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ABSTRACT

Background: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. The use of
machine learning (ML) has emerged as a key advancement in TBI management. This study aimed to identify ML
models with demonstrated effectiveness in predicting TBI outcomes.

Methods: We conducted a systematic review in accordance with the Preferred Reporting Items for Systematic
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Quick Response Code:

Review and Meta-Analysis statement. In total, 15 articles were identified using the search strategy. Patient
demographics, clinical status, ML outcome variables, and predictive characteristics were extracted. A small meta-
analysis of mortality prediction was performed, and a meta-analysis of diagnostic accuracy was conducted for ML
algorithms used across multiple studies.

Results: ML algorithms including support vector machine (SVM), artificial neural networks (ANN), random
forest, and Naive Bayes were compared to logistic regression (LR). Thirteen studies found significant improvement
in prognostic capability using ML versus LR. The accuracy of the above algorithms was consistently over 80%
when predicting mortality and unfavorable outcome measured by Glasgow Outcome Scale. Receiver operating
characteristic curves analyzing the sensitivity of ANN, SVM, decision tree, and LR demonstrated consistent
findings across studies. Lower admission Glasgow Coma Scale (GCS), older age, elevated serum acid, and
abnormal glucose were associated with increased adverse outcomes and had the most significant impact on ML
algorithms.

Conclusion: ML algorithms were stronger than traditional regression models in predicting adverse outcomes.
Admission GCS, age, and serum metabolites all have strong predictive power when used with ML and should be
considered important components of TBI risk stratification.

Keywords: Artificial intelligence, Head injury, Machine learning, Mortality, Outcomes, Traumatic brain injury

INTRODUCTION

Physicians are often presented with large quantities of complex data and limited processing
time. This presents barriers to the real-time analysis and prediction of patient outcomes. In
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computer science, complex algorithms designed to learn
from data and create generalizations are known as machine
learning (ML). The marked proliferation of electronic
medical record systems during recent years has presented
unique opportunities for ML to improve patient care. Several
ML learning techniques have been used in clinical practice
to predict deleterious events and alert appropriate care
teams. This has led to an increase in the number of early
interventions, reduced mortality, and decreased lengths of
hospital stay.**18203]

Traumatic brain injury (TBI) remains one most prevalent
causes of death and disability throughout the world.[1%13
Robust prediction of outcomes in these patients is critical
for clinical decision-making, family counseling, and for the
need-based allocation of quality of care. In recent years, TBI
research has employed several ML models for the prediction
of patient events and outcomes; however, there exists much
variability in their results."**?) Conflicting data continues to
be reported in the literature; for example, while one study
reported that the ML-based predictive models were more
powerful than classic multivariate analysis in head trauma
patients, another reported ML algorithms performed no
better than conventional for prognostication in TBL!"! To
the best of our knowledge, there exists no systematic review
comparing various ML models used for predictions in
TBI. The present systematic review and meta-analysis were
conducted to summarize and analyze the available clinical
literature regarding ML-based prediction of TBI outcomes.
We conducted a small meta-analysis of available studies to
estimate the predictive performance of ML-based algorithms
for TBI outcomes.

MATERIALS AND METHODS

The present systematic review and meta-analysis were
performed per the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines.?**
Figure 1 shows the PRISMA flow diagram for the study.

Literature search strategy

We conducted a literature search of studies reporting on
ML-based prediction of TBI outcomes published until
March 31, 2021. We searched the following three electronic
bibliographic databases: PubMed, EMBASE, and Cochrane
Library. We used the following MeSH (Medical Subject
Heading) terms in combination with Boolean Operators OR
and AND: “machine learning” OR “artificial intelligence” OR
“neural network” OR “naive Bayes” OR “Bayesian learning”
OR “random forest” OR “deep learning” OR “machine
intelligence” OR “boosting” OR “nature language processing”
OR “decision tree” AND “traumatic brain injury” OR “head
injury” An additional search involving the following terms
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was also performed: “machine learning” OR “artificial
intelligence” OR “neural network” OR “naive Bayes” OR
“Bayesian learning” OR “random forest” OR “deep learning”
OR “machine intelligence” OR “boosting” OR “nature
language processing” OR “decision tree” AND “traumatic
brain injury” OR “head injury” OR AND “outcome” OR
“mortality” OR “morbidity”

Inclusion and exclusion criteria

We included peer-reviewed prospective and retrospective
cohort studies published in the English language utilizing
ML algorithms to predict outcomes of TBI in human
patients. Single case reports, editorials, reviews, and
conference/meeting abstracts were excluded from the study.
Furthermore, TBI studies that used ML for a purpose other
than predicting outcomes were also excluded. We also
reviewed the reference lists of the selected articles for any
additional articles related to the topic.

Data extraction

Three independent investigators (JV.,, OHT.,, and ]JS.)
reviewed the full text of the included articles and extracted
the data on a data collection form. Any disagreement
between the three authors was resolved by discussion.
The following data were extracted from each study: study
design, TBI population characteristics, ML and comparative
regression models used, ML input variables, outcome
variables, study results, and predictive performance of
various models used in the study.

