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Abstract
It	 is	reported	that	overweight	may	lead	to	accelerated	aging.	However,	there	is	still	
a	 lack	of	evidence	on	 the	causal	effect	of	overweight	and	aging.	We	collected	ge-
netic	 variants	 associated	 with	 overweight,	 age	 proxy	 indicators	 (telomere	 length,	
frailty	 index	and	facial	aging),	etc.,	 from	genome-	wide	association	studies	datasets.	
Then	we	performed	MR	analyses	 to	explore	associations	between	overweight	and	
age	proxy	indicators.	MR	analyses	were	primarily	conducted	using	the	inverse	vari-
ance	weighted	method,	followed	by	various	sensitivity	and	validation	analyses.	MR	
analyses indicated that there were significant associations of overweight on tel-
omere	length,	frailty	index,	and	facial	aging	(β = −0.018,	95%	CI = −0.033	to	−0.003,	
p = 0.0162;	β = 0.055,	 95%	CI = 0.030–	0.079,	p < 0.0001;	β = 0.029,	 95%	CI = 0.013–	
0.046,	p = 0.0005	respectively).	Overweight	also	had	a	significant	negative	causality	
with	 longevity	expectancy	(90th	survival	percentile,	β = −0.220,	95%	CI = −0.323	to	
−0.118,	p < 0.0001;	99th	survival	percentile,	β = −0.389,	95%	CI = −0.652	to	−0.126,	
p = 0.0038).	Moreover,	the	findings	tend	to	favor	causal	links	between	body	fat	mass/
body	fat	percentage	on	aging	proxy	indicators,	but	not	body	fat-	free	mass.	This	study	
provides	evidence	of	 the	causality	between	overweight	and	accelerated	aging	 (tel-
omere	 length	 decreased,	 frailty	 index	 increased,	 facial	 aging	 increased)	 and	 lower	
longevity	expectancy.	Accordingly,	 the	potential	 significance	of	weight	 control	 and	
treatment	of	overweight	in	combating	accelerated	aging	need	to	be	emphasized.
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1  |  INTRODUC TION

Aging	 is	 the	 accumulation	 of	 aging	 cells	 in	 organisms,	 accompa-
nied by the decline of biological functions and a series of promi-
nent	 features,	 including	 genetic	 and	 epigenetic	 changes	 (Wang	
et al., 2022).	Among	them,	telomere	shortening	and	damage	is	one	
of the microcosmic manifestations of cell aging and human aging 
(Rossiello	et	al.,	2022).	In	addition,	chronic	diseases,	frailty,	cognitive	
dysfunction	 and	 facial	 aging	 (FA)	 are	 important	 characteristics	 of	
aging	(Franco	et	al.,	2022;	Gonzales	et	al.,	2022).	Accelerated	aging	
means	that	the	biological	age	of	the	body	exceeds	the	actual	age,	
which will undoubtedly lead to increased risk of disease and death, 
and	reduced	life	expectancy	and	quality	of	life	(Belsky	et	al.,	2015).	
Biological	 age	 proxy	 indicators	 are	 needed	 to	 assess	 accelerated	
aging,	 including	 telomere	 length	 (TL),	 epigenetic	 clock	 and	 frailty	
index	 (FI)	 (Hoogendijk	 et	 al.,	2019; Jylhävä et al., 2017).	Effective	
identification and control of factors that accelerate aging will help 
prevent	premature	death,	 extend	healthy	 life	 expectancy	and	 im-
prove quality of life.

The condition of being overweight is defined as abnormal or 
excessive	 fat	 accumulation	 that	may	 impair	 health.	According	 to	
World	Health	Organization	(WHO)	standard,	it	is	defined	as	body	
mass	 index	 (BMI) ≥ 25 kg/m2	 (World	Health	Organization,	2000).	
The	WHO	 reported	 the	 number	 of	 overweight	 and	 obesity	 has	
doubled	 in	 the	past	 few	decades	 (Caballero,	2019).	 Studies	 con-
firm that overweight increases the risk of cardiovascular disease, 
diabetes and cancers, and overweight and obesity has been identi-
fied as one of the most serious public health problems of the 21st 
century	(Iyengar	et	al.,	2016;	Piché	et	al.,	2020).	Evidence	suggests	
that	 overweight	 may	 accelerate	 aging	 (Santos	 &	 Sinha,	 2021).	
But the causality between overweight and aging has not been 
identified.

Limited by the quality of evidence, possible potential reverse 
causality and residual confounding, observational studies have 
been almost unable to identify a causal association between over-
weight	and	aging	 (Hoffmann	et	al.,	2018).	 In	 this	 regard,	 random-
ized	controlled	trials	(RCTs)	can	be	used	to	reveal	cause	and	effect	
(Stanley,	2007).	However,	RCTs	are	costly	in	terms	of	money,	time	
and manpower, and some interventions are not approved or are 
not	 suitable	 for	RCTs	assessment.	Mendelian	 randomization	 (MR)	
is a popular and effective method for causal inference in recent 
years.	 It	 takes	 genetic	 variation	 (single	 nucleotide	 polymorphism,	
SNP)	as	the	instrumental	variable	(IV)	to	deduce	the	causal	associ-
ation	between	outcome	and	exposure,	which	can	effectively	avoid	
the	confounding	bias	of	traditional	epidemiological	studies	(Sekula	
et al., 2016).

