted from Reference 83, with permission from the authors. (e) 

Deep learning can be used to (i) segment images in one step, (ii) increase speed by 

estimating missing data, and (iii) use multimodal information to super-resolve images 

using data-driven algorithms. Panel e adapted from Reference 129; copyright 2021 Elsevier. 

Abbreviations: Adv, adversarial; AUC, area under the curve; DFIR, discrete frequency 

IR; H&E, hematoxylin and eosin; IHC, immunohistochemistry; IR, infrared; IR-REC, IR-

reconstruction; IR-SEG, IR-segmentation; IR-SR, IR super-resolution; MSE, mean square 

error; MSI-H, high microsatellite instable; MSS, microsatellite stable; PCR, polymerase 

chain reaction; RF, random forest; ROI, region of interest; VGG, visual geometry group.
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Table 1

Characteristics of continuous and DFIR imaging systems

Continuous spectra imaging data DFIR chemical images

Measurement Broadband spectrum, uniform spectral noise, and 
resolution

Narrowband, independent properties of spectral 
bands

Spectral resolution 
mechanism

Time series measurement (i.e., interferometer scanning) Narrowband snapshot (e.g., grating position)

SNR advantages Spectral multiplexing, throughput High source intensity

Defining characteristic High wavelength fidelity, high SNR for weak sources High signal, independent modulation capability

Most useful for Exploratory analyses, discovery Fit-for-purpose histopathology

Imaging constraints Reflective optics needed, cumbersome for hyphenated 
techniques

Beam coherence, suited for hyphenated techniques

Abbreviations: DFIR, discrete frequency infrared; SNR, signal-to-noise ratio.
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Table 2

A proposed categorization of applications for spectroscopic imaging in histopathology

Category of 
applications

Characteristics

Goal(s) Typical design Data characteristics Applications

Category I: 
Identification of 
tissue composition

Identify cells and 
constituents (i.e., pixel-
level features)
Identify cell 
types in tissue 
from compositional 
differences 
Measure biochemical 
composition or 
heterogeneity 
Detect extracellular 
components

Many spectral instances 
(pixels) available within a 
single sample

Spectral differences 
between cells likely 
larger than diversity in 
populations 
Large spectral differences 
are expected and relatively 
simple 
Analyses are often 
univariate and are effective

Well-established approach 
Many examples available 
(e.g., histology on 
many tissue types, 
microcalcifications, detection 
of disseminated tumor in 
lymph nodes)
Output may serve as input 
for downstream analyses 
(e.g., with laser capture 
microdissection)

Category II: 
Identification of 
disease, physiology, 
or development

Identify disease, 
differences in 
physiology, or function 
in a sample (i.e., 
regional features)

Spectral instances include 
both pixels and whole 
regions (e.g., tumors in 
ducts)
Many examples and 
patients available

Subtle chemical 
differences 
Often affected by sample 
preparation 
Requires more 
sophisticated algorithms 
and careful spectral 
processing

Detection of disease and 
heterogeneity within disease 
Detection of 
microenvironmental changes 
associated with disease 
progression 
Prediction of molecular 
expression Validation with 
IHC

Category 
III: Disease 
characterization

Determine severity of 
disease or subclasses 
that are clinically 
relevant (i.e., sample-
level features)

Spectral instances and 
heterogeneity of tissue 
may need to be 
considered 
Determination at the 
patient level 
Examples and patients 
may be available for 
common diseases but 
heterogeneity measures 
and new classes 
may require prospective 
studies

Subtle chemical differences 
often need to be considered 
in a spatial context 
May require multimodal 
information 
Requires significantly 
sophisticated algorithms 
and larger validation effort 
Unambiguous ground truth 
(e.g., disease grade) may be 
difficult to obtain

Recapitulation of disease 
grades 
Discovery of subclasses of 
disease

Category IV: 
Prognostic 
and predictive, 
individualized 
analyses

Prognostication 
(outcome, regardless of 
therapy) and prediction 
(effect of a therapeutic 
intervention), with an 
ultimate goal of 
individualized results 
(i.e., human-level 
features)

Complete IR information 
and clinical and 
other information 
are incorporated into 
models for patient-level 
predictions 
New information from 
algorithms may be used 
to guide searches for 
biological causes of 
observed predictions 
Need to relate output of 
algorithms to images

Multiple tissue components 
and spectral changes 
considered in a spatial 
context 
Often requires clinical and 
multimodal information 
Requires significantly 
sophisticated algorithms 
Retrospective validation 
combined with prospective 
validation is highly 
desirable

Prognostication and 
prediction 
More individualized (group) 
and precise (patient-level) 
information that is often 
clinically actionable

Abbreviations: IHC, immunohistochemical; IR, infrared.

Annu Rev Anal Chem (Palo Alto Calif). Author manuscript; available in PMC 2024 May 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bhargava Page 33

Table 3

Proposed experimental and analytical specifications for spectroscopic imaging studies in histopathology

Category Essential specifications

Patient and clinical data Characteristics of patients selected (disease, control) 
Source of material
Demographics of patients (e.g., age, sex, ethnicity)

Sample processing Sample history from acquisition to measurement 
Processing steps used 
Preservation and storage conditions Pathology reference slides (e.g., H&E or IHC stains) 
Quality assessment processes (e.g., pathologist review)

Study parameters Goal of the study 
Inclusion/exclusion criteria 
Control samples
Case selection (e.g., prospective or retrospective, stratification or matching) 
Target statistics (e.g., power)

Specimen preparation Substrate used
Protocol to cut and deposit
Chemical treatments (e.g., hexane wash for 24 h)

Measurement conditions Description of optical setup 
Detailed measurement protocol
Quality reference and data (e.g., standard spectrum, 1951 USAF resolution test-equivalent sample) 
Reproducibility checks for instrument

Data processing Description of all preprocessing steps (e.g., baseline correction, normalization derivatives, 
smoothing) 
Spectral and other variables considered and selected (with selection algorithm)
SNR calculation method and SNR evaluation of data

Machine learning Model selection and alternatives considered or rejected during study 
Algorithm
Full code and parameters
Sample sets for training, testing, and validating steps 
Missing information/unbalanced data handling

Claims Relation to ground truth
Statistical measures of results including sample size
Quantitative measures (e.g., ROC curves, Kaplan-Meier plots, hazard ratios) with confidence 
intervals 
Precise description of end points 
Model verification

Study assessment Relationship between spectral data and diagnostic test performance
Sensitivity analysis
Limitations of the study
Comparison with clinical/research standard

Abbreviations: H&E, hematoxylin and eosin; IHC, immunohistochemical; ROC, receiver operating characteristic; SNR, signal-to-noise ratio; 
USAF, United States Air Force.
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