Risk of bias assessment

We employed the Quality Assessment of Diagnostic Accuracy
Studies 2 (QUADAS-2) in the Review Manager (RevMan)
software version 5.4 to assess the quality of extracted studies
[Figure 2]. The following four domains are included in the
QUADAS-2: (1) patient selection; (2) index test; (3) reference
standard; and (4) flow and timing."* We assessed each
domain with regard to the risk of bias, and the first three also
for concerns regarding applicability. We used the signaling
questions to assess the risk of bias and applicability concerns.
For each domain, we analyzed the risk of bias and concerns
about applicability (the latter not applying to the domain of
flow and timing) and rated each domain as low (+), high
(=), or unclear (?) (could not be assessed due to missing
information) risk. Studies rated as “low” on all domains
regarding bias or applicability concerns were identified as
having an overall low risk of bias or low concerns regarding
applicability.*s! Contrarily, studies judged as having a high
risk of bias in one or more domains were identified as having
an overall high risk of bias or high concerns regarding
applicability.[*)
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| Screening | |Identification|

| Eligibility |

Included

Records identified through
database searching
(n=9178)

Additional records identified
through other sources
(n=2)

1 1

Duplicates removed
(n =4663)

1

Records screened
(n=4517)

Records excluded
(n=4400)

1

Full text articles assessed
for eligibility
(n=117)

Full text articles excluded
per selection criteria
(n=102)

Studies included in
qualitative (systematic
review) and quantitative
(meta-analysis) syntheses
(n=15)

Figure 1: Flow diagram of literature selection process per PRISMA guidelines in the present
systematic review and meta-analysis. n: Number of articles; PRISMA: Preferred reporting items for

systematic reviews and meta-analyses.

Quality assessment

The quality of the included studies was evaluated using
the QUADAS-2 tool in RevMan version 5.4.1 software.
Each study was assessed using 12 signaling questions
(three from each domain) and three questions regarding
study applicability (one each from the first three domains)
[Figure 1]. The rating for each question was yes, no, or
unclear. “No” indicates a small risk of bias, whereas “yes”
indicates a high risk of bias for the specific question.
“Unclear” indicates that the risk of bias could not be assessed
due to missing information. We assessed agreement between
both evaluators using three (yes, no, or unclear) and two (yes
or combined unclear/no) response levels. The agreement
was calculated for each question, for each domain, and for
the overall assessment. Studies that were judged as “low”
on all domains regarding bias or applicability were rated as
having an overall low risk of bias or low concern regarding
applicability. Studies that were judged as having a high risk of
bias in one or more domains were rated as having an overall
high risk of bias or high concern regarding applicability.

The domain “Patient Selection” addresses the following
question: “Could the selection of patients or study
participants have introduced bias?” The constitution of the

study population is centrally important to a high-quality
study. We distinguished three populations, study, source,
and target. The study population is the population that
was reported on in an article, sampled from a larger source
population. Only two studies (Gravesteijn et al. 2020 and
Raj et al. 2019) reported an unclear risk of bias while others
answered a low risk of bias and only one study answered a
high risk (Rizoli et al. 2016).[1>3+37]

The domain “Index Text” addresses the question: “Could the
conduct or interpretation of the index test have introduced
bias?” The index test results are one central component of a
2 x 2 table that is evaluated in diagnostic studies. The index
test is the assay under investigation in the study, and a study
may evaluate one or more index tests in the same population
or among population subsets. Among the studies cohort
in our systematic review and meta-analysis using ML and
comparative regression models in the prediction of TBI,
only one study qualified as high risk (Rizoli et al. 2016), four
studies (Amorim et al. 2019, Rau et al. 2017, Kayhanian et al.
2019, and Raj et al. 2019) remained unclear risk while others
reported a low risk of bias,[421:36:37]

The domain “Reference standard” addresses the question:
“Could the reference standard, its conduct, or its interpretation
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Figure 2: The risk of bias assessment.

have introduced bias?” Among all pooled studies, Gravesteijn
et al. 2020, Shi et al. 2013, and Bonds et al. 2015 answered a
high risk, Zelnick et al. 2014, Rau et al. 2018, Raj et al. 2019,
and Feng et al. 2019 reported unclear risk while others pooled
studies reported low risk. 7141534364341

The domain “Flow and Timing” addresses the question:
“Could the study flow and timing have introduced bias?”
The methods and results sections should provide a clear
description of clinical referral algorithms (i.e., patients who
did/did not receive the index tests or reference standard,
respectively) and of any patients excluded from the analyses.
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Three studies in our analysis (Zelnick et al. 2014, Gravesteijn
et al. 2020, and Rizoli et al. 2016) reported a considerable
risk of bias while one study (Kayhanian et al. 2019) answered
unclear risk of bias, all others reported a low risk of bias.
Figure 2 summarizes the overall risk of bias in our systematic
review/meta-analysis studies.!'>2137#]

Statistical analysis

We recorded data from the included studies in a Microsoft
Excel datasheet (Microsoft Corp., Redmond, Washington,
USA). For the pooled mortality rate, we employed a
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random-effects meta-analysis model in R statistical software
version 4.02 (R Foundation for Statistical Computing,
Vienna, Austria). We measured the heterogeneity between
the included studies employing the Higgins I* statistic. We
used a random-effects model due to the high statistical
heterogeneity (defined as I* > 25%) among studies included
in the meta-analysis. Forest plots were generated using the
function “metaforest” in R statistical software.*) A meta-
analysis of diagnostic accuracy with hierarchical modeling
was carried out for each of the ML models across the selected
studies where the true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) values were
reported. The sensitivity and specificity with corresponding
95% confidence intervals (95% CIs) were calculated from
the TP, FP, FN, and TN rates extracted through a 2 x 2 table
from each included study. The “metandi” module in STATA
Version 14.1 (StataCorp., 2015. Stata Statistical Software:
Release 14. College Station, TX: StataCorp LP) was used for
meta-analysis of diagnostic accuracy.?**!