We	performed	 the	present	MR	study	with	 the	 aim	of	 evaluat-
ing	 the	 causality	 between	 overweight	 and	 aging	 by	 analyzing	 the	
summary-	level	genome-	wide	association	studies	(GWASes)	data	of	
overweight,	age	proxy	 indicators	such	as	TL,	FI	and	FA,	and	other	
traits, etc.

2  |  METHODS

2.1  |  Data source

Genetic	 variants	 significantly	 associated	 with	 overweight	
were	 extracted	 from	 a	 large	 GWAS	 of	 Genetic	 Investigation	 of	
ANthropometric	 Traits	 (GIANT)	 consortium,	 which	 comprised	
93,105	cases	and	65,840	controls	(Berndt	et	al.,	2013).	Among	them,	
the	definition	of	overweight	(case)	and	normal	weight	(control)	were	
based	on	a	baseline	measurement	of	BMI	and	used	the	WHO	stand-
ards	(World	Health	Organization,	2000).	Therefore,	the	inclusion	cri-
terion	for	cases	was	BMI	≥25 kg/m2,	while	for	controls	was	18.5 kg/
m2 ≤ BMI < 25 kg/m2.

The	genetic	variants	associated	with	TL	and	FA	were	 from	UK	
Biobank	with	the	sample	sizes	of	472,174	(216,187	males	and	255,987	
females,	age	56.1 ± 7.9)	and	423,999	(194,391	males	and	229,601	fe-
males,	age	40–	69).	At	the	UK	Biobank,	the	mean	leukocyte	TL	was	
measured	in	the	mixed	leukocyte	population	by	using	the	multiplex	
quantitative	polymerase	chain	reaction	(qPCR)	technique,	which	ex-
pressed the TL as the ratio of telomere repeats to single copy genes 
(T/S	 ratio)	 (Codd	et	 al.,	2022).	 The	 logarithmic	distribution	 is	 then	
converted	to	approximate	normal	distribution.	Then	paired	LTL	mea-
surements	were	made	 from	DNA	 taken	 at	 two	 time-	points	 (mean	
interval:	5.5 years)	in	1351	participants	to	enable	calculation	of,	and	
correction	for,	regression-	dilution.	The	loge-	transformed	leukocyte	
TL	was	 0.68 ± 0.02,	 and	 the	 study	 estimated	 that	 at	 age	40 years,	
people with >1-	SD	shorter	compared	to	≥1-	SD	longer	leukocyte	TL	
than	 the	population	mean	had	2.5 years	 lower	 life	expectancy.	FA	
was	assessed	with	non-	subjective	perceived	age	based	on	question-
naire.	 The	 results	 showed	 that	 8630	 reported	 looking	 older	 than	
their biological age, 103,300 reported looking about their age, and 
312,062	reported	looking	younger	than	their	biological	age.	For	this	
analysis, participants were coded 1 if they reported that they looked 
younger,	0	 if	 they	reported	that	 they	 looked	older,	and	0.5	 if	 they	
reported	 that	 they	 looked	 their	 age	 (Observations	were	made	 by	
third	 parties,	 both	 non-	participants	 and	 non-	researchers,	who	did	
not know the actual age of the participants. The researchers coded 
the	participants'	FA	according	to	their	perceived	age	and	actual	age).	
Using	a	mixed	linear	model	analysis	 (which	could	test	the	relation-
ship between genotype and phenotype while accounting for covari-
ates	 (age,	sex,	and	study	participation	center)	and	relatedness),	FA	
can be identified as an ordered categorical variable. Then statistics 
on	the	 linear	scale	were	transformed	 into	 log	odd	ratio	 (OR)	using	
a	Taylor	 expansion	 series.	OR	>1 indicate greater odds of looking 
youthful	(Jiang	et	al.,	2019).	Genetic	variants	significantly	associated	
with	the	FI	were	obtained	from	a	GWAS	meta-	analysis	with	164,610	
(79,791	males	and	84,819	females,	age	64.1 ± 2.8)	UK	Biobank	par-
ticipants	and	10,616	(5039	males	and	5577	females,	age	58.3 ± 7.9)	
TwinGene	participants	by	Atkins	et	al.	 (2021).	Rockwood	FI	based	
on deficit accumulation model is used as the outcome measure of 
frailty.	A	score	of	0	or	1	was	assigned	according	to	the	amount	of	
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compliance	with	the	deficit	(0	means	no).	Accordingly,	the	FI	of	each	
person is calculated as the number of deficits divided by the total 
number	of	49	deficits	described	in	the	previous	study	(Table S1).	The	
greater the value of the FI, the more serious the individual's frailty. 
The	results	showed	that	mean	proportion	of	deficits	in	UK	biobank	
and	 TwinGene	 participants	were	 0.129 ± 0.075	 and	 0.121 ± 0.080,	
respectively.	 Genetic	 variants	 associated	 with	 the	 longevity	 were	
obtained	from	two	GWAS	meta-	analyses	that	included	11,262/3484	
cases surviving at or beyond the age corresponding to the 90th/99th 
survival	percentile,	respectively,	and	25,483	controls.	In	the	study,	
cases were individuals who lived to an age above the 90th or 99th 
percentile based on cohort life tables from census data from the ap-
propriate	country,	sex,	and	birth	cohort.	Controls	were	 individuals	
who	died	at	or	before	the	age	at	the	60th	percentile	or	whose	age	
at	the	last	follow-	up	visit	was	at	or	before	the	60th	percentile	age	
(Deelen	et	al.,	2019).

