Skip to main content
. 2022 Nov 9;17(3):409–422. doi: 10.1007/s12079-022-00699-7

Table 1.

Possible therapeutic approaches based on CXCL17/CXCR8 targeting

Strategy Details of study Outcomes Ref
Deletion of CXCL17

¬ cSCC

¬ Animal model

¬ Metastatic and non-metastatic cSCC cells

¬ ↓ Tumor cell proliferation

¬ ↓ Migration and invasion

¬ Suppressing the AKT/mTOR/STAT3 pathways

¬ ↓ The expression of the CD31 biomarker and neovascularization

(Khandelwal et al. 2022)
Inhibiting CXCL17 ¬ Lung adenocarcinoma

¬ ↓ Monocyte migration and TAMs to the lung

¬ ↓ The Src/FAK pathway signals

¬ ↓ Polarization of TAMs to the M2 phenotype

¬ ↓ Infiltration of immunosuppressive cells

(Liu et al. 2020)
CXCL17 silencing + CA

¬ HCC

¬ In vitro

¬ ↑ LKB1/AMPK pathway

¬ ↑ Autophagy in tumor cells

¬ Inhibiting VEGFR2/Src/FAK/cdc42 axis

¬ ↓ F-actin formation and reducing HCC cell locomotion

¬ ↓ Tumor growth

(Ku et al. 2015; Wang et al. 2019)
CXCL17 targeting by miR-325-3p ¬ HCC

¬ ↓ CXCL17 activity

¬ ↓ Tumor progression

(Li et al. 2021)
CXCL17 and miR-1252-3p targeting by THUMPD3-AS1 ¬ GC

¬ ↓ CXCL17 activity

¬ ↓ Tumor progression

(Tan et al. 2022)
CXCL17 deletion

¬ cSCC

¬ In vitro/ animal model

¬ SCCB cells

¬ ↓ CXCL17 activity

¬ ↓ Infiltration of macrophages, Tregs, and MDSCs

¬ ↓ Tumor progression

(Khandelwal et al. 2020)
Knockdown of CXCR8

¬ NSCLC

¬ in vitro and in vivo

¬ ↓ Tumor cell chemoresistance in NSCLC (Wang et al. 2018)
Genetic depletion of CXCR8

¬ Colon cancer

¬ Animal model

¬ ↓ ion transportation via the Na/K-ATPase channel

¬ ↓ Src signaling

¬ ↓ tumor growth via the epidermal growth factor receptor/Src/Ras/ERK pathway

¬ ↓ Intestinal tumorigenesis

(Kim et al. 2009; Schneditz et al. 2019)
Pepducin

¬ Colitis

¬ CRC

¬ ↓ CXCR8 activation

¬ ↓ Tumor burden

(Quon et al. 2020)
Pamoic acid

¬ Colitis

¬ DSS-induced colitis mouse model

¬ ↑ CXCR8 activation

¬ ↓ Chronic inflammation

¬ ↑ Lipid metabolism

¬ ↓ The severity of the disease

(Tsukahara et al. 2017)