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Abstract

A visible-light photoredox-catalyzed method is reported that enables the coupling between 

benzylic C–H substrates and N–H azoles. Classically, medicinally relevant N-benzyl azoles are 

produced via harsh substitution conditions between the azole and a benzyl electrophile in the 

presence of strong bases at high temperatures. Use of C–H bonds as the alkylating partner 

streamlines the preparation of these important motifs. In this work, we report the use of N-

alkoxypyridinium salts as a critically enabling reagent for the development of a general C(sp3)–H 

azolation. The platform enables the alkylation of electron-deficient, -neutral, and -rich azoles with 

a range of C–H bonds, most notably secondary and tertiary partners. Moreover, the protocol is 

mild enough to tolerate benzyl electrophiles, thus offering an orthogonal approach to existing SN2 

and cross-coupling methods.

N-Benzyl azoles are an abundant motif in drug discovery,1 with key examples including 

letrozole,2 bifonazole,3 and carboetomidate4 (Figure 1). Such motifs exhibit widespread 

utility as active compounds across a number of disease areas and medical uses. 

Generally, azoles, such as pyrazoles, possess tempered nucleophilicity relative to halides 

or carboxylates.5 Thus, their alkylation via substitution reactions typically requires harsh 

conditions. Indeed, the preparation of the C–N bond of letrozole relies on an SN2-type 

protocol with triazole and a benzyl electrophile (halide/tosylate) at 100 °C with strong 

base.6 Additionally, benzyl electrophiles are prone to hydrolysis and often require extra 

preparatory steps. Thus, a need exists for new mild and streamlined protocols to be 
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developed. In addition, a strategy that differs from classical transition metal cross-coupling 

conditions would also allow for an expanded substrate scope to include electron-rich 

azoles, organoboranes, and alkyl, aryl, and benzyl/allyl halides to maximize synthetic route 

opportunities.7

Recently, alternative alkylating partners have been investigated, with carboxylic acids being 

a particularly attractive option.8 Although they are abundant and provide a handle for 

accessing radicals and carbocations, their activation requires acyl group manipulations or 

strong oxidants to facilitate the decarboxylation. By contrast, C–H bonds represent the 

most prevalent functionality in organic compounds; accordingly, rendering them reactive 

for C–X bond formation would be greatly advantageous toward the goal of a streamlined 

reaction platform.9 The primary advantage of C–H functionalization methods is a decrease 

in preparatory steps of reagents and eventual use for the rapid diversification of late-stage 

targets.

A handful of methods have demonstrated that single-electron oxidization of arenes can 

activate the benzylic C–H positions toward subsequent functionalization, albeit requiring 

high oxidation potentials.10 In the past few years, a mechanistic strategy for expanding the 

C–H scope employs a hydrogen-atom transfer (HAT) event prior to a (radical) oxidation 

(i.e., radical–polar crossover, RPC).11 Notably, the combination of HAT and RPC has been 

engineered into one catalytic cycle utilizing different HAT species: Lei and co-workers 

used the phenoxy radical of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ);12 the Noël 

group employed a UV-activated decatungstate catalyst;13 and the Stahl group leveraged 

a sulfonimide radical derived from N-fluorobenzenesulfonimide (NFSI) in conjugation 

with copper catalysis.14 While all three methods proceed via a carbocation intermediate, 

noticeably lacking in the scope of each protocol is the formation of fully substituted centers 

arising from in situ-generated tertiary carbocations. Recently, our group,15 concurrently with 

the Doyle group,16 published a visible-light photoredox-catalyzed [HAT+RPC] mechanism 

that can engage classically weak nucleophiles, including fluoride, and readily forge fully 

substituted centers from tertiary C–H precursors. We hypothesized that the established 

platform could be extended to the formation of an array of N-benzyl azoles, including 

those bearing fully substituted centers. In addition, these works demonstrated the power 