Other	GWAS	datasets	obtained	 in	our	study	 included:	homeo-
stasis	 model	 assessment	 of	 insulin	 resistance	 (HOMA-	IR)	 with	
37,037	subjects	from	Dupuis	et	al.	(2010);	body	weight	(BW),	body	
fat	mass	 (BFM),	body	fat	percentage	 (BFP)	and	body	fat-	free	mass	
(BFFM)	with	336,227	subjects,	330,762	subjects,	331,117	subjects	
and	 331,291	 subjects	 from	 Neale	 Lab	 consortium;	 parental	 lifes-
pans	(PL)	with	1,012,240	subjects	from	Timmers	et	al.	(2019);	waist	
circumference,	hip	 circumference,	waist-	to-	hip	 ratio	 and	BMI	with	
232,102 subjects, 213,038 subjects, 212,244 subjects and 339,224 
subjects	 from	GIANT	consortium;	cigarettes	per	day	and	alcoholic	
drinks	per	week	with	337,334	subjects	and	335,394	subjects	from	
GWAS	 and	 Sequencing	 Consortium	 of	 Alcohol	 and	 Nicotine	 use	
(GSCAN);	coronary	heart	disease	(CHD)	with	30,482	subjects	from	
Coronary	Artery	Disease	(C4D)	Genetics	Consortium;	glycosylated	
hemoglobin	(HbA1c)	with	46,368	subjects	from	the	Meta-	Analyses	
of	 Glucose	 and	 Insulin-	Related	 Traits	 Consortium	 (MAGIC);	 sys-
tolic	blood	pressure	 (SBP)	and	diastolic	blood	pressure	 (DBP)	with	
757,601	 subjects	 from	 the	 International	 Consortium	 of	 Blood	
Pressure	 consortium;	 ischemic	 stroke	 (IS)	 with	 440,328	 subjects	
from	Malik	et	al.	(2018);	serum	creatinine	(SC)	with	133,814	subjects	
from	CKDGen	Consortium.

All	the	exposure	and	outcome	datasets	were	of	European	ances-
try	or	mainly	composed	of	European	ancestry.	There	was	no	large-	
scale crossover and overlap between participants that included in 
GWAS	 of	 overweight	 and	GWASes	 of	 aging	 proxy	 indicators	 and	
longevity.

The	 present	 study	 only	 used	 publicly	 available	 summary-	level	
statistics.	Ethical	approval	is	therefore	not	required.

2.2  |  IV selection criteria

SNPs	significantly	associated	with	exposures	or	outcome	(p < 5 × 10−8)	
were	selected	as	IVs	from	the	GWAS	datasets,	respectively.	Then,	
we	pruned	the	candidate	 IVs	 for	 linkage	disequilibrium	 (r2 > 0.001)	
and	discarded	variants	that	were	within	1-	Mb	distance	from	other	

IVs	with	a	stronger	association.	R2,	the	proportion	of	exposure	ex-
plained	by	IVs,	can	be	calculated	by	the	formula:	R2 = 2 × β2 × EAF	× 
(1 − EAF),	where	β	was	the	estimated	effect	size	of	the	SNPs	and	EAF	
indicated effect allele frequency. F-	statistic	 is	 a	 common	 index	 to	
evaluate weak instrumental bias, can be calculated by the following 
formula: F = R2/(1 − R2) × (N–	k − 1)/k, where N	was	the	sample	size	and	
k	was	the	number	of	 included	SNPs.	When	the	F-	statistic	<10, we 
consider	 the	 genetic	 variation	used	 as	 a	weak	 IV,	which	may	pro-
duce	a	certain	bias	to	the	results,	so	SNPs	with	F-	statistic	<10 will 
be	excluded.

2.3  |  Statistical analysis

The	present	study	was	conducted	in	the	R	software	(version	4.2.1,	
The	R	Development	Core	Team,	Vienna,	Austria),	we	used	base	(ver-
sion	4.2.1),	TwoSampleMR	(version	0.5.6),	MRInstruments	 (version	
0.3.2),	MRPRESSO	 (version	1.0)	MendelianRandomization	 (version	
0.6.0),	data	table	(version	1.14.2)	and	ggplot2	(version	3.3.6)	R	pack-
age and related functions.

For	two-	sample	MR	analysis,	we	evaluated	the	causal	 links	be-
tween	exposures	(overweight,	BW,	BFM,	BFP,	BFFM	and	HOMA-	IR,	
etc.)	and	outcomes	(aging	proxy	indicators,	longevity	and	PL,	etc.)	by	
fixed	effects	inverse	variance	weighted	(IVW-	FE)	method.	We	also	
used the simple median, simple mode, weighted mode, weighted 
median,	MR	Egger	and	MR	pleiotropy	residual	sum	and	outlier	(MR-	
PRESSO)	methods	for	additional	analysis.	Sensitivity	analyses	were	
performed to verify and adjust the validity and stability of the results, 
which	included	heterogeneity	test	(Cochrane's	Q	test,	MR-	PRESSO	
global	 test),	pleiotropy	 test	 (MR	Egger	 intercept	 test,	MR-	PRESSO	
distortion	test),	and	leave-	one-	out	test	(Bowden	et	al.,	2015;	Emdin	
et al., 2017;	Hemani	et	al.,	2018;	Verbanck	et	al.,	2018).	Once	hetero-
geneity	was	 identified	 (p < 0.05),	 the	multiplicative	random	effects	
IVW	 (IVW-	MRE)	method	 should	 be	 used	 for	 assessing	 the	 causal	
effect.

