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Abstract

Drug resistance and disease progression are common in multiple myeloma (MM) patients, 

underscoring the need for new therapeutic combinations. A high-throughput drug screen in 47 

MM cell lines and in silico Huber robust regression analysis of drug responses revealed 43 

potentially synergistic combinations. We hypothesized that effective combinations would reduce 

MYC expression and enhance p16 activity. Six combinations cooperatively reduced MYC protein, 

frequently over-expressed in MM and also cooperatively increased p16 expression, frequently 

downregulated in MM. Synergistic reductions in viability were observed with top combinations 

in proteasome inhibitor-resistant and sensitive MM cell lines, while sparing fibroblasts. Three 

combinations significantly prolonged survival in a transplantable Ras-driven allograft model 

of advanced MM closely recapitulating high-risk/refractory myeloma in humans and reduced 

viability of ex vivo treated patient cells. Common genetic pathways similarly downregulated by 

these combinations promoted cell cycle transition, whereas pathways most upregulated were 

involved in TGFβ/SMAD signaling. These preclinical data identify potentially useful drug 

combinations for evaluation in drug-resistant MM and reveal potential mechanisms of combined 

drug sensitivity.
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1. Introduction

Multiple myeloma (MM), a neoplastic clonal proliferation of plasma cells, is one of 

the most common hematologic malignancies1,2, with an estimated 35,730 new cases 

and 15,590 deaths in the United States for 2023.3 Development of therapeutics such as 

proteasome inhibitors (PI), immunomodulatory drugs, monoclonal antibodies, chimeric 

antigen receptor (CAR) T-cell therapy, bispecific T-cell engagers (BiTEs), and autologous 

stem cell transplantation, has resulted in prolonged survival of MM patients.1,2,4-6 However, 

no therapy thus far is curative, and relapsed and/or refractory multiple myeloma (RRMM) 

eventually develops.1,2 Thus, combining targeted agents has become important in treating 

RRMM and oncology in general.7 Combining drugs circumvents or slows tumor resistance 

by utilizing synergy, wherein the effect of two or more drugs is greater than the sum of 

individual drug effects. Furthermore, identifying mechanisms of molecular synergy provides 

a biologic rationale for proposed combinations and is essential for predicting clinical 

responses.8
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Previous research demonstrated efficacy and drug synergy for the combination of mTOR 

inhibitors (mTORi) and histone deacetylase inhibitors (HDACi) in human MM cell lines, a 

diverse set of cancer cell types (NCI60), and MM cells isolated from patients.7,8 A proposed 

mechanism of action of synergy in the combination – degradation of the transcription factor 

MYC – was elucidated via a biologically integrated, network-based approach using MM cell 

lines and patient datasets.6 MYC activation is found in both MM and smoldering myeloma 

(SMM) patients and is associated with disease progression.10-15 Additionally, NRAS and 

KRAS are frequently mutated in both SMM and MM, associated with disease progression, 

and increase the stabilization of MYC via phosphorylation of serine 62.8,10,16 Furthermore, 

retroviral constructs overexpressing MYC alone or RAS alone were not very effective 

in inducing mouse plasma cell tumors compared with constructs that overexpressed both 

MYC and RAS which produced tumors in less than 30 days.17,18 Targeting MYC directly, 

unfortunately, has remained a key challenge in oncology due to large protein-protein 

interaction interfaces, lack of deep protein pockets, and nuclear localization.19,20 Finding 

drug combinations that indirectly target MYC, while acting upon their own respective direct 

targets, serves as a useful alternative strategy and provides additional opportunities for 

synergy.15,21 Additionally, loss of function of cell cycle transition checkpoint control gene 

p16 can result in uncontrolled cell proliferation, invasion, and metastasis in cancers, and 

inactivation contributes to disease progression.22-24 The ability to cooperatively increase 

p16 activity, therefore, was proposed as useful additional screening measure for top drug 

combinations.

We employed an agnostic discovery approach to identify drug combinations targeting 

MM by utilizing a high-throughput drug screen of a compound library of ~1900 small 

molecules25 in 47 MM cell lines and in silico regression analysis to identify drug 

combinations predicted to reduce MM viability. Considering the importance of MYC 

in MM progression, we identified candidate tool combinations that cooperatively reduce 

MYC protein expression and increase p16 expression, while synergistically reducing the 

viability of both proteasome inhibitor (PI) resistant and PI sensitive MM cell lines in 
vitro. We then evaluated the efficacy of our top drug combinations in prolonging viability 

in a transplantable Ras-driven allograft model of advanced MM that closely recapitulates 

high-risk/refractory myeloma in humans.26,27 The ability of the combinations to reduce the 

viability of patient cells ex vivo was also evaluated. Finally, gene set overrepresentation 

analysis of MM cells treated with the combinations revealed commonly affected pathways. 

Through expansion of the in vitro findings, extension to unique in vivo models, and 

investigation into the mechanisms of synergistic drug responses, this study provides strong 

preclinical rationale for further evaluation of novel drug combinations in treating MM.

