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Abstract
It is reported that overweight may lead to accelerated aging. However, there is still 
a lack of evidence on the causal effect of overweight and aging. We collected ge-
netic variants associated with overweight, age proxy indicators (telomere length, 
frailty index and facial aging), etc., from genome-wide association studies datasets. 
Then we performed MR analyses to explore associations between overweight and 
age proxy indicators. MR analyses were primarily conducted using the inverse vari-
ance weighted method, followed by various sensitivity and validation analyses. MR 
analyses indicated that there were significant associations of overweight on tel-
omere length, frailty index, and facial aging (β = −0.018, 95% CI = −0.033 to −0.003, 
p = 0.0162; β = 0.055, 95% CI = 0.030–0.079, p < 0.0001; β = 0.029, 95% CI = 0.013–
0.046, p = 0.0005 respectively). Overweight also had a significant negative causality 
with longevity expectancy (90th survival percentile, β = −0.220, 95% CI = −0.323 to 
−0.118, p < 0.0001; 99th survival percentile, β = −0.389, 95% CI = −0.652 to −0.126, 
p = 0.0038). Moreover, the findings tend to favor causal links between body fat mass/
body fat percentage on aging proxy indicators, but not body fat-free mass. This study 
provides evidence of the causality between overweight and accelerated aging (tel-
omere length decreased, frailty index increased, facial aging increased) and lower 
longevity expectancy. Accordingly, the potential significance of weight control and 
treatment of overweight in combating accelerated aging need to be emphasized.
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1  |  INTRODUC TION

Aging is the accumulation of aging cells in organisms, accompa-
nied by the decline of biological functions and a series of promi-
nent features, including genetic and epigenetic changes (Wang 
et al., 2022). Among them, telomere shortening and damage is one 
of the microcosmic manifestations of cell aging and human aging 
(Rossiello et al., 2022). In addition, chronic diseases, frailty, cognitive 
dysfunction and facial aging (FA) are important characteristics of 
aging (Franco et al., 2022; Gonzales et al., 2022). Accelerated aging 
means that the biological age of the body exceeds the actual age, 
which will undoubtedly lead to increased risk of disease and death, 
and reduced life expectancy and quality of life (Belsky et al., 2015). 
Biological age proxy indicators are needed to assess accelerated 
aging, including telomere length (TL), epigenetic clock and frailty 
index (FI) (Hoogendijk et al.,  2019; Jylhävä et al.,  2017). Effective 
identification and control of factors that accelerate aging will help 
prevent premature death, extend healthy life expectancy and im-
prove quality of life.

The condition of being overweight is defined as abnormal or 
excessive fat accumulation that may impair health. According to 
World Health Organization (WHO) standard, it is defined as body 
mass index (BMI) ≥ 25 kg/m2 (World Health Organization,  2000). 
The WHO reported the number of overweight and obesity has 
doubled in the past few decades (Caballero, 2019). Studies con-
firm that overweight increases the risk of cardiovascular disease, 
diabetes and cancers, and overweight and obesity has been identi-
fied as one of the most serious public health problems of the 21st 
century (Iyengar et al., 2016; Piché et al., 2020). Evidence suggests 
that overweight may accelerate aging (Santos & Sinha,  2021). 
But the causality between overweight and aging has not been 
identified.

Limited by the quality of evidence, possible potential reverse 
causality and residual confounding, observational studies have 
been almost unable to identify a causal association between over-
weight and aging (Hoffmann et al., 2018). In this regard, random-
ized controlled trials (RCTs) can be used to reveal cause and effect 
(Stanley, 2007). However, RCTs are costly in terms of money, time 
and manpower, and some interventions are not approved or are 
not suitable for RCTs assessment. Mendelian randomization (MR) 
is a popular and effective method for causal inference in recent 
years. It takes genetic variation (single nucleotide polymorphism, 
SNP) as the instrumental variable (IV) to deduce the causal associ-
ation between outcome and exposure, which can effectively avoid 
the confounding bias of traditional epidemiological studies (Sekula 
et al., 2016).