Although	a	series	of	 statistical	methods	have	been	carried	out	
in	the	sensitivity	analyses,	we	used	Phenoscanner	V2	(http://www.
pheno scann er.medsc hl.cam.ac.uk/)	 for	 a	 confounding	 analysis	
(Staley	et	al.,	2016).	We	explored	diseases/physical	conditions	that	
are	 significantly	 related	 to	 the	 including	 SNPs	 at	 the	 threshold	 of	
p < 1 × 10−5	(No	clear	confounding	factor	was	found	at	the	threshold	
of p < 5 × 10−8),	then	summarize	and	analyze	the	related	information	
about	the	SNPs,	GWASes	and	Diseases.	This	not	only	helps	to	iden-
tify potential confounders for adjustment in multivariate analysis, 
but	also	helps	us	to	explore	the	mediation	and	potential	mechanism	
of causality.

For	 multivariable	 MR	 analysis,	 pooled	 several	 factors	 (mainly	
from confounding analysis, including cigarettes per day, alcoholic 
drinks	per	week,	HbA1c,	SBP,	DBP,	CHD,	 IS	and	SC)	 in	 the	analy-
sis	for	adjustment.	The	IVW	method	was	used	for	the	multivariable	
analysis. Bonferroni correction was used for multiple comparisons, 
and its critical p value was defined in relation to the number of 

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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exposures	and	outcomes,	following	the	formula:	p = 0.05/E/C	(E and 
C	were	the	number	of	exposures	and	outcomes,	respectively).

We	used	a	mediation	MR	analysis	 (two-	step	MR)	to	verify	and	
analyze	 the	 mediators	 that	 mediated	 the	 associations	 between	
overweight	and	aging	proxy	 indicators.	Candidate	mediators	were	
mainly	HbA1C,	CHD,	and	IS	(it	should	be	noted	that	they	were	in-
cluded	in	the	deficits	of	FI).	The	specific	method	includes	two	steps.	
Step	 (1):	 to	find	significant	SNPs	from	the	GWAS	about	exposure,	
remove	SNPs	with	linkage	disequilibrium,	and	then	extract	the	re-
maining	SNPs	from	the	GWAS	of	the	mediating	variable.	 It	 is	nec-
essary	 to	ensure	 that	 the	 remaining	SNPs	are	not	directly	 related	
to confounding factors and mediating variable. Finally, the causal 
effect	of	exposure	on	mediator	(assume	beta1)	are	calculated.	Step	
(2):	Use	the	same	method	to	calculate	the	causal	effect	of	media-
tor	on	outcome	(assume	it	is	beta2).	Assume	that	the	causal	effect	
of	 exposure	on	outcome	 is	 beta0.	 The	 following	 conditions	 exist:	
(i)	 If	beta0,	beta1,	and	beta2	are	all	 significant,	 this	 indicates	 that	
there	 is	a	causal	association	between	exposure	and	outcome,	and	
this association may be partially mediated by mediating variables. 
beta1*beta2	 can	 be	 used	 as	 the	 mediating	 effect	 from	 exposure	
to outcome, and its mediating proportion can also be calculated 
((beta1*beta2)/beta0).	 (ii)	 If	beta0	 is	not	significant,	but	beta1	and	
beta2	 are	 both	 significant,	 the	 association	 from	 exposure	 to	 out-
come can be considered to be completely mediated by this medi-
ator.	(iii)	If	beta0	is	significant,	but	at	least	one	of	beta1	and	beta2	
is not significant, there is no mediating effect mediated by this me-
diating	variable	 in	 the	causal	 association	of	exposure	on	outcome	
(Relton	&	Davey	Smith,	2012).

3  |  RESULTS

3.1  |  Overweight and aging proxy indicators

Fourteen	 SNPs	 associated	 with	 overweight	 at	 genome-	wide	 sig-
nificance	were	 identified,	and	one	weak	IV	 (rs12444979,	F = 7.99)	
was	excluded	(Table 1).	The	main	results	of	MR	analysis	are	shown	
in Figure 1.	 IVW-	FE	method	indicated	that	there	were	significant	
causal associations of genetically predictive overweight on TL, 
FI	 and	 FA	 (β = −0.018,	 95%	 confidence	 interval	 [CI] = −0.033	 to	
−0.003,	 p = 0.0162;	 β = 0.055,	 95%	 CI = 0.030–	0.079,	 p < 0.0001;	
β = 0.029,	 95%	 CI = 0.022–	0.037,	 p < 0.0001	 respectively).	
Overweight was significantly associated with decreased telomere 
length,	increased	FI	and	FA	(Figure 1).	Sensitivity	analysis	showed	
that	there	was	heterogeneity	in	the	result	of	FA,	but	there	was	no	
pleiotropy	 (Table 2).	 The	 further	 IVW-	MRE	 method	 was	 further	
used	 and	 indicated	 causal	 effect	 of	 overweight	 on	 FA	 (β = 0.029,	
95%	CI = 0.013–	0.046,	p = 0.0005).	Leave-	one-	out	tests	suggested	
that	the	associations	between	overweight	and	TL,	FI,	and	FA	were	
effective and sensitive, while the association between overweight 
and	 TL	was	 less	 robust	 (Figure S1).	We	 further	 analyzed	 the	 as-
sociations	between	every	single	SNP	(associated	with	overweight)	
and	 TL,	 and	 the	 results	 showed	 that	 a	 few	 SNPs	 (rs9816226,	
rs10182181,	 rs10853932	 and	 rs13130484)	were	 associated	with	
TL	increase	(Figure S2).