2. Materials and methods

A high-throughput drug screen25 was employed to identify single agents from a pool of 

1900 compounds that were effective, at a concentration of 2 μM or less, in reducing 

the viability of at least 25 of the 47 multiple myeloma (MM) cell lines tested. Drugs 

that were both effective and had different mechanisms of action were paired for Huber 

robust regression analysis. The 43 selected combinations were highly correlated in their 

responses (r2 value ≥ 0.5). These combinations were tested (Western blot) for their ability 
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to cooperatively reduce MYC protein expression relative to single agent and/or control and 

increase protein expression of CDKN2A (p16). Of the six combinations that reduced MYC 

and increased p16 protein expression, three (CDKi/HDACi, TOP2Ai/AURKAi, TOP2Ai/

HSP90i) were selected for further efficacy evaluation via testing for their ability to reduce 

MYC and increase p16 protein expression in cell lines inherently resistant and sensitive 

to the drugs used in the original high-throughput screen (based on mean IC50 for all 

1920 drugs), as well as cell lines with acquired resistance to commonly used therapies 

against MM (proteasome inhibitor (oprozomib), corticosteroid (dexamethasone), and an 

anthracycline (doxorubicin)). Additionally, combinations were evaluated for their ability 

to cooperatively reduce viability of L363 MM cells in monoculture or co-cultured with 

human bone marrow HS-5 cells. Further, efficacy of the combinations was evaluated in 
vivo in sublethally irradiated C57BL/6J mice injected intravenously with murine Vk*MYC; 

NrasLSL Q61R/+; IgG1-Cre (VQ) cells harvested from bone marrow of donor mice, and ex 
vivo in CD138+ and CD138− MM cells obtained fresh from bone marrow biopsies of 

human SMM patients. Finally, functional enrichment analysis was used to find common 

genetic pathways similarly affected in L363 MM cells treated with the drug combinations. 

Detailed experimental methods, as well as functional enrichment analysis methods, are 
available in the supplemental methods section.

3. Results

3.1 Drug screen reveals combinations that cooperatively target MYC and CDKN2A (p16) 
and reduce viability of MM cells

Drugs from our high-throughput screen were selected for activity based on the following 

criteria: single agent dose-response curve class of −1.1 (complete response), IC50 < 2.0 μM, 

and activity in at least 25 of the 47 MM cell lines tested (Fig.1, Table S1). In addition, drugs 

paired for regression analysis were selected as having different mechanisms of action, i.e., 

not targeting the same pathway. Huber robust regression analysis (Fig.S1A) of each drug 

versus every other drug was utilized to generate a Pearson correlation coefficient (r2) for 

each drug pair. Forty-three combinations were noted with r2 values of at least 0.5 (Table 1).

The top 43 combinations of tool compounds were subsequently evaluated for cooperative 

reduction of MYC protein expression in L363 MM cells via western blot (WB) assay when 

treated at their IC50 doses for 24 hours. Ten of the 43 combinations cooperatively reduced 

expression of MYC (Table 2), and six of the ten combinations also increased p16 expression 

(Table 2, Fig. S1B-G). Representative MYC and p16 western blots are shown for one of 

the four combinations which reduced MYC protein but did not increase p16 expression 

compared to single agent in Fig. S1H.

Compounds of the same drug classes were selected for further testing of the six 

combinations including drugs already approved to treat MM or other hematologic 

malignancies and/or drugs currently in clinical trials to treat MM, as well as novel 

combinations not yet investigated in treating MM. Out of the six combinations that 

simultaneously reduced MYC and increased p16 protein expression, three combinations 

were found to be synergistic in their ability to inhibit myeloma growth (Fig.2A-F, Fig.S2E-

G). Four additional drug combinations were either additive (TUBBi + PLK1i; CDK1i + 
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HSP90i) or antagonistic (TUBBi + PLK1i; MCL1i + EGFRi) in their effect on myeloma 

cells in vitro, Fig.S2A-D). Notably, the MCL1i + EGFRi combination that decreased 

MYC, but not p16, expression (Fig.S1H) was the most antagonistic (Fig.S2D). The three 

synergistic combinations were the cyclin dependent kinase inhibitor (CDKi) dinaciclib + the 

histone deacetylase inhibitor (HDACi) entinostat and a topoisomerase II inhibitor (TOP2Ai) 

doxorubicin combined with either the aurora kinase A inhibitor (AURKAi) alisertib or 

heat shock protein 90 inhibitor (HSP90i) SNX-2112. Increased phosphorylation of MYC 

at serine 62 contributes to MYC stabilization, while increased phosphorylation of MYC at 

threonine 58 is known to destabilize MYC.8,16 Treatment with these three combinations 

did not increase MYC stability in L363 cells, nor did the combinations destabilize MYC, 

as evidenced by WB of phosphorylated MYC at serine 62 and threonine 58, respectively 

(Fig.S1I).

3.2 Evaluation of synergy of top drug combinations

Dose-response curves were generated for the top 3 drug combinations in L363 MM 

cells, treated for 48 hours with each drug singly or in combination at a 1:1 molar ratio 

(Fig.2A-C). All three combinations synergistically reduced the viability of L363 MM 

cells, as determined by Chou-Talalay combination indices (CI) less than 1.28 An 8x8 dose 

matrix combination response screen of each of the top three combinations at 7 different 

concentrations, and all iterations thereof, was performed in L363 MM cells to ascertain 

the activity and synergy across a spectrum of doses. Heatmaps (Fig. 2D-F) indicate the 

percent inhibition of treated cells vs. vehicle control after 48 hours. For each of the 

top combinations, the summary synergy scores are indicative of synergistic interaction 

between the drugs (average HSA score >10) and synergy was also achieved at a lower 

concentration than the half maximal inhibitory concentration (IC50) of each individual 

agent, indicating lower concentrations of each drug may be used in combination to generate 

a pharmacologically achievable reduction in MM viability. Surface plots of the excess 

inhibition of highest single agent (HSA) are shown in Fig.S2E-G, with the CDKi/HDACi 

combination achieving the highest average HSA score of 15.

