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Abstract
Motivation: The International Mouse Phenotyping Consortium (IMPC) is striving to build a comprehensive functional catalog of mammalian protein-
coding genes by systematically producing and phenotyping gene-knockout mice for almost every protein-coding gene in the mouse genome and by
testing associations between gene loss-of-function and phenotype. To date, the IMPC has identified over 90000 gene–phenotype associations, but
many phenotypes have not yet been measured for each gene, resulting in largely incomplete data; �75.6% of association summary statistics are still
missing in the latest IMPC summary statistics dataset (IMPC release version 16).

Results: To overcome these challenges, we propose KOMPUTE, a novel method for imputing missing summary statistics in the IMPC dataset.
Using conditional distribution properties of multivariate normal, KOMPUTE estimates the association Z-scores of unmeasured phenotypes for a
particular gene as a conditional expectation given the Z-scores of measured phenotypes. Our evaluation of the method using simulated and
real-world datasets demonstrates its superiority over the singular value decomposition matrix completion method in various scenarios.

Availability and implementation: An R package for KOMPUTE is publicly available at https://github.com/statsleelab/kompute, along with usage
examples and results for different phenotype domains at https://statsleelab.github.io/komputeExamples.

1 Introduction

The International Mouse Phenotyping Consortium (IMPC) has
been cataloging the functions of the entire mouse genome by
producing knockout mouse lines for all protein-coding genes
and examining the effects on various behavioral, physiological,
morphological, and biochemical phenotypes (Meehan et al.
2017, Haselimashhadi et al. 2020). This process to date has suc-
cessfully identified over 90 000 gene–phenotype associations in a
controlled and reproducible setting (IMPC release version 16).
However, generating a comprehensive functional catalog of the
mouse genome is a daunting task, as there are many potential
gene–phenotype pairs to consider, and testing all of them in a
controlled setting is time-consuming and resource-intensive.
Furthermore, knocking out vital genes can often result in early
embryonic lethality or developmental abnormalities, making
many phenotypes unmeasurable for mice from which these
genes are removed (Dickinson et al. 2016). Therefore, many
phenotypes of interest have not yet been measured for many
genes, so the IMPC association summary statistics data are still
largely incomplete (Fig. 1).

To recover summary statistics of missing phenotypes effec-
tively, we propose a novel method, KOMPUTE. KOMPUTE
leverages the conditional distribution properties of multivariate
normal to directly impute association statistics (i.e. two-sided as-
sociation Z-scores) of missing phenotypes, utilizing only the

summary statistics of measured phenotypes and the correspond-
ing phenotype correlations estimated as proxies for genetic cor-
relations between phenotypes. A similar idea has been used to
directly impute association Z-scores of unmeasured genetic var-
iants in genome-wide association studies while maintaining high
imputation accuracy and significantly reducing computational
burden (Lee et al. 2013, 2015, Rueger et al. 2018). Similarly, the
KOMPUTE method allows missing association Z-scores to be
imputed directly, avoiding the intermediate step of imputing or
measuring missing phenotypes for each mouse subject.

2 Methods
2.1 Summary statistics imputation

KOMPUTE estimates missing association Z-scores of pheno-
types and genes using well-known conditional expectation for-
mulas of the multivariate normal distribution (Lee et al. 2013).
Assume that the summary statistics capturing the association
between all phenotypes and genes form an m� n matrix of
two-sided association Z-scores, where m is the total number of
phenotypes observed, and n is the total number of genes tested.
For a particular gene, let Z1 be the k� 1 vector of the unmeas-
ured Z-scores (i.e. number of missing phenotypes ¼ k) and let
Z2 be the l� 1 vector of the measured Z-scores (i.e. number of
measured phenotypes ¼ m� k ¼ l). By reordering phenotypes
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in this way, an m� 1 column vector of Z-scores (i.e. the total
number of phenotypes¼ m) for a gene can be written as

Z ¼ Z1

Z2

� �
:

Under the null hypothesis (H0) of no association between gene-
knockout and phenotype, Z asymptotically follows the multivari-
ate normal distribution Z �MVNð0;RÞ, where R is the m�m
variance–covariance matrix with unitary diagonal entries. Under
H0, R approximately equals the genetic correlation matrix be-
tween phenotypes, where the (i, j)-th entry represents the genetic
correlation between phenotypes i and j, 0 < i; j � m. In the
new ordering, R can be expressed as a block matrix as follows:

R11 R12

R21 R22

� �
;

where R11 is the k� k genetic correlation matrix of unmeasured
phenotypes, R12 and R21 are the k� l and l � k genetic
correlation matrices between unmeasured and measured
phenotypes, respectively, and R22 is the l � l genetic correlation
matrix of measured phenotypes.