of photoredox catalysis to mediate a formal hydride abstraction with two different types 

of HAT reagents: tert-butyl peroxybenzoate (TBPB) and N-acyloxyphthalimide. Thus 

far, only photoredox platforms have exhibited such modularity in the examination of 

stereoelectronically diverse HAT reagents for the [HAT+RPC] process. Herein we report 

the implementation of N-alkoxypyridinium salts in this process. Simple N-alkoxypyridinium 

salts can be readily prepared in one step and offer an electronically tunable HAT 

scaffold.17,18 Finally, mechanistic evidence suggests that an electron-donor–acceptor (EDA) 

complex may be operable for activating the pyridinium reagents for certain electron-rich 

benzylic partners.19

Our efforts toward the development of a C–H azolation protocol initiated with the use 

of TBPB to facilitate the HAT event. Although successful in our prior work for C–H 

fluorination with nucleophilic fluoride (N = 10.8–13.2),20 switching to less nucleophilic 

coupling partners such as pyrazoles (N = 8.9–9.6) resulted in competitive trapping of the 
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carbocation by both benzoate (N = 16.8) and tert-butanol (N = 5.4)5 byproducts (Figure 

2A). Work by Hong,21 Li,22 and Lakhdar23 has demonstrated that N-alkoxypyridinium 

reagents can facilitate intermolecular HAT processes at P–H, C(sp2)–H, Si–H, and α-

oxy C(sp3)–H bonds.24 We hypothesized that this reagent could also be used for the 

intermolecular abstraction of H· at benzylic C(sp3)–H bonds in the desired transformation 

(Figure 2B). While N-alkoxypyridiniums bearing long-chain alkyl groups have been used 

for intramolecular 1,5-HAT processes,25 they have not been used widely for intermolecular 

efforts at C(sp3)–H bonds.22 The pyridinium reagents would be particularly attractive in 

the desired transformation, as reductive fragmentation would reduce the generation of 

competitive nucleophilic byproducts (Figure 2B). Accordingly, we rapidly synthesized a 

suite of N-methoxy- and N-ethoxypyridinum reagents.26 With indane and 4-bromopyrazole 

as our model substrates, we delightfully observed the desired C–H azolation product (Figure 

2C).

Electron-withdrawing p-cyanopyridinium pyr-1 was discovered to result in higher product 

formation, possibly due to a lower reduction potential (see the Supporting Information). 

Stern–Volmer experiments corroborated an interaction between the excited state of the 

photocatalyst and pyr-1. Next, we explored the generality of the substrate scope.

Starting with an exploration of azoles (Figure 3), an array of electron-withdrawing groups at 

the 4-position of pyrazole were well-tolerated, including other halides (2–4), esters (5), and 

trifluoromethyl (6), cyano (7), and nitro groups (8). Substitution at the 3-position of pyrazole 

also resulted in good to excellent yields (9–13). Difunctionalized pyrazoles afforded high 

yields of the products (14–17), and an extended heterocycle was also successful in the 

protocol (18). Excitingly, more electron-rich pyrazoles were successfully alkylated with our 

system, representing a class of substrates that are not compatible with base-metal-catalyzed 

strategies due to potential catalyst poisoning (19–22). Furthermore, 1,2,3-and 1,2,4-triazoles 

(N ≈ 7.7) were also viable nucleophiles, as was benzotriazole (23–25).26 Substituted 

tetrazoles, imidazoles, and benzimidazoles were also viable substrates (26–33).