RESULTS

The initial literature search identified 9180 articles. After
removing duplicates (n = 4663) and screening the titles and
abstracts (n = 4517), we excluded a total of 9063 studies.
After the screening of full-text articles based on our selection
criteria (n = 117), we included a total of 15 studies in the
qualitative systematic review and quantitative meta-analysis.
However, the actual number of included studies for the
small meta-analysis varied depending on how many studies
documented the data for a particular algorithm using a
similar methodology. Figure 1 shows the flow diagram of the
literature selection process per PRISMA guidelines. Figure 2
shows the risk of bias assessment in included studies.
Tables 1 and 2 present a review of the major relevant findings
of the included 15 studies.

Prognostic factors for mortality and unfavorable outcomes

Although there was significant heterogeneity in the selected
input variables used for the prediction of mortality and
unfavorable outcomes, critical clinicopathological and
imaging findings were identified from our review: abnormal
serum glucose,?"?73 Jactic acidosis,?V older age and lower
GCS at admission,**”*' higher Marshall scores and decreased
pupillary activity,®” and high surgeon caseload and overall
hospital workload.™

Diagnostic accuracy: Meta-analysis for ML algorithms

A small meta-analysis was conducted for studies using
mortality as a primary outcome. Figure 3a illustrates the
mortality data extracted from each study in which mortality
was predicted using ML. A total of 32,721 patients were

identified from nine studies, with an overall pooled mortality
rate of 23%. Mortality rates within the individual studies
ranged from 6%!'%! to 54%,""! with the majority falling in the
range of 10-30%. A forest-funnel plot depicting mortality
data is shown in Figure 3b, demonstrating a high degree of
variability in the reported mortality; however, these values are
in agreement with previously reported data.***$! Meta-analysis
of diagnostic accuracy was conducted for recurring ML
algorithms using receiver operating characteristic (ROC)
curves. Figure 4 illustrates the findings for artificial neural
networks (ANN), support vector machines (SVM), decision
trees (DT), and logistic regression (LR), respectively. Meta-
analysis of diagnostic accuracy demonstrated that ANN
results were consistent across studies and that its predictions
were more accurate than traditional CT scanning models.!®!

In-hospital mortality

ANN and SVM have both been used to assess in-hospital
mortality in a study containing 1620 patients.!"! The goal was
to compare the performance of ML models to traditional in-
hospital mortality measures that use multivariate regression.
ML prediction variables included GCS, radiologic findings,
arrival method, and time of day of presentation, among
others. ANN and SVM predicted in-hospital mortality with
an accuracy of>91%; however, SVM outperformed ANN with
an accuracy of 95.6% and an area under curve (AUC) of 96%.
SVM also outperformed traditional multivariate LR.") An
additional study assessed the efficacy of various ML models
versus LR in predicting mortality in TBI using a retrospective
chart review."! The ML predictive variables included vital
signs and GCS at admission and discharge. Linear, cubic,
and quadratic SVM models all demonstrated an accuracy
of 94%, whereas LR had an accuracy of 88%. Linear and
quadratic SVM both showed an AUC of 0.93 with cubic SVM
demonstrating an AUC of 0.94, in comparison to LRs value
of 0.83.1 All SVM ML models demonstrated a sensitivity
of 0.98 or higher, the highest among the five studies in the
meta-analysis for ML predicting mortality.!"* ANN was also
used to predict in-hospital mortality using retrospective
hospital data and patient comorbidities.*! When comparing
ANN to comparative regression model LR, ANN had a
higher accuracy (95.23% vs. 82.44%), AUC (0.8961 vs.
0.7739), sensitivity (67.56% vs. 54.83%), specificity (95.23%
vs. 92.67%), and positive (83.24% vs. 74.81%) and negative
(89.35% vs. 87.64%) predictive values over LR. The study also
included the Charlson comorbidity index, hospital volume,
and surgeon volume as ML predictive variables.™*!

14-day mortality after TBI

An additional study used models to predict in-hospital and
14-day mortality. The models assessed mortality in 517 TBI
patients in a low-middle-income country (LMIC).* Comparing
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Table 1: Summary of included study findings.

Study

Raj et al. 2019

Matsuo et al.
2019

Outline

Development and

analysis of two
simple dynamic
algorithms for
prediction of 30-
day mortality of

TBI patients using

commonplace
neuro-ICU
measurements
as predictive
variables.