By using the conditional expectation formula of multivari-
ate normal variates (Hogg et al. 2018), Z1 (i.e. Z-scores of
missing phenotypes) can be estimated as

Z1j2 ¼ R12ðR22Þ�1Z2;

and the corresponding variance–covariance matrix is then
estimated as

R1j2 ¼ R11 � R12ðR22Þ�1
R21:

To ensure that R22 is invertible, a small ridge penalty (e.g.
k ¼ 0:01) can be added to each diagonal element of R22. This

ridge penalty is chosen to be small enough to have minimal im-
pact on the imputed Z-scores (Lee et al. 2015). The diagonal of
R1j2 quantifies the uncertainty of the estimated Z1j2 (Hogg et al.
2018). Therefore, the diagonal elements of I � R1j2 can be used
as an imputation accuracy measure (imputation information) of
Z1j2 (Lee et al. 2013). The imputation information value ranges
from 0 to 1 for the corresponding imputed Z-score, with values
closer to 1 indicating less variation in the imputed estimate and
therefore a more reliable estimate.

By repeating this method for each gene in the original associ-
ation summary statistics matrix, we can generate a new matrix
with imputed Z-scores for the previously unmeasured
phenotypes.

2.2 Estimating phenotypic correlation as a proxy

for genetic correlation

Genetic correlation refers to the amount of variance shared
between two phenotypes due to genetic factors. Estimating ge-
netic correlations accurately can be difficult because it often
requires collecting genetic information from very large sam-
ples, particularly when the heritability of the two phenotypes
is low (Sodini et al. 2018). However, previous studies (Roff
1995, Reusch and Blanckenhorn 1998, Waitt and Levin
1998, Sodini et al. 2018) have found empirical evidence of a
strong similarity between genetic and phenotypic correlations
in insects, plants, animals, and humans when the sample size
is large, based on the conjecture initially proposed by
Cheverud (1988). Based on this evidence, we use the easier-
to-estimate phenotypic correlation matrix observed in control
mice (Rp) as a proxy for the genetic correlation matrix (R).

The raw phenotype data collected in experimental settings
is often affected by nonbiological factors (e.g. phenotyping
center) that can significantly impact measured phenotypes. In
order to correct for these potential confounding factors, we
use the principal variance component analysis (PVCA) (Li
et al. 2009, Chen et al. 2011) to identify nonbiological covari-
ates explaining a large proportion of phenotypic variation
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Figure 1. Heatmap visualization of data availability in the IMPC data (release version 16) for each gene–phenotype pair. The heatmap’s columns represent

the 8216 genes studied via knockouts in mice, and the rows correspond to 303 distinct phenotypes. Dark purple cells indicate missing data, whereas light

yellow cells indicate measured data. Binary clustering has been used to group together measured and unmeasured gene–phenotype pairs. The adjacent

color bar denotes the phenotype domain each phenotype belongs to, with “BC” referring to Body Composition, “CC” to Clinical Chemistry, and “OF” to

Open Field. “Others” represents other domains. Our subsequent analysis will focus on these three domains. Notably, only around 24.4% of the potential

gene–phenotype pairs have been tested.
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and Combat (Johnson et al. 2007) to remove the effects of
these covariates from the phenotype data. The resulting ad-
justed phenotype data is then used to calculate the phenotypic
correlation matrix (Rp) using the Pearson correlation coeffi-
cient. The estimated Rp is used as an estimate for the genetic
correlation matrix between phenotypes (R) in the imputation
method (Section 2.1) (see Supplementary Fig. S1 for a detailed
description of the process).

3 Results

To evaluate the performance of our proposed imputation
method, KOMPUTE, we conducted extensive simulation
studies and compared its performance to that of a singular
value decomposition (SVD) matrix completion method
(Kurucz et al. 2007). We simulated 100 association Z-score
matrices (10 000 genes by eight phenotypes) from a multivari-
ate normal distribution MVNð0;RP), where RP denotes the
phenotype correlation matrix estimated from the eight body
composition phenotypes of control mice.

We compared three different imputation methods: SVD
matrix completion, KOMPUTE considering all imputed val-
ues, and KOMPUTE while only considering values with suffi-
ciently high imputation information (above 0.8). Each of
these methods was tested under three different scenarios
where 20%, 40%, and 60% of the simulated Z-scores were
randomly masked (i.e. temporarily deleting them from the
data) and imputed. The Pearson correlation coefficient be-
tween masked Z-scores and imputed Z-scores was computed
for each scenario and averaged across the 100 simulations.

The KOMPUTE method demonstrated superior perfor-
mance compared to the SVD method across all simulation
scenarios (Table 1). Furthermore, restricting our analysis to
imputed Z-scores with high imputation information (i.e.
KOMPUTE w/info > 0.8) resulted in even more reliable
results. These highly accurate imputed values were obtained
even when a significant proportion of the simulated data was
missing.