3.3 The top drug combinations reduce MYC expression and increase p16 expression in 
MM cell lines, regardless of inherent resistance or sensitivity

The 47 cell lines were ranked for their overall sensitivity/resistance based on the mean IC50 

for all 1920 compounds in the initial high-throughput screen (Table 3). The ability of the 

top drug combinations (CDKi/HDACi, TOP2Ai/AURKAi, and TOP2Ai/HSP90i) to reduce 

MYC protein while increasing p16 was evaluated in cell lines inherently more resistant 

(Karpas417, RPMI8226, LP1), as well as cell lines inherently more sensitive (INA6, JIM1, 

L363), to the compounds from the high-throughput drug screen (Fig.2G-H). Of the three 

top combinations, CDKi/HDACi was the most effective overall at reducing MYC protein, 

increasing p16, and inducing apoptosis (as indicated by cleavage of caspase 3) in all three 

inherently more sensitive cell lines and in two (Karpas-417, LP1) of the three resistant cell 

lines.
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3.4 Evaluation of microenvironment effects of drug combinations and in vitro tolerability

To test if the drug combinations retain activity in a co-culture system simulating the 

protective interaction of MM cells within the tumor microenvironment, L363 MM cells were 

treated with increasing doses of each drug treated singly or in combination at a 1:1 molar 

ratio for 48 hours with a feeder layer of immortalized human HS-5 bone marrow stromal 

cells (BMSC) – (Fig.3A-C). For the CDKi/HDACi and TOP2Ai/AURKAi combinations, 

although co-culture with BMSCs provided some protection of tumor cells when treated 

with single agents, the protection effect was partially overcome by combination treatment 

(Fig.3A, B). The TOP2Ai/HSP90i combination did not reduce MM viability more than 

single agent HSP90i (SNX-2112) treatment alone (Fig.3C). In dose response cell viability 

assays of H1634 non-neoplastic human fibroblasts and L363 MM cells treated at escalating 

doses of each of the combinations for 48 hours, the IC50 in H1634 cells is either much 

higher than in L363 MM cells or undetermined as an IC50 couldn’t be established (Fig.S2H-

J). For example, the IC50 for the CDKi/HDACi combination of dinaciclib and entinostat 

is 4.9 nM in L363 cells, while the IC50 for the same combination is 335.0 nM in H1634 

fibroblasts. The marked increase in combination IC50 in non-neoplastic cells is suggestive 

of a favorable therapeutic window for combination treatment.

3.5 Drug combinations are synergistic in MM cells with induced resistance to common 
therapies

The ability of the top combinations to synergistically reduce the viability of MM cells with 

acquired resistance was assessed in three drug resistant cell line model pairs (Fig.3D). In 

these models, LP1, MM.1.44 (commonly referred to as MM.1), or RPMI-8226 MM cells 

developed resistance to common treatments for MM via prolonged incubation with either the 

PI oprozomib, the corticosteroid dexamethasone, or the TOP2Ai doxorubicin, respectively, 

for up to 24 weeks.29,30 Resistance to respective treatments was confirmed with cell viability 

dose response curves for sensitive vs. resistant MM cell lines treated with increased doses 

of each agent (LP1-Parental and LP1-OpzR PI resistant with oprozomib; MM.1.S and 

MM.1R corticosteroid resistant with dexamethasone; RPMI-8226-Parental and RPMI-8226-

Dox40 TOP2Ai resistant with doxorubicin) – (Fig.S2K-M). IC50 concentrations for each 

combination in each parental and resistant cell line are shown in Table S2. As shown in 

the heat-map depicting CI scores for the parental MM cell lines and their drug-resistant 

counterparts, all three combinations were synergistic in all of the cell lines (CI<1) regardless 

of sensitivity or induced resistance to indicated agents (Fig.3D). The CDKi/HDACi 

combination of dinaciclib and entinostat had greatest synergy in LP1-Parental and PI-

resistant cells, as well as in dexamethasone-sensitive MM.1.S and dexamethasone-resistant 

MM.1.R cells. The TOP2Ai-resistant RPMI-8226-Dox40 cell line was still particularly 

resistant to combination treatments compared to the RPMI-8226-Parental MM cells.

3.6 Comparison of top drug combinations in a novel allograft mouse model (VQ) of MM

Assessments of the in vivo activity of the drug combinations was made in a 16-week 

efficacy study in C57BL/6J mice sublethally irradiated then injected IC with murine 

Vk*MYC; Nras LSL Q61R/+; IgG1-Cre (VQ) tumor cells harvested from bone marrow 

of donor mice (Fig.4A). 26,27 After 6-8 weeks, serum M-spikes, indicating an increase 
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in gamma immunoglobulin on serum protein electrophoresis, were evident in VQ mice 

(Fig.4A; Fig.S3A). VQ cells completely obliterated normal hematopoietic cells within 

sternal bone marrow (Fig.4B-C) and even induced bony lysis of the cortex (Fig.S3B, 

bony lesion), similar to what is observed in the bone and marrow of humans affected 

by MM. Treatment with the top drug combinations, and mTORi/HDACi (rapamycin and 

entinostat), commenced when M-spikes were first detected in mice (Fig.4D). Survival of 

mice injected with VQ cells and treated with the combinations was significantly prolonged 

compared to control mice and was also slightly longer compared to the combination of 

rapamycin (mTORi) and entinostat (HDACi).8,9 Further, the mean M-spike percentage in 

treated mice remained lower than that of control mice until the final weeks of treatment 

(Fig.4E). Additionally, CDK, TOP2A, and HSP90 inhibitors, along with the HDAC inhibitor 

quisinostat, effectively reduced VQ cell line (4935) viability at 100 nM and 1000 nM, 

while AURKA and other HDAC inhibitors minimally or moderately decreased viability at 

one or both concentrations (Table S3). Although all combinations reduced Ki67 positive 

nuclei in a subset of splenic metastases (Fig.S3D-H), the reduction was only significant 

in the CDKi/HDACi group. In agreement with the pSMAD3 data seen in L363 cells, the 

only combination leading to increases in pSMAD3 signaling in VQ splenic metastases was 

that of doxorubicin and alisertib (Fig.S4B-F). None of the evaluated drug combinations 

significantly reduced the body weights in treated mice compared to those treated with 

vehicle (Fig.S3C), and there was no microscopic evidence of combination-related toxicity in 

evaluated tissues.