Given the minimal effect of steric hindrance observed, we questioned whether the 

photoredox-catalyzed [HAT+RPC] platform could enable the functionalization of tertiary 

benzylic C–H bonds. To the best of our knowledge, the synthesis of fully substituted carbon 

centers has not been reported in prior C–H azolation methods with the [HAT+RPC] formula, 

despite the enhanced carbocation stability. Classically, tertiary benzyl halides/tosylates are 

unstable and/or prepared with harsh reagents (strong acids) and expensive oxidants.27 

Moreover, the carboxylic acid equivalent of 2-isopropylnaphthalene is not widely available 

from commercial vendors. The use of C–H alternatives thus represents an advantage 

in terms of synthetic ease and available resources. Gratifyingly, 2-isopropylnaphthalene 

could be readily functionalized with a wide array of azoles using TBPB as the HAT 

reagent. Currently, we postulate that a methyl radical could be the most effective H-atom 

abstractor for tertiary benzylic C–H sites, which can be derived from ·OtBu via a facile 

β-scission.16,28 Various 4- and 3-substituted pyrazoles were successfully alkylated (34–
41), with the latter being functionalized at the less sterically hindered nitrogen. Electron-

rich pyrazoles also afforded the products in modest yields (42–44). Notably, 44 contains 

a nucleophilic arylboron functionality that would not be tolerated by transition metal 
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approaches. Moreover, the strength of the carbocation strategy was highlighted with the 

alkylation of 3,5-dimethylpyrazole to give sterically congested adduct 45, albeit in low yield. 

Finally, the protocol was also successful at producing fully substituted tetrazole, imidazole, 

and (benzo)triazole C–N adducts (46–49).29

Next, we examined the generality of the benzylic C–H scope. Methylene sites on 

both cyclic and acyclic precursors afforded appreciable yields of C–N products (50–
57). Diphenylmethane, a common motif in drug targets (Figure 1a), worked in good 

yield (51). Electron-deficient functional groups at the para position did not significantly 

hinder the reaction efficiency (52–56); nevertheless, higher yields were observed with 

electron-donating groups (57). Notably, our carbocation-generating protocol is permissible 

of aryl bromide and chloride motifs, allowing for the retention of functional handles 

for further derivatization via classical cross-coupling catalysis. Meta substitution was 

also well-tolerated (58). The primary benzylic substrate leading to 59 represents another 

class of substrates not demonstrated in other [HAT+RPC] strategies for azolation. C–H 

functionalization of allylic positions was achieved, giving 60 and 61 in 18% and 49% 

yield, respectively. Lastly, α-oxy C–H sites were also viable substrates for the visible-light-

mediated azolation (62).

Next, we sought to apply the method to late-stage functionalization of pharmaceutical 

scaffolds. The seven-membered cyclic core of ivabradine, used in the treatment of heart 

failure, was successfully elaborated at the α-benzylic site in 48% yield (63). Celestolide 

(64, 70% yield) and the core of donepezil (65, 45% yield) also underwent C–H azolation 

with the [HAT+RPC] protocol in appreciable yields. Lastly, we demonstrated that azole 

derivatives of the antifungal agent bifonazole (66) can be readily prepared in one step 

from commercially available 4-benzylbiphenyl. These examples demonstrate the utility of 

direct functionalization of benzylic C–H bonds as opposed to the established multistep 

processes involving conversion of a benzyl alcohol to a benzyl chloride followed by harsh 

conditions.30

Next, an array of other tertiary benzylic C–H partners were translated to fully substituted 

products (67–71). γ-Phenyl-lactone gave sterically congested 68 in good yield, as did 

phenylcyclohexane (69). Monofunctionalization of compounds containing two tertiary 

benzylic sites was successful (70), and last, installation of a congested C–N center on 

9-methylfluorene was realized (71). Notably, for substrates 68–71, the corresponding 

benzyl chlorides or carboxylic acids are either commercially unavailable or prohibitively 

expensive. Excitingly, compound 72 was successfully prepared, demonstrating potential for 

the azolation of heteroarene C–H substrates.