We performed the present MR study with the aim of evaluat-
ing the causality between overweight and aging by analyzing the 
summary-level genome-wide association studies (GWASes) data of 
overweight, age proxy indicators such as TL, FI and FA, and other 
traits, etc.

2  |  METHODS

2.1  |  Data source

Genetic variants significantly associated with overweight 
were extracted from a large GWAS of Genetic Investigation of 
ANthropometric Traits (GIANT) consortium, which comprised 
93,105 cases and 65,840 controls (Berndt et al., 2013). Among them, 
the definition of overweight (case) and normal weight (control) were 
based on a baseline measurement of BMI and used the WHO stand-
ards (World Health Organization, 2000). Therefore, the inclusion cri-
terion for cases was BMI ≥25 kg/m2, while for controls was 18.5 kg/
m2 ≤ BMI < 25 kg/m2.

The genetic variants associated with TL and FA were from UK 
Biobank with the sample sizes of 472,174 (216,187 males and 255,987 
females, age 56.1 ± 7.9) and 423,999 (194,391 males and 229,601 fe-
males, age 40–69). At the UK Biobank, the mean leukocyte TL was 
measured in the mixed leukocyte population by using the multiplex 
quantitative polymerase chain reaction (qPCR) technique, which ex-
pressed the TL as the ratio of telomere repeats to single copy genes 
(T/S ratio) (Codd et al.,  2022). The logarithmic distribution is then 
converted to approximate normal distribution. Then paired LTL mea-
surements were made from DNA taken at two time-points (mean 
interval: 5.5 years) in 1351 participants to enable calculation of, and 
correction for, regression-dilution. The loge-transformed leukocyte 
TL was 0.68 ± 0.02, and the study estimated that at age 40 years, 
people with >1-SD shorter compared to ≥1-SD longer leukocyte TL 
than the population mean had 2.5 years lower life expectancy. FA 
was assessed with non-subjective perceived age based on question-
naire. The results showed that 8630 reported looking older than 
their biological age, 103,300 reported looking about their age, and 
312,062 reported looking younger than their biological age. For this 
analysis, participants were coded 1 if they reported that they looked 
younger, 0 if they reported that they looked older, and 0.5 if they 
reported that they looked their age (Observations were made by 
third parties, both non-participants and non-researchers, who did 
not know the actual age of the participants. The researchers coded 
the participants' FA according to their perceived age and actual age). 
Using a mixed linear model analysis (which could test the relation-
ship between genotype and phenotype while accounting for covari-
ates (age, sex, and study participation center) and relatedness), FA 
can be identified as an ordered categorical variable. Then statistics 
on the linear scale were transformed into log odd ratio (OR) using 
a Taylor expansion series. OR >1 indicate greater odds of looking 
youthful (Jiang et al., 2019). Genetic variants significantly associated 
with the FI were obtained from a GWAS meta-analysis with 164,610 
(79,791 males and 84,819 females, age 64.1 ± 2.8) UK Biobank par-
ticipants and 10,616 (5039 males and 5577 females, age 58.3 ± 7.9) 
TwinGene participants by Atkins et al.  (2021). Rockwood FI based 
on deficit accumulation model is used as the outcome measure of 
frailty. A score of 0 or 1 was assigned according to the amount of 
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compliance with the deficit (0 means no). Accordingly, the FI of each 
person is calculated as the number of deficits divided by the total 
number of 49 deficits described in the previous study (Table S1). The 
greater the value of the FI, the more serious the individual's frailty. 
The results showed that mean proportion of deficits in UK biobank 
and TwinGene participants were 0.129 ± 0.075 and 0.121 ± 0.080, 
respectively. Genetic variants associated with the longevity were 
obtained from two GWAS meta-analyses that included 11,262/3484 
cases surviving at or beyond the age corresponding to the 90th/99th 
survival percentile, respectively, and 25,483 controls. In the study, 
cases were individuals who lived to an age above the 90th or 99th 
percentile based on cohort life tables from census data from the ap-
propriate country, sex, and birth cohort. Controls were individuals 
who died at or before the age at the 60th percentile or whose age 
at the last follow-up visit was at or before the 60th percentile age 
(Deelen et al., 2019).