Use of nine ML
algorithms to

Design/Characteristics

Retrospective multicenter
study in Finland over range
0f2003-2017

Retrospective single center
study in Japan over range of

TBI Population
Characteristics

n=472, median age 48
years, 69% GCS 3-8 at
admission, 79% had light
reactive pupils bilaterally,
49% displayed mass lesion
on CT 30-day mortality
was 19% (n=92) Age 16+
reporting to ED within 24
h of trauma, must have
had ICP monitoring for a
minimum of 24 h Excluded
patients dying within 36h
of admission

n=232 divided into groups
80:20 tuning: testing,

ML Models

ICP-CPP-MAP
- 14 dynamic
features +

age included,
refreshed every
8 h ICP-CPP-
MAP-GCS - 13
dynamic features
+ age included,
refreshed every
24h

Ridge regression
LASSO

Comparative
Regression
Models

IMPACT-TBI

- classified 30
patients as likely
to die at 50%
success Note —
was not initially
intended for this
purpose, but was
used as a linear
predictor for
comparison to a
standard method
in the field

N/A -
comparison was

determine effective  2013-2016 Bootstrap analysis mean age 59.4 years, regression made to intrinsic
prediction of was used to amplify sample 72.8% male, mean GCS RF Gradient training of ML
poor outcome size in training sample 9.1, approximately half boosting algorithms
(based on Glasgow classified as severe TBI Extra trees DT
outcome score) and (GCS 3-8) Discharge Gaussian NB
mortality. were 7.8% good (GOS=5), Multinomial NB
14.7% moderate disability =~ SVM
(GOS=4), 77.6% poor
outcome (GOS 1-3) Mean
LOS 28.7 days, overall
mortality 26.3% Age
10+ reporting to the ED,
excluded if experienced
cardiopulmonary arrest in
the ED, pregnant, missing
lab findings at admission
Rau et al. 2018 Design a ML model Retrospective study based on  n=1734, 156 included SVR NB ANN LR
to predict mortality data obtained from Trauma in training set, 325 in DT
following moderate Registry System between test set. Hospitalized
and severe TBI 2009 and 2015 adult patients with head
injuries characterized by
Abbreviated Injury Score
>3 points.
Amorim et al. Design and Prospective and n=517 Patients ages 14+ RF neural Regularized least
2019 compare models observational study of in LMIC (Brazil) with network DT squares Linear
of mortality in TBI  patients admitted to large intracranial abnormality Stochastic regression
patients in LIMC ~ trauma center who required  on CT requiring ICU gradient boosting
ICU admission following TBI ~ admission Bayesian
between 2012 and 2015 generalized linear
model Partial
least squares
Multivariate
adaptive
regression splines
NB Penalized
discriminant
analysis
(Contd...)
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Table 1: (Continued).

Study Outline Design/Characteristics TBI Population ML Models Comparative
Characteristics Regression
Models
Feng et al. Compare the Retrospective chart review n=117 (85.5% male) Cubic SVM LR
2019 efficacy of various  of TBI patients in an urban Age 18-86 (mean 46), Cubic KNN
ML models versus  hospital in China between history of head injury and ~ Complex tree
LR in predicting 2009 and 2011 craniotomy Exclusion Fine Gaussian
mortality in TBI criteria: pregnancy, SVM Weighted
craniotomy at other site, KNN Medium
hospitalization <24 h tree Medium
Mortality rate was 12% Gaussian SVM
(n=14) Mean LOS was Boosted trees
28 days Median GCS at Simple tree
admission was 8 High Coarse Gaussian
rate of hospital-acquired SVM Bagged
pneumonia (33.3% n=39) trees Linear
discriminant Fine
KNN Subspace
discriminant
Quadratic
discriminant
Medium KNN
Subspace KNN
Linear SVM
Coarse KNN
RUSBoosted
trees Quadratic
SVM Cosine
KNN
Abujaber et al. Compare Retrospective study of n=1620 (1417 survived, 203 ~ ANN SVM Multivariate LR
2020 performance of ML  patients who sustained TBI deceased) Age 14+ (Mean:
models ANNand  and were admitted to level 344 years, SD 13.9) Most
SVM to traditional 1 trauma center (Qatar) common mechanism of
multivariate between 2014 and 2019. injury: fall from height (34%),
regression for MVA (30%) Most common
prediction of in- finding: subdural hemorrhage
hospital mortality (28.1%) and extradural
following TBI. hemorrhage (22.9%)
Exclusion criteria: Pediatric
patients (<14 years old)
were excluded.
Hale et al. Compare the use of Retrospective study of n=565 (533 favorable ANN Marshall CT
2018 ANN to traditional pediatric patients who outcome and 32 Helsinki CT
head CT analysis sustained TBI and were unfavorable outcomes) Age Rotterdam CT
models to predict ~ admitted to an urban <18 Admitted to hospital GCS
adverse outcomes  teaching hospital between for TBI and underwent
in pediatric TBI 2006 and 2013 heat CT within 24 h of
patients. admission Exclusion
criteria: fatality on arrival,
no head CT within 24 h
Follow-up at 6 months
post-discharge Patients lost
to follow-up with favorable
GCS at admission were
assigned a GOS of 5
(Contd...
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Table 1: (Continued).