3.7 Drug combinations are effective at selectively reducing the viability of human CD138+ 
MM cells ex vivo

The capability of the combinations to selectively reduce the viability of MM cells was 

evaluated in bone marrow biopsy samples obtained from patients with confirmed smoldering 

multiple myeloma (SMM). Cells expressing the CD138 surface maker (plasma cells) or cells 

negative for CD138 (non-plasma cells) from human SMM biopsies were treated with the 

combinations of dinaciclib (10 nM) and entinostat (500 nM), doxorubicin (225 nM) and 

alisertib (2 uM), or doxorubicin (225 nM) and SNX-2112 (50 nM) for 48 hours; viability 

was compared to that of control CD138 positive or CD138 negative cells treated with 

DMSO) (n = 3) (Fig.4F). Overall, all three combinations effectively reduced the viability 

of CD138 positive MM cells compared to DMSO alone. However, the CDKi/HDACi and 

TOP2Ai/AURKAi combinations were more selective in reducing MM viability compared to 

the TOP2Ai/HSP90i combination.

3.8 Genetic pathways commonly affected by the top combinations

To determine if common genetic pathways are similarly affected by the top drug 

combinations, L363 MM cells were treated for 48 hours with single agent IC50 

concentrations of the top combinations (CDKi/HDACi, TOP2Ai/AURKAi, and TOP2Ai/

HSP90i). Two separate CDKi/HDACi combinations (dinaciclib/entinostat and dinaciclib/

mocetinostat) were included for the most promising combination; 48-hour dose response 

results for dinaciclib and mocetinostat in L363 was similar to dinaciclib/entinostat (Fig.S4). 

RNAs from each treatment were analyzed via the Nanostring nCounter® digital gene 

expression codeset system, and counts were normalized to mRNA of housekeeping 
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genes. Of the 143 genes whose expressions were significantly changed by the top drug 

combinations versus control (Fig.S5A, Table S4), a total of 125 genes were significantly 

upregulated or downregulated simultaneously by all combination treatments (Fig.S5B). 

Next, 78 of the concordantly upregulated or downregulated genes were found to induce 

a two-fold change in gene expression across all the combination treatments (38 up-regulated 

and 40 down-regulated genes). DAVID pathway analysis determined the overrepresented 

GO functions in the concordant response signature of the 78 genes (Fig.5A), and enriched 

GO terms were selected with nominal p-values<0.05. For each over-represented GO term 

a z-score was computed based on the number of up- and down-regulated genes according 

to the formula (up minus down)/sqrt(total) proposed by Walter et al. and visualized with 

bubble-plots.31 The pathways most downregulated by all combinations (GO:0005654, 

GO:0044770, GO:0044772) were those implicated in promoting cell cycle transition 

(Fig.5A, Table S5), indicating a common beneficial effect in preventing MM cell growth. 

Some of the genes most downregulated by the drug combinations whose lower expression is 

linked to better prognosis include CCND2, HISTH1H3H, EIF4EBP1, NRAS, TCF3 E2F1, 

and CDK4 (Fig.S6). Flow cytometric analysis was utilized to investigate the effects of the 

top combinations on cell cycle transition (Fig.5B). TOP2Ai/AURKAi, and TOP2Ai/HSP90i 

combinations induced G2-M arrest, whereas the CDKi/HDACi combination increased the 

percentage of cells in S-phase and decreased the percentage of cells in G2-M phase 

(Fig.5B).

The pathways most upregulated by all combinations (GO:0007178 and GO:0007179) were 

involved in TGFβ/SMAD signaling. WB analysis of SMAD signaling effector molecules 

in L363 cells showed an increase in pSMAD1/5 signaling with CDKi/HDACi treatment, 

driven primarily by SMAD1; whereas pSMAD3 signaling was increased with the TOP2Ai/

AURKAi treatment and total SMAD5 was increased with TOP2Ai/HSP90i (Fig.5C).

3.9 Co-targeting the TGFβ pathway along with the CDKi/HDACi drug combination

Since, upregulating the transforming growth factor β (TGFβ) pathway was a common, 

potentially deleterious, effect of the three combinations (Fig.5), we tested the addition of a 

drug targeting the TGFβ pathway to determine if it would be effective in further reducing 

the viability of L363 MM cells co-cultured with HS-5 BMSCs (Fig.6A). Indeed, the addition 

of the TGFβ-receptor inhibitor SB505124 was effective at cooperatively reducing L363 

MM cell viability in co-culture with HS5 cells. The IC50 value for triple therapy (CDKi /

HDACi + TGFβi) was 4.5 times lower than that of the CDKi/HDACi combination alone. 

Additionally, in 48-hour viability assays of human SMM patient bone marrow biopsy cells, 

the addition of SB505124 to the CDKi/HDACi combination effectively reduced the viability 

of CD138 positive cells by almost 40%, while relatively sparing CD138 negative cells (n=3) 

(Fig.6B).