We	also	conducted	reverse	association	analyses	of	aging	proxy	
indicators on overweight, which showed no reverse causality 
(Figure S3).

TA B L E  1 Included	SNPs	that	are	significantly	associated	with	overweight.

SNP
Nearby 
gene Chr. EA OA EAF β SE p- value R2 F statistic

rs10182181 ADCY3 2 G A 0.50 0.057 0.009 2.10E-	10 0.0016 19.88

rs10853932 KCTD15 19 C T 0.69 0.067 0.011 1.30E-	09 0.0019 23.47

rs12444979* GPRC5B 16 T C 0.06 −0.079 0.013 1.80E-	09 0.0007 7.99

rs12623218 TMEM18 2 A T 0.88 0.110 0.012 5.80E-	22 0.0025 31.08

rs13130484 GNPDA2 4 T C 0.42 0.071 0.009 3.90E-	14 0.0025 30.16

rs1421085 FTO 16 C T 0.45 0.140 0.009 5.80E-	50 0.0097 119.61

rs2030323 BDNF 11 C A 0.78 0.079 0.011 1.10E-	12 0.0021 25.97

rs2206277 TFAP2B 6 T C 0.10 0.080 0.012 5.60E-	12 0.0011 13.59

rs2568958 NEGR1 1 A G 0.65 0.062 0.009 1.10E-	11 0.0017 21.41

rs2596125 HNF4G 8 T C 0.44 −0.052 0.009 5.90E-	09 0.0013 16.32

rs523288 MC4R 18 T A 0.29 0.099 0.011 1.70E-	20 0.0040 49.31

rs633715 SEC16B 1 C T 0.27 0.078 0.011 4.00E-	12 0.0024 29.17

rs8028313 MAP2K5 15 G C 0.22 −0.065 0.011 2.00E-	09 0.0015 17.74

rs9816226 ETV5 3 T A 0.85 0.070 0.012 2.00E-	09 0.0012 15.20

Abbreviations:	Chr,	chromosome;	EA,	effect	allele;	EAF,	effect	allele	frequency;	OA,	other	allele;	SE,	standard	error;	SNP,	single	nucleotide	
polymorphism.
*Weak	instrumental	variable.
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F I G U R E  1 Mendelian	randomization	analysis	of	the	effect	of	overweight	on	telomere	length,	frailty	index	and	facial	aging.	IVW-	MRE,	
inverse	variance	weighted	(multiplicative	random	effects);	IVW-	FE,	inverse	variance	weighted	(fixed	effects);	MR-	PRESSO,	Mendelian	
randomization	pleiotropy	residual	sum	and	outlier.

TA B L E  2 Sensitivity	analysis	of	overweight	on	facial	aging,	frailty	index,	telomere	length,	90th	survival	percentile,	and	99th	survival	
percentile.

Overweight on

Heterogeneity test Pleiotropy test

Cochrane's Q test MR- PRESSO global test MR- Egger intercept test MR- PRESSO distortion test

Q p RSSobs p Intercept p Coefficient p

Facial aging 53.4987 <0.01 60.2901 <0.01 −0.0023 0.349 −4.0054 0.815

Frailty	index 10.4656 0.575 12.2154 0.630 0.0021 0.559 0 1

Telomere length 16.3291 0.177 18.9872 0.187 0.0025 0.322 0 1

90th survival percentile 6.1065 0.911 6.9130 0.918 0.0083 0.685 0 1

99th survival percentile 16.3701 0.175 18.6994 0.216 0.0310 0.420 0 1
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3.2  |  Overweight and longevity

MR	 analyses	 showed	 that	 there	were	 significant	 causal	 associa-
tions	of	overweight	on	longevity	(90th	survival	percentile	and	99th	
survival	 percentile).	 Overweight	 was	 associated	 with	 decreased	
longevity	 expectancy	 (90th	 survival	 percentile,	 β = −0.220,	 95%	
CI = −0.323	 to	 −0.118,	 p < 0.0001;	 99th	 survival	 percentile,	
β = −0.389,	 95%	 CI = −0.652	 to	 −0.126,	 p = 0.0038)	 (Figure 2).	
Sensitivity	analysis	 showed	that	 there	was	no	heterogeneity	and	
pleiotropy	(Table 2).	Moreover,	leave-	one-	out	tests	indicated	that	
the	associations	were	effective	and	robust	(Figure S4).

3.3  |  Overweight and PL

There	was	 significant	 causal	 link	 of	 overweight	 on	 PL	 (β = −0.129,	
95%	 CI = −0.173	 to	 −0.084,	 p < 0.0001),	 but	 the	 reverse	 causality	
was	not	significant	(Figure S5).