Study Outline Design/Characteristics TBI Population ML Models Comparative
Characteristics Regression
Models
Kayhanian Used serum Retrospective study of n=94 Age <16 (mean SVM: Focused LR: Focused
et al. 2019 metabolic markers  pediatric patients admitted to  7.3) Admitted to hospital ~ (only used (only used pH,
to program a a UK hospital for TBI from for severe TBI Inclusion pH, lactate, lactate, and
ML algorithm to 2009 to 2013 criteria: confirmed TBI and glucose) glucose) Inclusive
predict unfavorable by CT or MR], admission  Inclusive (used all blood
GOS in pediatric to the PICU after 24 h, (used all blood variables)
TBI patients invasive monitoring of ICP  variables)
or arteriovenous pressure
Follow-up at 6 months
post-injury Assessed for
GOS
Donald etal. ~ Use of blood Prospective phased trial of Training set n=104 BANN N/A Training
20194 pressure values patients diagnosed with TBI ~ (2003-2005) Phase I n=30 sample used
to develop a across multiple centers in (2009-2010) Phase IT
predictive model Europe between 2003 and Stage I n=13 (2010-2011)
for hypotensive 2011 Phase II Stage II n=36
events in TBI (2010-2011) Final analysis
patients in the group n=69 (75% male)
neuro-ICU Exclusion criteria: <24 h
continuous monitoring,
missing or incomplete
data set Injury types:
fall (30), car accident
(25), pedestrian (4),
unknown (4), sports
related (3), assault (3)
Bonds et al. Use of continuous ~ Retrospective single center n=132 adult patients NNR Regression tree
2015 VS for the study of patients admitted to ~ Mean age: 40.2 (SD: 18.09) Simple shifting
prediction of Level 1 trauma center with 96.97% blunt force trauma estimation
secondary insult severe TBI GCS >9 between Mortality: 18 (13.63%)
following severe 2008 and 2010
TBI
Shietal 2013  Use of Retrospective database study  n=16956 adult patients ANN LR
retrospective of TBI patients undergoing Mean age 50.8 (SD 21.4)
hospital data neurosurgical treatment 73.5% male Mortality
and patient between 1998 and 2009 in rate 26.8% Exclusion
comorbidities Taiwan. criteria: multiple
to program a TBI procedures,
ML algorithm cerebrovascular disease,
to predict in- incomplete data, age under
hospital mortality 18 years old
of neurosurgical
patients post-TBI
Rizoli et al. Use of ML Retrospective analysis of n=1089 Ages 15+ Blunt DT ROC curves
2016 model to predict data from multicenter, trauma and Severe TBI
unfavorable double blind, randomized, Inclusion: GCS < 8 upon
outcomes at 6 and placebo-controlled trial ~ admission Exclusion
months post-TBI ~ conducted between 2006 and  criteria: mortality within
2009 24 h of ED admission,
evidence of hemorrhagic
shock
(Contd...
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Table 1: (Continued).

Study Outline Design/Characteristics TBI Population ML Models Comparative
Characteristics Regression
Models
Gravesteijn Use of standard Retrospective database IMPACT-II n=11,002 SVM RF GBM LR Lasso
et al. 2020 predictors for study of TBI patients in the (median age 31) ANN Regression Ridge
outcome of TBI Netherlands between 1984 to  Mortality rate 32% Regression
to program ML 2004 and 2014 to 2018. Unfavorable outcome
on a large scale rate 48% CENTER-TBI
in comparison n=1375 (median age
to traditional 48) Mortality rate 29%
regression Unfavorable outcome
rate 54%
Zelnick et al.  Secondary analysis A secondary analysis of 2 cohorts, 1 cohort with Model 1: 3 LR Models/le
2014 of a multi-center, data from a multi-center, TBI, 1 w/hypovolemic included Cessie-van
randomized, double-blind, randomized, shock. n=1282 enrolled discharge GOSE  Houwelingen
placebo controlled  and placebo-controlled patients w/blunt trauma, only covariate goodness-of-
TBI clinical trial to  trial conducted by ROC a prehospital GCS Model 2 fit test Injury
evaluate patterns of and administered under score of <8 and without included severity score
missing outcome exception from informed hypovolemic shock. discharge GOSE  (range, 0-75)
data, changes in consent. Thirteen regional Patients 215 years old with  and length of Maximum head
functional status clinical centers, 75 EMS blunt trauma and an out-  hospital stay, abbreviated
between hospital agencies, and 53 hospitals in ~ of-hospital GCS score <8  both thought injury severity
discharge and 6 the US and Canada between ~ were randomized to receive to be clinically score (range,
months. Three May 2006 and May 2009 hypertonic saline/dextran,  important 0-6) # of days
prognostic models hypertonic saline, or predictors alive out of ICU
to predict long- normal saline in the out- of long-term through day 28.
term functional of-hospital setting. functional
outcome from outcome.
covariates Model3:included
available at multiple
hospital discharge covariates
(functional selected through
measures, exhaustive
demographics, search using
and injury AIC values
characteristics). using nine
predictors (Age,
sex, discharge
disposition,
discharge
disability rating
scale (range,
0-30), discharge
GOSE (range,
1-8), length of
hospital stay
Rajetal. 2014 Comparison of a Retrospective database study ~ n=1625 (median age APACHE II LR
simple two-variable of TBI patients admitted to 55) Overall 6-month SAPS IT SOFA
predictive model the ICU in Finland from mortality 33% Exclusion SOFA adjusted)
to more in-depth 2003 to 2013 criteria: age <16 years
programs to predict old, non-neurosurgical
mortality in adult hospital, admission GCS
moderate-severe >13, missing data, missing
TBI patients outcome 64% of 6-month
mortality occurred during
(Contd...
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Table 1: (Continued).
Study Outline Design/Characteristics TBI Population ML Models Comparative
Characteristics Regression
Models

hospital stay Split into two
cohorts for development
and validation
Development n=844
(median age 56, mortality
33%) Validation n=781
(median age 54,

mortality 34%)