In order to assess the performance of the proposed imputa-
tion method in realistic scenarios, we conducted additional
experiments using real measured association Z-scores of three
phenotype domains: body composition (8 phenotypes), clini-
cal chemistry (19 phenotypes), and open field (14 pheno-
types). For each domain, we first estimated a phenotype
correlation matrix using control mice phenotypes, adjusting
for nonbiological factors through PVCA and Combat
(Supplementary Fig. S1). We then randomly masked 1000
gene–phenotype association Z-scores from each of the three
domains and used the remaining Z-scores and the estimated
phenotype correlation matrix to impute the missing values
with the KOMPUTE method. We considered only the

imputed Z-scores with high imputation information (>0.8)
and calculated the Pearson correlation coefficient between im-
puted and original Z-scores as a measure of the effectiveness
of KOMPUTE.

Figure 2 shows the KOMPUTE method’s effectiveness in
imputing missing Z-scores in realistic scenarios. In the body
composition domain, all 1000 imputed Z-scores were com-
plete cases with valid imputation information. The Pearson
correlation between the original Z-scores and the imputed
Z-scores was 0.79 (refer to the first row of Supplementary
Fig. S2). Setting a cutoff for the imputation information at 0.8
to only include estimates with a higher degree of confidence
resulted in 583 of the 1000 Z-scores being kept, with a
Pearson correlation of 0.84 between these scores and the orig-
inal masked Z-scores. For the clinical chemistry domain, all
1000 imputed Z-scores were complete and valid, but many of
the imputation information values were relatively low, lead-
ing to a Pearson correlation of 0.49 between the masked and
imputed Z-scores (refer to Supplementary Fig. S2). However,
the 113 cases where the information was >0.8 had a Pearson
correlation of 0.87 between the masked and imputed Z-
scores. Finally, for the open field domain, all 1000 Z-scores
were valid and generally had high imputation information
values, resulting in a Pearson correlation of 0.93 between
masked and imputed Z-scores (as shown in Supplementary
Fig. S2). When the threshold for imputation information was
set at 0.8, 846 out of the 1000 Z-scores met this criterion, and
these imputed Z-scores showed a very strong Pearson correla-
tion of 0.96 with the original masked Z-scores.

We further validated the effectiveness of KOMPUTE by
comparing it with the SVD matrix completion method, using
the same dataset across all three phenotype domains (as pre-
sented in the second row of Supplementary Fig. S2). In line
with our simulation studies, KOMPUTE consistently outper-
formed the SVD method across all domains, highlighting its
solid performance in imputing missing association summary
statistics within high-throughput model organism data, under
realistic conditions.

4 Discussion and conclusion

KOMPUTE has shown to be an effective method for imputing
missing summary statistics in high-throughput model
organism-based genetic association studies such as IMPC
studies. The method outperformed the SVD matrix comple-
tion in all simulation scenarios and demonstrated good per-
formance in more realistic settings. Furthermore, the use of an
imputation information score allows for the identification of
more reliable estimates. By improving the completeness of the
IMPC dataset, KOMPUTE can help researchers unlock the
full potential of this valuable resource. KOMPUTE also has
the potential to be applied to a variety of high-throughput
studies in various other model organisms, including
Caenorhabditis elegans or Arabidopsis thaliana, where com-
prehensive phenotyping is a significant challenge.

High-throughput phenotyping in model organisms is typi-
cally conducted under stringent and controlled conditions,
leading to the derivation of highly reliable phenotypic correla-
tions and association Z-scores. This makes our KOMPUTE
method, which relies heavily on Cheverud’s conjecture, par-
ticularly well-suited for this context. However, despite
KOMPUTE’s demonstrated effectiveness, potential limita-
tions exist. While Cheverud’s conjecture generally holds in

Table 1. Pearson correlation coefficients between the original and

imputed Z-scores.a

20% 40% 60%
Removed Removed Removed

SVD matrix completion 0.79 0.66 0.49
KOMPUTE 0.88 0.82 0.70
KOMPUTE w/info >0.8 0.95 0.95 0.96

a Three imputation methods were each tested under three different
scenarios in which 20%, 40%, or 60% of the Z-scores were removed and
imputed. The mean correlations over 100 simulations are presented, with a
standard deviation <0.01 for all estimates.
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controlled settings, there can be exceptions. Therefore, using
Rp as a surrogate for the genetic correlation matrix between
phenotypes should be approached with caution. Additional
validation is necessary when evidence indicates that the ge-
netic correlation structure for a set of target phenotypes devi-
ates significantly from the estimated Rp.
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Figure 2. Measured Z-scores as a function of imputed Z-scores for three phenotype domains, namely body composition, clinical chemistry, and open

field. “Info” in the legend title represents the imputation information value, serving as an indicator of the reliability of each imputed Z-score. A total of

1000 Z-scores were masked in each domain and imputed using the KOMPUTE method. To ensure the reliability of the imputed values, an imputation

information score (Info) of at least 0.8 was required. The recovery rates for the body composition, clinical chemistry, and open field domains were 58.3%,

11.3%, and 84.6%, respectively, based on this threshold. The Pearson correlation coefficients between the original and imputed Z-scores for these

domains were 0.84, 0.87, and 0.96, respectively.
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