Other GWAS datasets obtained in our study included: homeo-
stasis model assessment of insulin resistance (HOMA-IR) with 
37,037 subjects from Dupuis et al. (2010); body weight (BW), body 
fat mass (BFM), body fat percentage (BFP) and body fat-free mass 
(BFFM) with 336,227 subjects, 330,762 subjects, 331,117 subjects 
and 331,291 subjects from Neale Lab consortium; parental lifes-
pans (PL) with 1,012,240 subjects from Timmers et al. (2019); waist 
circumference, hip circumference, waist-to-hip ratio and BMI with 
232,102 subjects, 213,038 subjects, 212,244 subjects and 339,224 
subjects from GIANT consortium; cigarettes per day and alcoholic 
drinks per week with 337,334 subjects and 335,394 subjects from 
GWAS and Sequencing Consortium of Alcohol and Nicotine use 
(GSCAN); coronary heart disease (CHD) with 30,482 subjects from 
Coronary Artery Disease (C4D) Genetics Consortium; glycosylated 
hemoglobin (HbA1c) with 46,368 subjects from the Meta-Analyses 
of Glucose and Insulin-Related Traits Consortium (MAGIC); sys-
tolic blood pressure (SBP) and diastolic blood pressure (DBP) with 
757,601 subjects from the International Consortium of Blood 
Pressure consortium; ischemic stroke (IS) with 440,328 subjects 
from Malik et al. (2018); serum creatinine (SC) with 133,814 subjects 
from CKDGen Consortium.

All the exposure and outcome datasets were of European ances-
try or mainly composed of European ancestry. There was no large-
scale crossover and overlap between participants that included in 
GWAS of overweight and GWASes of aging proxy indicators and 
longevity.

The present study only used publicly available summary-level 
statistics. Ethical approval is therefore not required.

2.2  |  IV selection criteria

SNPs significantly associated with exposures or outcome (p < 5 × 10−8) 
were selected as IVs from the GWAS datasets, respectively. Then, 
we pruned the candidate IVs for linkage disequilibrium (r2 > 0.001) 
and discarded variants that were within 1-Mb distance from other 

IVs with a stronger association. R2, the proportion of exposure ex-
plained by IVs, can be calculated by the formula: R2 = 2 × β2 × EAF × 
(1 − EAF), where β was the estimated effect size of the SNPs and EAF 
indicated effect allele frequency. F-statistic is a common index to 
evaluate weak instrumental bias, can be calculated by the following 
formula: F = R2/(1 − R2) × (N–k − 1)/k, where N was the sample size and 
k was the number of included SNPs. When the F-statistic <10, we 
consider the genetic variation used as a weak IV, which may pro-
duce a certain bias to the results, so SNPs with F-statistic <10 will 
be excluded.

2.3  |  Statistical analysis

The present study was conducted in the R software (version 4.2.1, 
The R Development Core Team, Vienna, Austria), we used base (ver-
sion 4.2.1), TwoSampleMR (version 0.5.6), MRInstruments (version 
0.3.2), MRPRESSO (version 1.0) MendelianRandomization (version 
0.6.0), data table (version 1.14.2) and ggplot2 (version 3.3.6) R pack-
age and related functions.

For two-sample MR analysis, we evaluated the causal links be-
tween exposures (overweight, BW, BFM, BFP, BFFM and HOMA-IR, 
etc.) and outcomes (aging proxy indicators, longevity and PL, etc.) by 
fixed effects inverse variance weighted (IVW-FE) method. We also 
used the simple median, simple mode, weighted mode, weighted 
median, MR Egger and MR pleiotropy residual sum and outlier (MR-
PRESSO) methods for additional analysis. Sensitivity analyses were 
performed to verify and adjust the validity and stability of the results, 
which included heterogeneity test (Cochrane's Q test, MR-PRESSO 
global test), pleiotropy test (MR Egger intercept test, MR-PRESSO 
distortion test), and leave-one-out test (Bowden et al., 2015; Emdin 
et al., 2017; Hemani et al., 2018; Verbanck et al., 2018). Once hetero-
geneity was identified (p < 0.05), the multiplicative random effects 
IVW (IVW-MRE) method should be used for assessing the causal 
effect.