3.4  |  HOMA- IR, overweight and aging 
proxy indicators

The	analyses	results	showed	a	causal	association	between	HOMA-	IR	
and	 overweight	 (β = 0.606,	 95%	 CI	 =0.402–	0.810,	 p < 0.0001),	
but	 there	was	no	causality	of	HOMA-	IR	on	aging	proxy	 indicators	
(Figure S6).

3.5  |  BW, BFM, BFP, BFFM and aging 
proxy indicators

The	 analyses	 results	 showed	 that	 both	 BFM	 and	 BFP	 had	 sig-
nificant	 causal	 links	 on	 aging	 proxy	 indicators	 (BFM	 on	 TL:	
β = −0.057,	 95%	 CI = −0.081	 to	 −0.033,	 p < 0.0001;	 BFM	 on	 FI:	
β = 0.212,	95%	CI = 0.178–	0.246,	p < 0.0001;	BFM	on	FA:	β = 0.048,	
95%	 CI = 0.035–	0.061,	 p < 0.0001;	 BFP	 on	 TL:	 β = −0.078,	 95%	
CI = −0.110	 to	 −0.045,	 p < 0.0001;	 BFP	 on	 FI:	 β = 0.295,	 95%	
CI = 0.247–	0.343,	p < 0.0001;	BFP	on	FA:	β = 0.050,	95%	CI = 0.032–	
0.069,	p < 0.0001).	There	were	causal	associations	of	BW	on	FI	and	
FA	 (β = 0.145,	 95%	 CI = 0.113–	0.177,	 p < 0.0001;	 β = 0.055,	 95%	
CI = 0.043–	0.068,	 p < 0.0001	 respectively),	 but	 not	 on	 TL.	 BFFM	
only	 significantly	 associated	 with	 FA	 (β = 0.056,	 95%	 CI = 0.042–	
0.070,	 p < 0.0001).	 Although	 the	 IVW	 method	 showed	 a	 causal	
link	between	BFFM	and	FI,	the	MR-	Egger	method	showed	an	op-
posite	direction,	suggesting	that	the	causality	was	invalid	(Bowden	
et al., 2015).	(Figure 3).

3.6  |  Obesity indices and aging proxy indicators

The	 results	 suggested	 that	 waist	 circumference	 and	 waist-	to-	
hip	 ratio	 had	 significant	 positive	 causal	 effects	 on	 FI	 (β = 0.134,	
95%	 CI = 0.064–	0.204,	 p = 0.002;	 β = 0.109,	 95%	 CI = 0.040–	
0.177,	 p = 0.0019),	 while	 hip	 circumference,	 waist	 circumference	
and	 waist-	to-	hip	 ratio	 had	 significant	 positive	 causal	 effects	 on	

F I G U R E  2 Mendelian	randomization	
analysis of the effect of overweight on 
longevity	(90th	survival	percentile	and	
99th	survival	percentile).	IVW-	MRE,	
inverse	variance	weighted	(multiplicative	
random	effects);	IVW-	FE,	inverse	variance	
weighted	(fixed	effects);	MR-	PRESSO,	
Mendelian	randomization	pleiotropy	
residual sum and outlier.
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F I G U R E  3 Mendelian	randomization	analysis	of	the	effect	of	body	weight,	body	fat	mass,	body	fat	percentage	and	body	fat-	free	mass	
on	telomere	length,	frailty	index	and	facial	aging.	IVW-	MRE,	inverse	variance	weighted	(multiplicative	random	effects);	IVW-	FE,	inverse	
variance	weighted	(fixed	effects).
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FA	 (β = 0.051,	 95%	 CI = 0.027–	0.074,	 p < 0.0001;	 β = 0.055,	 95%	
CI = 0.028–	0.082,	 p = 0.0001;	 β = 0.059,	 95%	 CI = 0.025–	0.094,	
p = 0.008	 respectively).	 After	 adjusted	 for	 BMI,	 only	waist-	to-	hip	
ratio was significantly associated with FI, and waist circumference 
was	 significantly	 associated	 with	 FA	 (β = 0.062,	 95%	 CI = 0.014–	
0.111, p = 0.0122;	β = 0.036,	95%	CI = 0.011–	0.061,	p = 0.0048	 re-
spectively)	(Figure S7).

3.7  |  Confounding analysis

After	 summarize	 and	 analyze	 the	 related	 information	 about	
overweight	 associated	 SNPs,	 GWASes	 and	 Diseases	 through	
Phenoscanner,	we	found	some	potential	confounding	factors,	mainly	
including	 substance/energy	metabolism,	 sex	hormones,	 cardiovas-
cular diseases, diabetes, cognitive dysfunction, smoking, drinking, 
renal diseases, respiratory diseases, neuromuscular disorders, auto-
immune	diseases,	and	cancer,	etc.	(Figure 4).

3.8  |  Multivariate analysis

To further estimate the associations between overweight and aging 
proxy	indicators,	we	performed	multivariate	MR	Analyses	(Figure 5).	
No	single	factor	could	adjust	the	causal	effect	of	overweight	on	FI,	
and	overweight	on	FA	(all	p < 0.025).	After	adjusted	for	all	factors	at	
once,	the	causal	association	of	overweight	and	FA	remained	signifi-
cant	(p = 0.0001),	while	the	association	between	overweight	and	FI	
was	suggestive	(p = 0.0245).