4. Discussion

To find cooperative drug combinations for MM patients, we used a multilayered drug 

combination prediction workflow based on a high-throughput drug screen. Single agents 

effective in most of the tested MM cell lines were identified, followed by in silico Huber 
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robust regression analysis of all active drugs against each other to select combinations of 

drugs that reduced MYC protein expression while increasing p16 expression. This strategy 

overcomes the limitations of other regression models, such as ordinary least squares, in 

that it is not overly affected by extreme outliers.32 Additionally, Huber robust regression 

analysis enabled the prediction of potential combinations, regardless of drug target, to 

treat a wide variety of MM subtypes without the cumbersome and time-consuming step 

of individually testing each of the approximately 5 million potential drug combinations/

cell lines in vitro.32-34 This process identified 43 potentially cooperative combinations 

based on individual drug activity across most of the MM cell lines tested. Many of the 

target classes associated with the 43 drug combinations (Table 1) are proposed targets for 

chemotherapeutics used in MM and/or other cancers33, providing additional confidence in 

our combination discovery approach.

The efficacy of the top synergistic drug combinations (CDKi/HDACi, TOP2Ai/AURKAi, 

and TOP2Ai/HSP90i) was investigated in cell lines with inherent sensitivity or resistance 

to all drugs in the high-throughput screen. These combinations were generally non-toxic 

in non-neoplastic human fibroblasts suggesting favorable safety margins for their use 

in patients. Together, these data provide a relatively agnostic approach to identify drug 

combinations for further preclinical development for myeloma therapy, especially in cases 

resistant to first-line treatments.

The combination of a CDK inhibitor with an HDAC inhibitor was effective overall in 

inhibiting myeloma cells, and in simultaneously reducing MYC protein expression while 

increasing p16 expression and inducing apoptosis in a variety of MM cell lines with inherent 

sensitivity or resistance to most drugs in the high-throughput screen. This was the most 

synergistic combination overall in MM cell lines with induced resistance to common first-

line chemotherapeutics.

Dinaciclib (Merck & Co.) inhibits CDK1,2,5,9.34-36 Entinostat (Syndax), a class I HDAC 

inhibitor, inhibits HDAC1 and 3.37-40 Both drugs are in clinical trials for cancer. Dinaciclib 

has a favorable safety profile in combination with the proteasome inhibitor bortezomib 

and the corticosteroid dexamethasone for treating patients with relapsed MM in a phase I 

clinical trial (NCT01711528). Additionally, dinaciclib is being investigated in phase I-III 

clinical trials in combination with other agents aimed at treating hematologic malignancies 

(NCT0348520, NCT01650727, NCT01580228), solid tumors (NCT01434316), metastatic 

triple negative breast cancer (NCT01624441), and pancreatic cancer (NCT01783171). 

Entinostat is in a phase III clinical trial in combination with hormone therapy in treating 

patients with recurrent hormone receptor-positive breast cancer (NCT02115282) and has 

been investigated as a combined agent with immune checkpoint inhibitors (PD-1/PD-L1 

antagonists in particular) in clinical trials treating patients with various solid tumors 

(NCT02437136).39-42 Further understanding of how this combination affects the proposed 

targets and determining a cooperative response signature for the combination will provide 

insight into on/off-target effects, mechanism(s) of action, and biomarkers of a combined 

response, and may facilitate circumvention of certain side-effects of treating MM by 

lowering doses of the single agents.
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Therapeutic efficacy of the top combinations was assessed in a transplantable mouse model 

(Vk*MYC; NrasLSL Q61R/+; IgG1-Cre) of highly malignant MM that more closely 

recapitulates human high-risk/refractory MM in an immunocompetent animal.26,27 This 

model developed M-spikes, similar to those seen in human patients, at approximately 

6 weeks and served as a means of tracking progression of disease and response to 

treatment.43,44 Additionally, the histologic appearance of myeloma within the bone marrow 

of mice in this model closely resembles that of myeloma in human patients, with neoplastic 

plasma cells disrupting marrow architecture and lysing bone.45 In the present study, all 3 

combinations extended survival and were superior to treatment with the mTORi/HDACi 

combination.8,9

The combinations were assessed in freshly isolated myeloma cells from human patients 

to ensure that their efficacy was not limited to cultured cell lines and engineered mouse 

cells. When human SMM patient bone marrow biopsy samples were separated into plasma 

cells (CD138+) and nonplasma cells (CD138−) the top combinations effectively reduced 

the viability of human CD138+ myeloma cells. The CDKi/HDACi and TOP2Ai/AURKAi 

combinations were more selective than the TOP2A/HSP90i combination when comparing 

CD138+ MM cell viability to that of non-MM CD138-negative cells. The difference in 

combination-induced toxicity between neoplastic and non-neoplastic bone marrow cells may 

suggest that these treatments would impart less off-target bone marrow depletion. Treating 

ex vivo patient samples and co-cultures of myeloma cells and HS-5 stromal cells with 

a TGFβR1 inhibitor (SB505124) suggests that combining this agent with dinaciclib and 

entinostat could help to prevent potentially deleterious effects of TGFβ receptor signaling 

in the tumor microenvironment.46 Future directions include investigating the mechanisms of 

drug synergy for the top combination of CDKi/HDACi, as well as investigating efficacy of 

additional TGFβR or SMAD inhibition in vivo.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• High-throughput screen identifies drug combinations for multiple myeloma 

(MM)

• Top combinations cooperatively reduce MYC and increase p16 protein 

expression

• Combinations prolong survival in a Ras-driven allograft model of advanced 

MM

• Combinations reduce viability off ex vivo treated smoldering MM patient 

cells

• Commonly affected genes decrease cell cycle transition and increase SMAD 

signaling
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Figure 1. 
Prediction workflow used to find top drug combinations inhibiting MM cell growth. IC50 