To probe regioselectivity, a competition experiment was conducted. Using pyr-1, a 

preference for azolation at indane over 2-isopropylnaphthalene was observed. High 

selectivity for the secondary position of 73 (16.3:1) was congruent with this finding. The 

protocol appears to be selective for secondary benzylic C–H sites over primary benzylic (74) 

and aliphatic tertiary (75) sites and is completely selective for α-oxy benzylic positions over 

secondary benzylic ones (76; see the Supporting Information).
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Finally, we sought to evaluate the specificity and orthogonality of our photocatalytic C–

H azolation. Classically, letrazole and bifonazole are prepared via SN2-type reactions on 

benzyl chlorides with heat and strong bases.6,30 As depicted in Figure 4, this platform is 

sufficiently mild to tolerate the preparation of 77 in 40% yield with no detection of the SN2 

product (>20:1 regioselectivity). Subsequently, high yields were achieved for SN2 azidation 

(78), thiolation (79), and esterification (80) substitution reactions. Furthermore, the benzyl 

chloride functionality could also serve as an electrophile in a Pd-catalyzed cross-coupling 

(81).31

Lastly, pyridinium salts have been reported to participate in EDA complexes.18,23b,c,32 

Control experiments suggested that when HFIP is added as a cosolvent, an EDA complex 

could be operable, on the basis of the observation of product without photocatalyst and 

an observed bathochromic shift in the UV–vis spectra (Figure 5b). Presumably, the EDA 

complex facilitates oxidation of the arene, which triggers fragmentation of pyr-1 to release 

a methoxy radical. Subsequent HAT at the benzylic position of the resultant arene radical 

cation can generate the benzylic carbocation.33 Further UV–vis studies indicated that only 

electron-rich substrates form an EDA complex (see the Supporting Information), suggesting 

that other substrates may follow a photocatalyst-mediated mechanism.

In conclusion, we have successfully developed a benzylic C–H azolation reaction via a 

photoredox-catalyzed formal hydride abstraction mechanism. An N-methoxypyridinium salt 

was used as an effective intermolecular HAT reagent at benzylic C(sp3)–H bonds. We have 

demonstrated the generality of the method, as it includes the alkylation of a plethora of 

azoles. Additionally, a broad C–H partner scope was established, including the alkylation of 

secondary and tertiary benzylic C–H sites, the latter of which afford a direct and simplified 

route to N-tert-alkyl azole motifs. Importantly, we showcase the complementary nature 

of our reaction conditions to classical SN2 and transition metal cross-coupling conditions, 

which are two current state-of-the-art technologies for forging alkylated azole products. 

Lastly, mechanistic studies suggest that a plausible EDA mechanism is operable for certain 

C–H substrates.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Background on C–H azolation methods. (A) N-benzyl azoles are attractive pharmaceutical 

motifs. (B) Recent mechanism for C–H functionalization. (C) Current C–H azolation 

methods utilizing [HAT+RPC].
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Figure 2. 
Optimization with N-alkoxypyridinium reagents. (A) Use of TBPB can lead to competitive 

nucleophiles. (B) Proposed mechanism and Stern–Volmer experiment. (C) Optimization of 

the N-alkoxypyridinium scaffold.
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Figure 3. 
Azole scope for secondary and tertiary benzylic C–H substrates. Reactions were run on a 0.5 

mmol scale. DCE = 1,2-dichloroethane. HFIP = hexafluoroisopropanol. a48 h. b72 h. c60 °C. 
d96 h.
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Figure 4. 
Scope of the C–H reaction partner. a60 °C. b48 h. cTetrahydrofuran (5 equiv). dConditions: 

hydrocarbon (3 equiv), azole (1 equiv), and TBPB (3 equiv) as indicated in Figure 3. e1 

equiv of C–H precursor, azole (3 equiv), and pyr-1 (1.5 equiv). fEosin Y (5 mol %).

Das et al. Page 13

J Am Chem Soc. Author manuscript; available in PMC 2024 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Mechanistic studies. (a) Control experiments for optimized conditions. (b) UV–vis 

experiments to probe for EDA complex formation and yields of substrates without 

photocatalyst (PC). a48 h.
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