3.9  |  Mediation analysis

Based on the results of confounding analysis and multivariate 
analysis,	 we	 analyzed	 the	 mediating	 effects	 of	 HbA1c,	 CHD,	 and	
IS	on	the	causality	between	overweight	and	aging	proxy	indicators	
(Figure 6).	The	results	suggested	that	the	causal	effect	of	overweight	
on	FI	might	 partly	mediated	by	CHD	and	 IS,	while	 the	 causal	 link	

F I G U R E  4 The	result	of	confounding	analysis.	SNP,	single	nucleotide	polymorphism;	GWAS,	genome-	wide	association	studies.
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of	overweight	on	FA	might	partly	mediated	by	HbA1c,	CHD	and	IS.	
Specifically,	CHD	and	 IS	mediated	approximately	12%	and	11%	of	
effects	between	overweight	and	FI,	respectively.	And	HbA1c,	CHD,	
and	IS	mediated	approximately	4%,	9%	and	4%	of	effects	between	
overweight	and	FA,	respectively.

4  |  DISCUSSION

In	 this	 study,	based	on	 the	 large-	sample	GWASes	data,	we	mainly	
evaluated	 the	 associations	 between	 overweight	 and	 aging	 proxy	
indicators	 using	 MR	 analysis.	 We	 performed	 several	 MR	 analysis	

F I G U R E  5 Multivariate	analysis	of	the	effects	of	overweigh	on	telomere	length,	frailty	index	and	facial	aging.	CHD,	coronary	heart	
disease;	SBP,	systolic	blood	pressure;	DBP,	diastolic	blood	pressure;	IS,	ischemic	stroke;	SC,	serum	creatinine.
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methods	 including	 two-	sample	 analysis,	 multivariate	 analysis	 and	
mediation	analysis,	which	showed	that	(1)	overweight	is	probably	as-
sociated with a higher risk of decreased TL, increased FI, increased 
FA	and	decreased	longevity	expectancy	(lower	likelihoods	to	reach	
or	exceed	90th	survival	percentile	and	99th	survival	percentile);	(2)	
overweight seems to be causally associated with lower parental life 
expectancy,	but	the	reverse	causality	was	not	valid;	(3)	there	is	sig-
nificant	causality	between	HOMA-	IR	and	overweight,	but	not	with	
aging	proxy	indicators;	(4)	the	findings	tend	to	favor	causal	links	be-
tween	BFM/BFP	on	aging	proxy	 indicators,	 but	not	BFFM;	 (5)	 re-
gardless	of	overweight	or	not,	waist-	to-	hip	ratio	is	a	risk	factor	for	
increased FI, and waist circumference is a risk factor for increased 
FA;	(6)	CHD	and	IS	might	mediate	the	association	of	overweight	on	
both	FI	and	FA.

Aging	is	a	complex	biological	process,	mainly	manifested	as	TL	
decrease	at	the	molecular	level	(Chakravarti	et	al.,	2021).	Clinically	
manifest as frailty, chronic diseases, or abnormal substance/energy 
metabolism	(Rockwood	&	Howlett,	2018;	Stout	et	al.,	2017).	In	ad-
dition,	 skin	 aging	 is	 an	 important	extrinsic	manifestation	of	 aging	
(Purba	et	al.,	2001; Zou et al., 2021).	The	definition	of	aging	is	based	
on biological age, and many factors can accelerate aging so that bi-
ological	age	exceeds	chronological	age	 (Bhanot	et	al.,	2005).	This	
process is necessarily accompanied by the occurrence of aging re-
lated diseases and events, such as increased incidence of chronic 
diseases or cancer, decreased quality of life, and increased risk of 
death	(Cai	et	al.,	2022).	Assessing	accelerated	aging	by	measuring	
the	change	of	biological	age	proxy	indicators	including	TL,	FI,	and	
FA	is	of	great	 importance	for	 identifying	factors	contribute	to	ac-
celerated	aging	and	for	intervention.	After	identifying	risk	factors,	

it could help to delay or improve the onset of aging related diseases 
and events by adjusting medical resource allocation and public 
health strategies.

Overweight is associated with a variety of acute/chronic dis-
eases, such as hypertension, diabetes, stroke and heart disease 
(Apovian	et	al.,	2022).	It	is	worth	noting	that	some	studies	reported	
that metabolic disorders related to overweight are similar to nor-
mal aging, which indicates that overweight may accelerate aging 
(Robinson	et	al.,	2020).	However,	accelerated	aging	is	mediated	by	
genes, which is difficult to be identified, and is difficult to intervene. 
MR	analysis	is	a	method	to	infer	causality	based	on	genetic	variation,	
which	is	suitable	for	exploring	accelerated	aging.