ML: Machine learning, VS: Vital signs, LMICs: Low-middle-income countries, TBI: Traumatic brain injury, ICU: Intensive care unit, GCS: Glasgow

coma scale, GOS: Glasgow outcome scale, EMS: Emergency medical service, BANN: Bayesian artificial neural network, CT: Computed tomography,

ED: Emergency department, LOS: Length of stay, MVA: Motor vehicle accident, SD: Standard deviation, APACHE II: Acute physiology and chronic health
evaluation II, SAPS II: Simplified acute physiology score II, SOFA: Sequential organ failure assessment, ICP: Intracranial pressure, MAP: Mean arterial
pressure, CPP: Cerebral perfusion pressure, LASSO: Least absolute shrinkage and selection operator, SVM: Support vector machine, SVR: Support vector
machine, NB: Naive Bayes, ANN: Artificial neural networks, DT: Decision tree, NNR: Nearest neighbor regression, RF: Random forest, GBM: Gradient
boosting machine, AIC: Akaike information criterion, GOSE: Glasgow outcome scale extended, LR: Logistic regression, ROC: Receiver operating
characteristic, PICU: Pediatric intensive care unit, KNN: K nearest neighbor, N/A/NA: Not applicable, n: Number of patients

Surgical Neurology International « 2023 « 14(262)

Study Events Total Proportion 95%-Cl Weight
Abujaber et al. 2020 203.000 1820 L 013 [0.11,0.14] 11.2%
Bonds et al. 2015 18.000 132 ] 014 [0.08;0.19] 10.9%
Feng etal. 2019 14000 11/ —®— 012 [0.06:0.18] 10.9%
Gravesieijn et al 2020  5341.000 11002 = 054 [0.53;055] 112%
Hale etal 2018 32000 565 = 006 [0.04;008] 11.2%
RajR et al. 2014 536.250 1625 ! E 3 032 [0.31,0.35] 11.2%
Raj &t al. 2019 92000 472 - 019  [0.16,023] 11.1%
Matsuo e al. 2019 61.018 222 S 026  [0.21,0.32] 11.0%
Shictal. 2013 4544000 16956 L 027 (026027 11.2%
Random effects model 32121 ——— 023  [0.11;0.36] 100.0%
Heterogenenty: 1* = 100%, < = 0.0338, p = 0 TR
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Figure 3: The forest (a) and funnels (b) plots of mortality data extracted from studies in which

mortality was predicted using machine learning.
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Figure 4: (a-d) Meta-analysis of diagnostic accuracy with
hierarchical modeling for machine learning models across the
selected studies. ANN: Artificial neural network, SVM: Support
vector machine, DT: Decision tree, LR: Logistic regression.

regularized least squares and linear regression to 9 ML models,
the models consistently demonstrated an AUC above 0.80.
Naive Bayes (NB) had the highest predictive performance
model for 14-day mortality prediction with an AUC of 0.906.
In-hospital mortality prediction was best predicted by random
forest (RF) with an AUC value of 0.838.) In a separate study,
NB was again used for mortality prediction with an accuracy of
>90% in the training set.*®) ANN had the highest AUC (0.968)
with a prediction sensitivity of 80.59%. In the test set, ANN
remained the highest predictor of mortality followed by the
additional three models used in the study: SVR, NB, and DT

30-day mortality after TBI

Two custom models were developed to predict the 30-day
mortality of TBI patients using commonplace neurointensive
care unit measurements as predictive variables.* ML model
variables include a combination of intracranial pressure
(ICP), mean arterial pressure (MAP), and cerebral perfusion
pressure (CPP) all measured in 5 min medians over 5 days.
The second model included ICP, CPP, and MAP and GCS.
Model 1 (ICP-CPP-MAP) had an AUC that increased
from 67% to 81% from day 1 to day 5. False positives and
false negatives also influenced mortality prediction. There

were 18 false positives potentially caused by decompressive
craniectomy, two additional false positives, and nine false
negatives on mortality prediction. The second model
(ICP-CPP-MAP-GCS) had an AUC that increased from
72% to 84% from day 1 to day 5, with 1 false positive and
4 false negatives on mortality prediction.®" Another
study performed a secondary analysis of a multi-center,
randomized, placebo-controlled clinical trial of TBI patients
to evaluate patterns of missing outcome data, and changes in
functional status between hospital discharge and 6 months
follow-up."*! Three novel prognostic models were developed
to predict long-term functional outcome from covariates
available at hospital discharge. The ML predictive variables
included the Glasgow outcome scale extended (eGOS) and
the disability rating scale (DRS). An adverse outcome was
defined as eGOS less than or equal to four. In both models,
discharge DRS was used. ML model results included missing
data for poor outcomes for 15% of enrolled patients. The
model performance was excellent (C-statistic between 0.88
and 0.91) for all three prognostic models and calibration was
adequate for two models (P = 0.22 and 0.85). A two-variable
predictive model was compared to more in-depth programs
to predict mortality in adult moderate-severe TBI patients in
a retrospective database study.*” Notably, 64% of 6-month
mortality occurred during hospital stay.*”! Data were split
for development and validation. ML models used to predict
mortality were Acute Physiology and Chronic Health
Evaluation II (APACHE II), Simplified Acute Physiology
Score II (SAPS II), Sequential Organ Failure Assessment
(SOFA), and SOFA Adjusted. The reference model, LR,
scored an AUC of 0.75 in development. During validation,
SAPS II and APACHE II scored higher than LR, whereas
SOFA scored AUC of 0.68. The AUC of the SAPS II was
0.80 (95% CI 0.77-0.83).5