= half maximal inhibitory concentration, WB = western blot, MTS = tetrazolium-based 

cell proliferation assay. Numbers indicated on the right denote the numbers of drugs, 

combinations, or cell lines investigated in each phase of the prediction workflow.
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Figure 2. 
High-throughput drug screen reveals combinations that synergistically reduce viability of 

MM cells and cooperatively target MYC and p16. A-C) Dose-response curves for top 3 

drug combinations in L363 MM cells. Cell viability was assessed with MTS assay 48h after 

treatment with escalated dose concentrations of either drug individually or in combination 

at a 1:1 molar ratio. Each data point represents mean of 4 wells and error bars indicate 

replicate standard deviation. Each table lists IC50 (in nM) values for individual drugs and 

combinations. Chou-Talalay computation of combination indices (CI) for treated cells are 

shown for 50% affected fraction 48 hours post-exposure. Synergy is interpreted as CI<1.0. 

D-F) Graphical depiction of dose-matrix analyses for the top drug combinations in L363 

MM cells. Percent inhibition of cell growth is shown for each different combination of 

doses and colorized in red. Cells were treated for 48 hours with different concentrations 
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of each drug (indicated by X- and Y-axes) singly or in combination. Arrows indicate 

individual drug IC50 (half-maximal inhibitory concentration) as determined by MTS dose-

response assay, ovals surround optimal dose for combinations, as determined by synergy 

scoring. G-H) Representative WB analysis of MM cell lines resistant or sensitive to all 

1920 drugs used in the screen (see Table 3). Three resistant and three sensitive cell lines 

were treated for 24 hours with the top 3 drug combinations at the IC50 concentration 

(the concentration at half-maximal activity; equal to IC50) for each line (C1 = dinaciclib 

(CDKi) + entinostat (HDACi), C2 = Doxorubicin (TOP2Ai) + Alisertib (AURKAi), C3 = 

Doxorubicin + SNX-2112 (HSP90i). Lysates of treated cells were probed for MYC, p16, 

total and cleaved caspase 3 (Casp3 and CC3, respectively), and β-actin.
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Figure 3. 
Evaluation of synergy in top drug combinations. A-C) Dose-response curves, along with 

tables listing IC50 in nM, for L363 MM cells in monoculture and L363 MM cells 

cocultured with HS-5 bone marrow derived stromal cells (BMSC) treated for 48 hours 

with increasing concentrations of the top 3 drug combinations (A = CDKi/HDACi, B 

= TOP2Ai/AURKAi, C = TOP2Ai/HSP90i). Black curves represent percent viability 

following combination treatment, relative to DMSO-treated control, in L363 cells cultured 

alone, purple curves show combination dose responses for L363 cocultured with human 

HS-5 BMSC. D) Heat-map depicting Chou-Talalay combination index scores for the 

following parental MM cell lines and their drug-resistant counterparts: LP1-Parental and 

LP1-OpzR (resistance induced via prolonged incubation with the proteasome inhibitor 

(PI) oprozomib (Opz)), Dexamethasone (Dex)-sensitive MM.1.S and Dex-resistant MM.1.R 

cells, RPMI-8226-Parental and RPMI-8226-Dox40 (treatment-induced resistance to the 

topoisomerase inhibitor doxorubicin), all compared to CI scores of L363. D+E = dinaciclib 

(CDKi) + entinostat (HDACi), Dox + A = doxorubicin (TOP2Ai) + alisertib (AURKAi), 

Dox + S = doxorubicin + SNX-2112 (HSHP90i). Darker gray = more synergy.
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Figure 4. 
Evaluating the top drug combinations in a novel allograft mouse model of MM and 

human myeloma cells ex vivo. A) Illustration of VQ inoculation scheme. 6–8-week-

old C57BL/6J mice were sublethally irradiated then injected intracardiac with 5x10^6 

Vk*MYC; NrasLSL Q61R/+; IgG1-Cre (VQ) cells harvested from bone marrow of donor 

mice. After 6-8 weeks, serum M-spikes, as evidenced by the γ immunoglobulin band on 

serum protein electrophoresis, are evident. Once M-spikes were detected in mice, treatment 

with the top drug combinations commenced. B-C) Photomicrographs (bar =100 μm; inset 

bar = 250 μm; H&E stain) of C57BL/6J mouse sternum 12 weeks post-IC injection with 

either saline (B, normal bone marrow) or VQ cells (C, marrow replaced by neoplastic 

plasma cells). D) Survival plots of C57BL/6J mice injected with 5x10^6 VQ cell IC, treated 

with the top drug combinations vs a previously investigated combination of rapamycin 
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(mTORi) and entinostat (HDACi), all compared to DMSO-treated control mice. CDKi 

(dinaciclib, 20 mg/kg, IP, 3x/week + HDACi (entinostat, 20 mg/kg, PO 5x/week; TOP2Ai, 

(doxorubicin,4 mg/kg IV 1x/week) + AURKAi (alisertib, 30 mg/kg PO 5x/week); or HSP90i 

(SNX-2112, 20 mg/kg, PO, 3x/week), n= 5. * indicates significantly prolonged survival 

vs. DMSO-treated control mice (p < 0.01, Log-Rank test). E) Graphical representation of 

mean M-spike percentage for each treatment group of mice administered one of the top 

drug combinations, combined mTORi-HDACi, or DMSO control. Each data point represents 

mean M-spike percentage of all mice for a given time point, error bars indicate standard 

deviation amongst group mice. F) Viability of human CD138 positive (MM) and CD138 

negative cells extracted from bone marrow of smoldering multiple myeloma patients (n=3). 