In	the	present	study,	we	collected	 large-	sample	GWASes	data	
like	TL,	FI	and	FA	from	UK	Biobank.	Then	we	conducted	MR	anal-
yses and found that overweight was significantly associated with 
TL	decrease,	FI	increase	and	FA	increase.	TL	decrease,	FI	increase	
and	 FA	 increase	 could	 be	 regarded	 as	 the	 signals	 of	 accelerated	
aging, for which the findings suggested that genetically predicted 
overweight	 might	 be	 causally	 related	 to	 accelerated	 aging	 (Cao	
et al., 2022; Chakravarti et al., 2021;	 Stewart	&	 Sharples,	2022).	
Moreover,	the	findings	suggest	that	overweight	was	a	risk	factor	for	
longevity	expectancy,	as	indicated	by	the	findings	that	overweight	
was causally associated with the decreased likelihoods of reach-
ing/exceeding	 90th	 survival	 percentile	 and	 99th	 survival	 percen-
tile, which was consistent with the previous clinical observations 
(Chen	et	al.,	2019;	Hensrud	&	Klein,	2006).	In	addition,	we	explored	
the	associations	of	BW	and	BW	related	parameters	(BFM,	BFP	and	
BFFM)	on	aging	proxy	indicators.	Compared	with	BW,	the	increase	
of	 BFM	 and	 BFP	 was	 significantly	 associated	 with	 accelerated	

F I G U R E  6 Mediation	analysis	of	
the effect of overweight on telomere 
length,	frailty	index	and	facial	aging.	
CHD,	coronary	heart	disease;	IS,	ischemic	
stroke.
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aging,	while	the	increase	of	BFFM	was	not	significantly	associated	
with accelerated aging. Taken together, overweight seems to lead 
to accelerated aging. This might prompt that reducing weight is of 
great significance for ameliorating the progression of accelerated 
aging.	 By	 extension,	 public	 health	 strategies	 such	 as	weight	 con-
trol,	increasing	funding	expenditure	for	overweight	and	treatment	
research, increasing the allocation of health resources related to 
overweight treatment, and developing more rational dietary guide-
lines are advocated.

By	 summarizing	 and	 analyzing	 the	 overweight	 associated	
SNPs,	GWASes	and	Diseases,	we	got	some	potential	confounders	
and	included	them	in	the	multivariate	analysis.	Since	confounding	
and mediating effects share similarities in causal inference, these 
findings reinforce our understanding of the mechanisms underly-
ing	the	occurrence	of	causality	and	mediation	(Carter	et	al.,	2021).	
The progression of aging is closely related to alterations in sub-
stance/energy metabolism, cardiovascular diseases, diabetes, 
cognitive dysfunction, renal diseases, respiratory diseases, au-
toimmune diseases, cancer, smoking or alcohol consumption, 
and	 so	 on	 (López-	Otín	 et	 al.,	 2013).	Moreover,	 the	multivariate	
analysis results showed that the causal effect of overweight on 
FI	and	FA	was	considerably	 robust,	and	remained	after	adjusted	
for	 smoking,	drinking,	HbA1c,	CHD,	SBP/DBP,	 IS	 and	SC.	 In	 the	
mediation	 study,	we	explored	 the	mediating	effect	of	 several	FI	
deficit	phenotypes	(HbA1c,	CHD	and	IS)	on	the	causality	between	
overweight	 and	 aging	 proxy	 indicators.	 The	 results	 suggested	
that	CHD	and	IS	might	be	potential	mediators	of	the	causal	link	of	
overweight	on	both	FI	and	FA.	Since	the	 insulin	resistance	plays	
an	 important	 role	 in	 the	 development	 of	 overweight	 (Friesen	&	
Cowan, 2019),	we	 then	 evaluated	 the	 associations	 of	HOMA-	IR	
with	overweight	and	aging	proxy	 indicators.	The	results	showed	
that	HOMA-	IR	had	a	causal	effect	on	overweight	but	not	on	any	
aging	 proxy	 indicator,	 which	 could	 be	 explained	 as	 overweight	
played	a	fully	mediating	role	in	the	association	between	HOMA-	IR	
and	accelerated	aging	 (Relton	&	Davey	Smith,	2012).	 Therefore,	
we	need	to	recognize	the	importance	of	weight	control	as	well	as	
improving and treating insulin resistance, so as to cope with the 
increasing pressure of aging of population and the prevalence of 
overweight.

Despite	the	large	sample	size,	our	study	is	prone	to	several	lim-
itations.	Although	we	have	used	a	variety	of	MR	methods	 to	pre-
vent confusion caused by pleiotropy, we cannot completely rule 
out	residual	bias,	which	is	the	established	limitation	of	MR	studies.	
And	MR	studies	often	explore	the	lifelong	impact	of	risk	factors	on	
outcomes, and it is difficult to reveal the causal effects of different 
stages	of	disease	development.	At	present,	there	is	no	GWAS	data	
related	 to	 low	BW	and	 no	 gender	 stratified	GWAS	data	 for	 over-
weight,	so	the	association	between	low	BW	and	aging	proxy	indica-
tors, and the gender difference in overweight as well as accelerated 
aging	 cannot	 be	 addressed	 in	 this	 study.	Additionally,	we	 need	 to	
realize	that	MR	Analysis	is	definitely	less	suggestive	of	causality	than	
RCT,	and	more	high-	quality	RCTs	evidence	is	still	needed	to	supple-
ment and support.

5  |  CONCLUSIONS

The present study identified overweight as a risk factor for acceler-
ated	aging	(TL	decreased,	FI	increased,	FA	increased)	and	decreased	
longevity	 expectancy.	 Accordingly,	 the	 potential	 significance	 of	
weight control and treatment of overweight in combating acceler-
ated	aging	need	to	be	emphasized.	The	findings	additionally	suggest	
the necessity of improving and treating insulin resistance against 
overweight and accelerated aging.
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