Although a series of statistical methods have been carried out 
in the sensitivity analyses, we used Phenoscanner V2 (http://www.
pheno​scann​er.medsc​hl.cam.ac.uk/) for a confounding analysis 
(Staley et al., 2016). We explored diseases/physical conditions that 
are significantly related to the including SNPs at the threshold of 
p < 1 × 10−5 (No clear confounding factor was found at the threshold 
of p < 5 × 10−8), then summarize and analyze the related information 
about the SNPs, GWASes and Diseases. This not only helps to iden-
tify potential confounders for adjustment in multivariate analysis, 
but also helps us to explore the mediation and potential mechanism 
of causality.

For multivariable MR analysis, pooled several factors (mainly 
from confounding analysis, including cigarettes per day, alcoholic 
drinks per week, HbA1c, SBP, DBP, CHD, IS and SC) in the analy-
sis for adjustment. The IVW method was used for the multivariable 
analysis. Bonferroni correction was used for multiple comparisons, 
and its critical p value was defined in relation to the number of 

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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exposures and outcomes, following the formula: p = 0.05/E/C (E and 
C were the number of exposures and outcomes, respectively).

We used a mediation MR analysis (two-step MR) to verify and 
analyze the mediators that mediated the associations between 
overweight and aging proxy indicators. Candidate mediators were 
mainly HbA1C, CHD, and IS (it should be noted that they were in-
cluded in the deficits of FI). The specific method includes two steps. 
Step (1): to find significant SNPs from the GWAS about exposure, 
remove SNPs with linkage disequilibrium, and then extract the re-
maining SNPs from the GWAS of the mediating variable. It is nec-
essary to ensure that the remaining SNPs are not directly related 
to confounding factors and mediating variable. Finally, the causal 
effect of exposure on mediator (assume beta1) are calculated. Step 
(2): Use the same method to calculate the causal effect of media-
tor on outcome (assume it is beta2). Assume that the causal effect 
of exposure on outcome is beta0. The following conditions exist: 
(i) If beta0, beta1, and beta2 are all significant, this indicates that 
there is a causal association between exposure and outcome, and 
this association may be partially mediated by mediating variables. 
beta1*beta2 can be used as the mediating effect from exposure 
to outcome, and its mediating proportion can also be calculated 
((beta1*beta2)/beta0). (ii) If beta0 is not significant, but beta1 and 
beta2 are both significant, the association from exposure to out-
come can be considered to be completely mediated by this medi-
ator. (iii) If beta0 is significant, but at least one of beta1 and beta2 
is not significant, there is no mediating effect mediated by this me-
diating variable in the causal association of exposure on outcome 
(Relton & Davey Smith, 2012).

3  |  RESULTS

3.1  |  Overweight and aging proxy indicators

Fourteen SNPs associated with overweight at genome-wide sig-
nificance were identified, and one weak IV (rs12444979, F = 7.99) 
was excluded (Table 1). The main results of MR analysis are shown 
in Figure 1. IVW-FE method indicated that there were significant 
causal associations of genetically predictive overweight on TL, 
FI and FA (β = −0.018, 95% confidence interval [CI] = −0.033 to 
−0.003, p = 0.0162; β = 0.055, 95% CI = 0.030–0.079, p < 0.0001; 
β = 0.029, 95% CI = 0.022–0.037, p < 0.0001 respectively). 
Overweight was significantly associated with decreased telomere 
length, increased FI and FA (Figure 1). Sensitivity analysis showed 
that there was heterogeneity in the result of FA, but there was no 
pleiotropy (Table  2). The further IVW-MRE method was further 
used and indicated causal effect of overweight on FA (β = 0.029, 
95% CI = 0.013–0.046, p = 0.0005). Leave-one-out tests suggested 
that the associations between overweight and TL, FI, and FA were 
effective and sensitive, while the association between overweight 
and TL was less robust (Figure  S1). We further analyzed the as-
sociations between every single SNP (associated with overweight) 
and TL, and the results showed that a few SNPs (rs9816226, 
rs10182181, rs10853932 and rs13130484) were associated with 
TL increase (Figure S2).