Cells were selected for CD138 status using magnetic-activated cell sorting (MACS). CD138 

positive and negative cells were treated with the top 3 combinations of dinaciclib (10 nM) 

and entinostat (500 nM), doxorubicin (225 nM) and alisertib (2 μM), or doxorubicin (225 

nM) and SNX-2112 (50 nM) for 48 hours. Solid bars indicate average viability for each 

combination in CD138 positive cells, hash-marked bars indicate the average viability for 

CD138 negative cells. Error bars = standard deviation. * =p <0.001; NS = no significance p 

> 0.05 by unpaired two-tailed Student’s t test.
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Figure 5. 
Pathways most commonly affected by the top 3 combinations. A) Bubble plot visualization 

of top pathways commonly affected by the top 3 combinations (CDKi/HDACi, TOP2Ai/

AURKAi, and TOP2Ai/HSP90i) using single agent IC50 concentrations of each drug. 

Purified RNA from each sample was analyzed using the NanoString nCounter® system. 

Raw counts were normalized to mRNA of five housekeeping genes (ZNF384, MRPS5, 

CNOT4, NUBP1, and SF3A3). Statistical significance was based on a false discovery rate 

of 5%. The concordant response signature includes genes significantly changed in the same 

direction by each combination treatment (Total=125, 49 up-regulated and 76 down-regulated 

genes), and that reached 2-fold change in the average fold-change profile calculated across 

all the combination treatments (Total=78, 38 up-regulated and 40 down-regulated genes). 

Fisher’s exact test was used to determine overrepresented Gene Ontology (GO) functions 

in the concordant response signature of 78 genes. Enriched GO terms were selected with 

nominal p-values less than 0.05. For each overrepresented GO term a z-score was computed 

based on the number of up-regulated and down-regulated genes according to the formula 

(up-down)/sqrt(total) proposed by Walter et al.31 The pathways most downregulated by all 

combinations include those involved in cell cycle regulation. All top combinations also 
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commonly increased TGFβ and SMAD3 signaling pathways. B) Cell cycle distribution of 

PI/RNase-stained L363 cells treated for 24 hours with DMSO or IC50 concentrations of the 

top three combinations. D + E = dinaciclib + entinostat; Dox + A = doxorubicin + alisertib; 

Dox + S = doxorubicin + SNX-2112. * = p<0.05, ** = p<0.001 (unpaired Student’s t test). 

C) Representative WB analysis of SMAD signaling effector molecules in L363 MM cells 

treated for 48 hours with the top 3 drug combinations at the IC50 concentrations. Lysates 

of treated cells were probed for pSMAD1/5 (Ser463/465), pSMAD3 (Ser423/425), SMAD1, 

SMAD3, SMAD5, and β-actin.
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Figure 6. 
Co-targeting the TGFβ pathway with combination therapy. A) Dose-response curves for 

L363 MM cells, co-cultured with HS-5 BMSCs for 48 hours with escalated doses of 

either combined CDKi/HDACi of dinaciclib and entinostat (purple curve) or combined 

CDKi/HDACi + TGFβRi (orange curve; dinaciclib + entinostat + SB505124) at a 1:1 or 

1:1:1 molar ratio (in nM), respectively. Arrow = IC50 shift. B) Viability of human CD138 

positive (MM) and CD138 negative cells extracted from bone marrow of SMM patients 

(n=3). Cells were selected for CD138 status using MACS. CD138 positive and negative 

cells were treated with the SB505124 (TGFβRi – 5 uM), dinaciclib (CDKi – 10 nM) and 

entinostat (HDACi – 500 nM), or CDKi + HDACi + TGFβRi for 48 hours. Solid bars 

indicate the average viability of CD138 positive cells and hash-marked bars represent the 

average viability for CD138 negative cells. Error bars = standard deviation. * = p <0.001; 

NS = no significance p > 0.05 by unpaired two-tailed Student’s t test. p = 0.0012 indicates 

p-value for significance in comparison of CD138 positive cells treated with CDKi + HDACi 

versus CDKi + HDACi + TGFβRi.
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Table 1.