Unfavorable outcomes at 6 months

DT was used as the ML model to predict unfavorable
outcomes at 6 months post-TBL.*”! The comparative model
was ROC curves. ML predictive variables included various
vital signs, pupil reactivity, AIS severity, initial CT scan,
and Marshall score (scale of 1-6). When considering eGOS
6 months post-injury, an acceptable outcome was labeled as
an eGOS score of greater than four indicating moderate or
no disability. A poor outcome indicated a severe disability
or death, a score of four or less. The proposed model had a
specificity of 62.5%, which was higher than the core model
(47.7%) and extended model (44.3%).5” The proposed model
had the highest positive predictive value of 74.0% and the
extended model had a negative predictive value of 80.4%. The
sensitivity was also higher in the extended model (92.7%)
when compared to the proposed model (72.3%) and core
model (83.8%)."”' ML and LR were used to assess mortality
as an unfavorable outcome using the GOS score of <4."") ML
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predictive values include vital signs, GCS, pupillary response,
and CT Classification. Prediction of mortality was measured
using internal-external cross-validation, with all regressions
and ML models scoring 0.81 except RF, which scored 0.79.
The cross-validation of unfavorable outcomes included all
regression models scoring 0.81 and all ML models scoring
0.80 except RF, which scored 0.79.% Various ML models
were used to predict unfavorable outcomes and mortality in
an additional study.*”! Unfavorable outcomes were defined as
a GOS score of 1-3 (death = 1, persistent vegetative state = 2,
and severe disability = 3). The RF ML model was the most
effective at predicting poor outcomes (100% sensitivity,
72.3% specificity, 91.7% accuracy, and 0.895 AUC). Ridge
regression (RR) was most effective at predicting mortality
(88.4% sensitivity, 88.2% specificity, 88.6% accuracy, and
0.875 AUC).P"!

Prediction of outcomes in the pediatric population

ANN was compared to traditional head computed
tomography (CT) analysis (i.e., Marshall CT, Helsinki CT,
and Rotterdam CT) and GCS to predict adverse outcomes
and mortality in pediatric TBI patients.'®! ML predictive
variables included GCS, serum glucose, serum hemoglobin,
pupillary response, and admission head CT results: subdural
hematoma, intracranial hemorrhage, intraventricular
hemorrhage, cistern integrity, and midline shift. The AUC
using ANN was 0.9462 when predicting mortality and
adverse outcomes, defined as a 6-month GOS <3.%*! The CT
results ranged from an AUC of 0.781-0.838. The GCS had an
AUC of 0.920." An additional study used serum metabolic
markers to program an ML algorithm to predict unfavorable
GOS in pediatric TBI patients with both SVM and LR.?"
Both models were programmed as both a focused (only
used pH, lactate, and glucose) and an inclusive algorithm
using serum metabolic markers for prediction. AUC was not
calculated for SVM. When predicting favorable outcomes,
SVM scored a specificity of 0.99 and sensitivity of 0.80 using
the focused model. The inclusive model for SVM had higher
specificity with a value of 1 and the sensitivity was lower with
a value of 0.63. LR predicted favorable outcomes using the
focused model with an AUC of 0.83, specificity of 0.99, and
sensitivity of 0.75.%! The LR inclusive model scored higher
across AUC, specificity, and sensitivity.

Prediction of secondary insults: ICP, hypotensive events,
and shock index (SI)

Two studies used vital signs as outcome variables for ML.
Bayesian Artificial Neural Network (BANN) was used to
assess blood pressure values to develop a predictive model
for hypotensive events in TBI patients in the neuro-intensive
care unit.””! Hypotensive events were described as an SBP
<90 mmHg and MAP <70 mmHg sustained for at least

Surgical Neurology International « 2023 « 14(262) | 16

5 min. A hypotensive event ceases when blood pressure
returns to a level above threshold/baseline for at least 5 min.
1431 Vital signs were also used for the prediction of secondary
insult following severe TBL! Using the Nearest Neighbor
Regression (NNR), ML model predictive variables such as
SI and ICP were assessed.” Both studies assessed HR, SBP,
and MAP. AUC values for BANN were as follows: test set
0.74, false-positive correction 0.68, without false-positive
correction 0.63. Finally, the target sensitivity of >30% and
specificity of >90% were achieved.!*” Using NNR, the other
study found good agreement in predicting actual ICP with
a bias of 0.02 (+2 standard deviation [SD] = 4 mm Hg) for
the subsequent 5 min and —0.02 (+2 SD = 10 mm Hg) for the
subsequent 2 h. The patient’s vital signs were continuously
collected on 132 adult patients over a minimum of 3 h/patient
(5,466 h total; 65,600 data points).”) However, ANN was the
most effective model for the prediction of hypotensive events
in critical care patients.!"!

DISCUSSION

In the present systematic review and meta-analysis, we
evaluate the predictive power of various ML algorithms
for unfavorable outcomes and mortality in patients with
TBI. Several studies have demonstrated the utility of ML
in medicine; however, most TBI studies were focused on
diagnosis and classification.['73**4 The 15 studies included
in this review sought to expand the use of ML in TBI
patients with a focus on mortality and unfavorable outcome
prediction. ML algorithms encountering in this review
including SVM, ANN, RF, NNR, and NB.