We also conducted reverse association analyses of aging proxy 
indicators on overweight, which showed no reverse causality 
(Figure S3).

TA B L E  1 Included SNPs that are significantly associated with overweight.

SNP
Nearby 
gene Chr. EA OA EAF β SE p-value R2 F statistic

rs10182181 ADCY3 2 G A 0.50 0.057 0.009 2.10E-10 0.0016 19.88

rs10853932 KCTD15 19 C T 0.69 0.067 0.011 1.30E-09 0.0019 23.47

rs12444979* GPRC5B 16 T C 0.06 −0.079 0.013 1.80E-09 0.0007 7.99

rs12623218 TMEM18 2 A T 0.88 0.110 0.012 5.80E-22 0.0025 31.08

rs13130484 GNPDA2 4 T C 0.42 0.071 0.009 3.90E-14 0.0025 30.16

rs1421085 FTO 16 C T 0.45 0.140 0.009 5.80E-50 0.0097 119.61

rs2030323 BDNF 11 C A 0.78 0.079 0.011 1.10E-12 0.0021 25.97

rs2206277 TFAP2B 6 T C 0.10 0.080 0.012 5.60E-12 0.0011 13.59

rs2568958 NEGR1 1 A G 0.65 0.062 0.009 1.10E-11 0.0017 21.41

rs2596125 HNF4G 8 T C 0.44 −0.052 0.009 5.90E-09 0.0013 16.32

rs523288 MC4R 18 T A 0.29 0.099 0.011 1.70E-20 0.0040 49.31

rs633715 SEC16B 1 C T 0.27 0.078 0.011 4.00E-12 0.0024 29.17

rs8028313 MAP2K5 15 G C 0.22 −0.065 0.011 2.00E-09 0.0015 17.74

rs9816226 ETV5 3 T A 0.85 0.070 0.012 2.00E-09 0.0012 15.20

Abbreviations: Chr, chromosome; EA, effect allele; EAF, effect allele frequency; OA, other allele; SE, standard error; SNP, single nucleotide 
polymorphism.
*Weak instrumental variable.
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F I G U R E  1 Mendelian randomization analysis of the effect of overweight on telomere length, frailty index and facial aging. IVW-MRE, 
inverse variance weighted (multiplicative random effects); IVW-FE, inverse variance weighted (fixed effects); MR-PRESSO, Mendelian 
randomization pleiotropy residual sum and outlier.

TA B L E  2 Sensitivity analysis of overweight on facial aging, frailty index, telomere length, 90th survival percentile, and 99th survival 
percentile.

Overweight on

Heterogeneity test Pleiotropy test

Cochrane's Q test MR-PRESSO global test MR-Egger intercept test MR-PRESSO distortion test

Q p RSSobs p Intercept p Coefficient p

Facial aging 53.4987 <0.01 60.2901 <0.01 −0.0023 0.349 −4.0054 0.815

Frailty index 10.4656 0.575 12.2154 0.630 0.0021 0.559 0 1

Telomere length 16.3291 0.177 18.9872 0.187 0.0025 0.322 0 1

90th survival percentile 6.1065 0.911 6.9130 0.918 0.0083 0.685 0 1

99th survival percentile 16.3701 0.175 18.6994 0.216 0.0310 0.420 0 1
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3.2  |  Overweight and longevity

MR analyses showed that there were significant causal associa-
tions of overweight on longevity (90th survival percentile and 99th 
survival percentile). Overweight was associated with decreased 
longevity expectancy (90th survival percentile, β = −0.220, 95% 
CI = −0.323 to −0.118, p < 0.0001; 99th survival percentile, 
β = −0.389, 95% CI = −0.652 to −0.126, p = 0.0038) (Figure  2). 
Sensitivity analysis showed that there was no heterogeneity and 
pleiotropy (Table 2). Moreover, leave-one-out tests indicated that 
the associations were effective and robust (Figure S4).

3.3  |  Overweight and PL

There was significant causal link of overweight on PL (β = −0.129, 
95% CI = −0.173 to −0.084, p < 0.0001), but the reverse causality 
was not significant (Figure S5).