Top Drug Combinations Inhibiting MM Cells Based on Huber Robust Regression

r2

Compound
1 Target

Gene Compound 1 Name Compound 2 Name

Compound
2 Target

Gene

Cmpd
1

Count

Cmpd
2

Count

0.836 ITK NCGC00344999-01 = ITK(1) VER-82576 HSP90AB1 39 33

0.822 HSP90AB1 Ganetespib BS-194 CDK1 35 46

0.804 HSP90AB1 SNX-5422 NCGC00344999-01 = ITK(1) ITK 35 39

0.765 HSP90AB1 SNX-5422 NCGC00188382-01 = ITK(2) ITK 35 45

0.732 HDAC1 Romidepsin SR-3306 MAPK8 45 46

0.714 TUBB XRP-44X BMS-3 LIMK1 28 37

0.702 HSP90AB1 SNX-5422 NCGC00344990-01 = ITK(3) ITK 35 38

0.678 TUBB XRP-44X ON-01910 PLK1 28 37

0.671 IKBKB IMD-0354 Niclosamide STAT3 45 41

0.658 HSP90AB1 Ganetespib Dacinostat HDAC1 35 44

0.655 AURKA Alisertib Doxorubicin TOP2A 29 46

0.645 PIM3 GDC-0349 PP242 MTOR 34 34

0.644 TLR7 CPG-52364 Sepantronium bromide BIRC5 44 36

0.643 ITK NCGC00344990-01 = ITK(3) VER-82576 HSP90AB1 38 33

0.634 HSP90AB1 AT-13387AU NCGC00344990-01 = ITK(3) ITK 39 38

0.634 CDK1 BS-194 Dacinostat HDAC1 46 44

0.626 MAPK8 TCS JNK 5a Indibulin TUBB 33 28

0.616 CDK1 7-Hydroxystaurosporine PIK-75 PIK3CA 37 33

0.614 ITK NCGC00188382-01 = ITK(2) Methylrosaniline chloride TNFRSF1A 45 36

0.611 PIK3CA PIK-75 Flavopiridol CDK1 33 44

0.606 TUBB XRP-44X IVX-214 PLK1 28 30

0.602 TUBB 4-Demethylepipodophyllotoxin Picropodophyllin IGF1R 40 38

0.602 MET Tivantinib 4-Demethylepipodophyllotoxin TUBB 28 40

0.597 TUBB XRP-44X Picropodophyllin IGF1R 28 38

0.594 MAPK8 SR-3306 Pracinostat HDAC1 46 34

0.583 PLK1 IVX-214 Noscapine TUBB 30 36

0.571 CDK1 BS-194 VER-82576 HSP90AB1 46 33

0.563 TUBB Lexibulin hydrochloride ON-01910 PLK1 27 37

0.557 HSP90AB1 SNX-5422 Methylrosaniline chloride TNFRSF1A 35 36

0.556 TUBB XRP-44X AST-1306 ERBB2 28 28

0.540 HSP90AB1 Geldanamycin Idarubicin hydrochloride TOP2A 34 41

0.540 HSP90AB1 CNF-2024 Idarubicin hydrochloride TOP2A 35 41

0.536 TUBB XRP-44X Tivantinib MET 28 28

0.535 MCL1 VU0482089-2 AV-412 EGFR 29 33

0.534 HSP90AB1 CNF-2024 Doxorubicin TOP2A 35 45

0.531 MCL1 VU0482089-2 1-alpha-Hydroxyergocalciferol VDR 29 28

0.524 PIM3 GDC-0349 GNE-493 PIK3CA 34 40

0.524 IGF1R Picropodophyllin Noscapine TUBB 38 36
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r2

Compound
1 Target

Gene Compound 1 Name Compound 2 Name

Compound
2 Target

Gene

Cmpd
1

Count

Cmpd
2

Count

0.521 CDK1 R-547 PIK-75 PIK3CA 29 33

0.516 HDAC1 Abexinostat 3-Methyladenine PIK3CA 43 47

0.515 MAPK8 TCS JNK 5a Noscapine TUBB 33 36

0.508 SRC KX-01 Indibulin TUBB 38 28

0.504 TUBB Lexibulin hydrochloride Merck-22-6 AKT1 27 25
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Table 2.

Combinations Reducing MYC (n = 10) and Increasing p16 (n = 6) Protein Expression in L363 MM Cells

Reduced MYC Protein Expression vs. Single Agent/Control in L363 MM Cells

Drug 1 Primary Target 1 Drug 2 Primary Target 2
r2 (Robust

Regr.) †p16 vs. Ctrl

BS-194 CDK1 Dacinostat HDAC1 0.634 ✓

Alisertib AURKA Doxorubicin TOP2A 0.655 ✓

Geldanamycin HSP90 Idarubicin HCl TOP2A 0.540 ✓

Noscapine TUBB IVX-214 PLK1 0.583 ✓

XRP-44X TUBB IVX-214 PLK1 0.606 ✓

BS-194 CDK1 VER-82576 HSP90 0.571 ✓

AT13387AU HSP90 ITK(3) ITK 0.634 x

SNX-5422 HSP90 ITK(3) ITK 0.702 x

VER-82576 HSP90 ITK(1) ITK 0.836 x

VU-482089 MCL1 AV-412 EGFR 0.535 x

Cancer Lett. Author manuscript; available in PMC 2024 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peat et al. Page 28

Table 3.

Multiple Myeloma Cell Lines (n = 47) Ranked by Mean IC50

Cell Line
Mean IC50 for Drugs in

High-Throughput Screen

KMS21BM_JCRB 10.123

Karpas417_ECACC 4.309

MMM1_PLB 3.449

RPMI8226_ATCC 2.866

OCIMY1_PLB 2.675

JJN3_DSMZ 2.583

KMS26_JCRB 2.566

OPM2_DSMZ 2.526

EJM_DSMZ 2.363

SKMM1_PLB 2.357

U266_ATCC 2.218

LP1_DSMZ 1.932

MOLP8_DSMZ 1.766

KMS28PE_JCRB 1.690

MM1R_ATCC 1.683

NCIH929_DSMZ 1.659

MM1S_ATCC 1.481

KMS34_JCRB 1.365

FR4_PLB 1.252

Karpas620_DSMZ 1.140

H1112_PLB 1.094

ARP1_JJKsccF8 1.074

OCIMY7_PLB 1.024

PE2_PLB 1.018

KMS12BM_JCRB 0.949

PCM6_Riken 0.877

KMS12PE_JCRB 0.835

KHM11_PLB 0.825

ARD_JJKsccE7 0.758

JIM3_ECACC 0.736

KMM1_JCRB 0.687

KMS28BM_JCRB 0.680

AMO1_DSMZ 0.639

XG6_PLB 0.605

OCIMY5_PLB 0.598

OPM1_PLB 0.573

KMS20_JCRB 0.547

Delta47_JCRB 0.537

KMS27_JCRB 0.522
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Cell Line
Mean IC50 for Drugs in

High-Throughput Screen

UTMC2_PLB 0.503

L363_DSMZ 0.482

Karpas25_ECACC 0.464

JIM1_ECACC 0.447

INA6_PLB 0.391

XG1_PLB 0.332

VP6_DJ 0.318

KMS11_JCRBsus 0.294
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