TBI remains one of the leading causes of death and disability
throughout the world.l'***! It is estimated that as many as
50 million people experience TBI each year.!'*1%1%2] TBI is
a trimodal class of injury, affecting young children (falls),
adults (motor vehicle accidents), and the elderly (falls) at
high rates compared to other injuries.!">**3"47I TBI can result
in multiple deficits, ranging from motor to sensory, and
often affects cognition and memory.***! Causes of brain
damage can also include hemorrhagic infarct, cerebral
edema, and crush injuries to the brain and brainstem.?")
Clinical practice has also shown that immediate treatment
is dependent on clear and accurate neuroimaging, and ML
algorithms have been designed to diagnose and classify TBI
using radiological findings.**) Depending on the severity of
the injury, deficits from TBI can be permanent, or require
intensive care and extensive rehabilitation.?***'*"l However,
neurointensive care and rehabilitation are expensive, time-
consuming, and require significant effort from both the
patient and their caregivers. In addition, TBI mortality is
high, reaching up to 30-40% in severe TBI, and lifelong

deficits are reported in approximately 60% of patients who
recover‘[5,6,11,13,24—26,29,47]
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ML algorithms including RE RR, and NB were all identified
as effective prediction models for the unfavorable outcome or
in-hospital mortality in TBI patients.!*?) SVM was identified
in multiple studies as more effective than LR in predicting
mortality and unfavorable outcome using GOS.>1*2!
Interestingly, using the NNR model, ICP fluctuations were
more effectively predicted compared to traditional LR
models.” ANN outperformed LR and other ML models in the
prediction of mortality in moderate and severe TBI patients.
o3l A large-scale database study identified no difference in
the predictive power of both SVM and ANN; however, the
authors did hypothesize that the predictive power identified
in other studies may be population-dependent.!*”’

The use of scoring algorithms SAPS II, APACHE II, and
SOFA was found to have increased predictive power of in-
hospital mortality over LR, but no significant difference with
overall 6-month mortality.’” These results indicate that the
benefit of ML in the prediction of outcomes may be limited
to short-term complications such as in-hospital mortality
and major complications. However, this information is still
valuable when making clinical decisions surrounding how to
treat these patients. In addition, these models outperformed
the predictive power of the IMPACT II TBI database.
However, these models found little influence from the input
of MAP values. Furthermore, the inclusion of GCS improved
the accuracy.®¥ The C-statistic of models for prediction
of eGOS at 6 months after discharge improved with the
addition of new input variables. Discharge eGOS was used
as a baseline, and with the addition of hospital length of stay
as well as age, predictive power improved.? These findings
lend further support to the importance of age and admission
GCS in TBI prognosis.

The heterogeneity of input variables between ML models
and studies limits the potential for cross-comparison.
Those studies that had compatible methodologies were
included in a small meta-analysis in an attempt to draw a
quantitative conclusion regarding which model best predicts
mortality. However, with the heterogeneity of input variables,
inconsistency of outcome measurement, and variable criteria
for TBI classification, this cannot be generalized to all TBI
mortality predictions. A further prospective study with an
increased sample size is necessary to definitively state, in
which ML model is objectively most effective at mortality
prediction. Furthermore, future studies should seek to
standardize the necessary input variables for the operation
of ML models. There is great inconsistency among the
presented studies in the selection of input variables, with
some studies only utilizing a few simple serum studies.
While convenient for the provider, this limited input data
may fail to capture a complete picture of the patient’s current
condition. On the other hand, multiple studies employ a
myriad of input variables including information that may

not be easily accessible in an emergent situation, such as
detailed radiological findings and hospital staffing statistics.
(21.242627) ‘While many of these variables are employed for
training the model, in practice, this level of detail is not
feasible in emergent cases where these models could be most
beneficial, such as emergency room triage. Based on the
common variables between the analyzed studies and their
individual analysis of which variables were most impactful,
we would recommend studying the efficacy of models when
programmed with patient age, admission GCS, serum
lactate, and serum glucose.'?? While multiple studies
within the review employed blood pressure measurements
for programming, these were not found to be significant
prognostic factors when programming the ML models to
predict adverse events.!'”)

CONCLUSION

TBI continues to be one of the leading causes of death and
disability worldwide. This study reiterates the clinical utility
of ML as an adjunct in patients with TBIL. The use of ML to
predict outcomes following TBI is entering clinical practice at
an increasing rate and the present study reinforces the utility
of these models. Using these models, simple admission data
can be used to accurately predict the prognosis for individual
patients. This can ultimately enhance the clinical decision-
making process in terms of whether surgical intervention,
medical management, or palliative care is most appropriate.
There was a lack of consistency among the investigated studies
with the selection of input variables used for predictive
models; as a result, some models simply had more data to
utilize for prediction, making inter-study comparisons more
difficult. Further, research should utilize the core prediction
variables identified in this review and apply these markers
across a wide range of models and in multiple clinical
settings. Given that the described models have demonstrated
a robust ability to predict outcomes, there exists a significant
degree of untapped potential in implementing ML to aid in
neurosurgical decision-making. It is conceivable that these
tools can be further expanded to guide and optimize patient
treatment and perhaps alert neuro-care providers of patients
at high risk of early neurological deterioration. Despite the
increased use and predictive power of ML, it remains to be
seen whether clinicians will routinely incorporate these
models to guide clinical care following TBI.
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