3.4  |  HOMA-IR, overweight and aging 
proxy indicators

The analyses results showed a causal association between HOMA-IR 
and overweight (β = 0.606, 95% CI =0.402–0.810, p < 0.0001), 
but there was no causality of HOMA-IR on aging proxy indicators 
(Figure S6).

3.5  |  BW, BFM, BFP, BFFM and aging 
proxy indicators

The analyses results showed that both BFM and BFP had sig-
nificant causal links on aging proxy indicators (BFM on TL: 
β = −0.057, 95% CI = −0.081 to −0.033, p < 0.0001; BFM on FI: 
β = 0.212, 95% CI = 0.178–0.246, p < 0.0001; BFM on FA: β = 0.048, 
95% CI = 0.035–0.061, p < 0.0001; BFP on TL: β = −0.078, 95% 
CI = −0.110 to −0.045, p < 0.0001; BFP on FI: β = 0.295, 95% 
CI = 0.247–0.343, p < 0.0001; BFP on FA: β = 0.050, 95% CI = 0.032–
0.069, p < 0.0001). There were causal associations of BW on FI and 
FA (β = 0.145, 95% CI = 0.113–0.177, p < 0.0001; β = 0.055, 95% 
CI = 0.043–0.068, p < 0.0001 respectively), but not on TL. BFFM 
only significantly associated with FA (β = 0.056, 95% CI = 0.042–
0.070, p < 0.0001). Although the IVW method showed a causal 
link between BFFM and FI, the MR-Egger method showed an op-
posite direction, suggesting that the causality was invalid (Bowden 
et al., 2015). (Figure 3).

3.6  |  Obesity indices and aging proxy indicators

The results suggested that waist circumference and waist-to-
hip ratio had significant positive causal effects on FI (β = 0.134, 
95% CI = 0.064–0.204, p = 0.002; β = 0.109, 95% CI = 0.040–
0.177, p = 0.0019), while hip circumference, waist circumference 
and waist-to-hip ratio had significant positive causal effects on 

F I G U R E  2 Mendelian randomization 
analysis of the effect of overweight on 
longevity (90th survival percentile and 
99th survival percentile). IVW-MRE, 
inverse variance weighted (multiplicative 
random effects); IVW-FE, inverse variance 
weighted (fixed effects); MR-PRESSO, 
Mendelian randomization pleiotropy 
residual sum and outlier.
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F I G U R E  3 Mendelian randomization analysis of the effect of body weight, body fat mass, body fat percentage and body fat-free mass 
on telomere length, frailty index and facial aging. IVW-MRE, inverse variance weighted (multiplicative random effects); IVW-FE, inverse 
variance weighted (fixed effects).
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FA (β = 0.051, 95% CI = 0.027–0.074, p < 0.0001; β = 0.055, 95% 
CI = 0.028–0.082, p = 0.0001; β = 0.059, 95% CI = 0.025–0.094, 
p = 0.008 respectively). After adjusted for BMI, only waist-to-hip 
ratio was significantly associated with FI, and waist circumference 
was significantly associated with FA (β = 0.062, 95% CI = 0.014–
0.111, p = 0.0122; β = 0.036, 95% CI = 0.011–0.061, p = 0.0048 re-
spectively) (Figure S7).

3.7  |  Confounding analysis

After summarize and analyze the related information about 
overweight associated SNPs, GWASes and Diseases through 
Phenoscanner, we found some potential confounding factors, mainly 
including substance/energy metabolism, sex hormones, cardiovas-
cular diseases, diabetes, cognitive dysfunction, smoking, drinking, 
renal diseases, respiratory diseases, neuromuscular disorders, auto-
immune diseases, and cancer, etc. (Figure 4).

3.8  |  Multivariate analysis

To further estimate the associations between overweight and aging 
proxy indicators, we performed multivariate MR Analyses (Figure 5). 
No single factor could adjust the causal effect of overweight on FI, 
and overweight on FA (all p < 0.025). After adjusted for all factors at 
once, the causal association of overweight and FA remained signifi-
cant (p = 0.0001), while the association between overweight and FI 
was suggestive (p = 0.0245).

3.9  |  Mediation analysis

Based on the results of confounding analysis and multivariate 
analysis, we analyzed the mediating effects of HbA1c, CHD, and 
IS on the causality between overweight and aging proxy indicators 
(Figure 6). The results suggested that the causal effect of overweight 
on FI might partly mediated by CHD and IS, while the causal link 

F I G U R E  4 The result of confounding analysis. SNP, single nucleotide polymorphism; GWAS, genome-wide association studies.



    |  9 of 13CHEN et al.

of overweight on FA might partly mediated by HbA1c, CHD and IS. 
Specifically, CHD and IS mediated approximately 12% and 11% of 
effects between overweight and FI, respectively. And HbA1c, CHD, 
and IS mediated approximately 4%, 9% and 4% of effects between 
overweight and FA, respectively.

4  |  DISCUSSION

In this study, based on the large-sample GWASes data, we mainly 
evaluated the associations between overweight and aging proxy 
indicators using MR analysis. We performed several MR analysis 

F I G U R E  5 Multivariate analysis of the effects of overweigh on telomere length, frailty index and facial aging. CHD, coronary heart 
disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; IS, ischemic stroke; SC, serum creatinine.
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methods including two-sample analysis, multivariate analysis and 
mediation analysis, which showed that (1) overweight is probably as-
sociated with a higher risk of decreased TL, increased FI, increased 
FA and decreased longevity expectancy (lower likelihoods to reach 
or exceed 90th survival percentile and 99th survival percentile); (2) 
overweight seems to be causally associated with lower parental life 
expectancy, but the reverse causality was not valid; (3) there is sig-
nificant causality between HOMA-IR and overweight, but not with 
aging proxy indicators; (4) the findings tend to favor causal links be-
tween BFM/BFP on aging proxy indicators, but not BFFM; (5) re-
gardless of overweight or not, waist-to-hip ratio is a risk factor for 
increased FI, and waist circumference is a risk factor for increased 
FA; (6) CHD and IS might mediate the association of overweight on 
both FI and FA.

Aging is a complex biological process, mainly manifested as TL 
decrease at the molecular level (Chakravarti et al., 2021). Clinically 
manifest as frailty, chronic diseases, or abnormal substance/energy 
metabolism (Rockwood & Howlett, 2018; Stout et al., 2017). In ad-
dition, skin aging is an important extrinsic manifestation of aging 
(Purba et al., 2001; Zou et al., 2021). The definition of aging is based 
on biological age, and many factors can accelerate aging so that bi-
ological age exceeds chronological age (Bhanot et al., 2005). This 
process is necessarily accompanied by the occurrence of aging re-
lated diseases and events, such as increased incidence of chronic 
diseases or cancer, decreased quality of life, and increased risk of 
death (Cai et al., 2022). Assessing accelerated aging by measuring 
the change of biological age proxy indicators including TL, FI, and 
FA is of great importance for identifying factors contribute to ac-
celerated aging and for intervention. After identifying risk factors, 

it could help to delay or improve the onset of aging related diseases 
and events by adjusting medical resource allocation and public 
health strategies.

Overweight is associated with a variety of acute/chronic dis-
eases, such as hypertension, diabetes, stroke and heart disease 
(Apovian et al., 2022). It is worth noting that some studies reported 
that metabolic disorders related to overweight are similar to nor-
mal aging, which indicates that overweight may accelerate aging 
(Robinson et al., 2020). However, accelerated aging is mediated by 
genes, which is difficult to be identified, and is difficult to intervene. 
MR analysis is a method to infer causality based on genetic variation, 
which is suitable for exploring accelerated aging.

In the present study, we collected large-sample GWASes data 
like TL, FI and FA from UK Biobank. Then we conducted MR anal-
yses and found that overweight was significantly associated with 
TL decrease, FI increase and FA increase. TL decrease, FI increase 
and FA increase could be regarded as the signals of accelerated 
aging, for which the findings suggested that genetically predicted 
overweight might be causally related to accelerated aging (Cao 
et al.,  2022; Chakravarti et al.,  2021; Stewart & Sharples,  2022). 
Moreover, the findings suggest that overweight was a risk factor for 
longevity expectancy, as indicated by the findings that overweight 
was causally associated with the decreased likelihoods of reach-
ing/exceeding 90th survival percentile and 99th survival percen-
tile, which was consistent with the previous clinical observations 
(Chen et al., 2019; Hensrud & Klein, 2006). In addition, we explored 
the associations of BW and BW related parameters (BFM, BFP and 
BFFM) on aging proxy indicators. Compared with BW, the increase 
of BFM and BFP was significantly associated with accelerated 

F I G U R E  6 Mediation analysis of 
the effect of overweight on telomere 
length, frailty index and facial aging. 
CHD, coronary heart disease; IS, ischemic 
stroke.
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aging, while the increase of BFFM was not significantly associated 
with accelerated aging. Taken together, overweight seems to lead 
to accelerated aging. This might prompt that reducing weight is of 
great significance for ameliorating the progression of accelerated 
aging. By extension, public health strategies such as weight con-
trol, increasing funding expenditure for overweight and treatment 
research, increasing the allocation of health resources related to 
overweight treatment, and developing more rational dietary guide-
lines are advocated.

By summarizing and analyzing the overweight associated 
SNPs, GWASes and Diseases, we got some potential confounders 
and included them in the multivariate analysis. Since confounding 
and mediating effects share similarities in causal inference, these 
findings reinforce our understanding of the mechanisms underly-
ing the occurrence of causality and mediation (Carter et al., 2021). 
The progression of aging is closely related to alterations in sub-
stance/energy metabolism, cardiovascular diseases, diabetes, 
cognitive dysfunction, renal diseases, respiratory diseases, au-
toimmune diseases, cancer, smoking or alcohol consumption, 
and so on (López-Otín et al.,  2013). Moreover, the multivariate 
analysis results showed that the causal effect of overweight on 
FI and FA was considerably robust, and remained after adjusted 
for smoking, drinking, HbA1c, CHD, SBP/DBP, IS and SC. In the 
mediation study, we explored the mediating effect of several FI 
deficit phenotypes (HbA1c, CHD and IS) on the causality between 
overweight and aging proxy indicators. The results suggested 
that CHD and IS might be potential mediators of the causal link of 
overweight on both FI and FA. Since the insulin resistance plays 
an important role in the development of overweight (Friesen & 
Cowan,  2019), we then evaluated the associations of HOMA-IR 
with overweight and aging proxy indicators. The results showed 
that HOMA-IR had a causal effect on overweight but not on any 
aging proxy indicator, which could be explained as overweight 
played a fully mediating role in the association between HOMA-IR 
and accelerated aging (Relton & Davey Smith, 2012). Therefore, 
we need to recognize the importance of weight control as well as 
improving and treating insulin resistance, so as to cope with the 
increasing pressure of aging of population and the prevalence of 
overweight.

Despite the large sample size, our study is prone to several lim-
itations. Although we have used a variety of MR methods to pre-
vent confusion caused by pleiotropy, we cannot completely rule 
out residual bias, which is the established limitation of MR studies. 
And MR studies often explore the lifelong impact of risk factors on 
outcomes, and it is difficult to reveal the causal effects of different 
stages of disease development. At present, there is no GWAS data 
related to low BW and no gender stratified GWAS data for over-
weight, so the association between low BW and aging proxy indica-
tors, and the gender difference in overweight as well as accelerated 
aging cannot be addressed in this study. Additionally, we need to 
realize that MR Analysis is definitely less suggestive of causality than 
RCT, and more high-quality RCTs evidence is still needed to supple-
ment and support.

5  |  CONCLUSIONS

The present study identified overweight as a risk factor for acceler-
ated aging (TL decreased, FI increased, FA increased) and decreased 
longevity expectancy. Accordingly, the potential significance of 
weight control and treatment of overweight in combating acceler-
ated aging need to be emphasized. The findings additionally suggest 
the necessity of improving and treating insulin resistance against 
overweight and accelerated aging.
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