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Abstract
Attaining	 personalized	 healthy	 aging	 requires	 accurate	monitoring	 of	 physiological	
changes and identifying subclinical markers that predict accelerated or delayed aging. 
Classic biostatistical methods most rely on supervised variables to estimate physi-
ological	aging	and	do	not	capture	the	full	complexity	of	inter-	parameter	interactions.	
Machine	learning	(ML)	is	promising,	but	its	black	box	nature	eludes	direct	understand-
ing, substantially limiting physician confidence and clinical usage. Using a broad popu-
lation	dataset	from	the	National	Health	and	Nutrition	Examination	Survey	(NHANES)	
study	 including	 routine	 biological	 variables	 and	 after	 selection	 of	 XGBoost	 as	 the	
most	appropriate	algorithm,	we	created	an	innovative	explainable	ML	framework	to	
determine	a	Personalized	physiological	age	(PPA).	PPA	predicted	both	chronic	disease	
and	mortality	 independently	of	 chronological	 age.	Twenty-	six	variables	were	 suffi-
cient	to	predict	PPA.	Using	SHapley	Additive	exPlanations	(SHAP),	we	implemented	a	
precise	quantitative	associated	metric	for	each	variable	explaining	physiological	(i.e.,	
accelerated	or	delayed)	deviations	from	age-	specific	normative	data.	Among	the	vari-
ables,	glycated	hemoglobin	(HbA1c)	displays	a	major	relative	weight	in	the	estimation	
of	PPA.	Finally,	clustering	profiles	of	identical	contextualized	explanations	reveal	dif-
ferent	aging	 trajectories	opening	opportunities	 to	 specific	clinical	 follow-	up.	These	
data	show	that	PPA	 is	a	 robust,	quantitative	and	explainable	ML-	based	metric	 that	
monitors	personalized	health	status.	Our	approach	also	provides	a	complete	frame-
work applicable to different datasets or variables, allowing precision physiological age 
estimation.
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1  |  INTRODUC TION

The	 expansion	 in	 the	 aging	 population	 and	 concomitant	 age-	
associated increase in chronic diseases and disabilities have resulted 
in	a	rising	global	socio-	economic	burden.	As	a	consequence	in	recent	
years, the main goal of aging research tends to develop approaches 
promoting healthy aging and preventing loss of autonomy. In this 
regard,	the	WHO	identified	 intrinsic	capacity	and	associated	func-
tions as a major target to facilitate accurate monitoring of healthy 
aging	 (Beard	 et	 al.,	2016).	 At	 the	 same	 time,	 the	 geroscience	 par-
adigm	emphasized	changes	 in	physiological	biology	along	aging	as	
the	 primary	 cause	 for	 chronic	 disease	 (Kennedy	 et	 al.,	 2014). Of 
note, geroscience investigations are often conducted at the cellular 
or	molecular	 scales,	 far	 from	 the	 integrative	 view	 required	 to	 ad-
dress clinical aspects of healthy aging. Indeed, aging results from 
multifactorial small deviations in interdependent physiological pro-
cesses starting at earliest age and leading to highly variable health 
trajectories when comparing people of the same chronological age 
(Li et al., 2015).	We	recently	proposed	that	healthy	aging	and	gero-
science could be reconciled through the gerophysiology perspective 
(Ferrucci	et	al.,	2020;	Kemoun	et	al.,	2022).

Several studies have proposed operational definitions of a “bio-
logical age.” These include sets of molecular biomarkers, such as the 
epigenetic	clock	or	epigenetic	markers	(Hägg	et	al.,	2019;	Horvath	
&	Raj,	2018;	McCrory	et	al.,	2021), or alternative integrative strat-
egies	 (Klemera-	Doubal,	 i.e.,	 KDM,	 Levine	 methods,	 homeostatic	
dysregulations,	allostatic	load)	that	are	based	on	linear	or	non-	linear	
combinations of phenotypic measures of aging (Cohen et al., 2013; 
Karlamangla	et	al.,	2002;	Klemera	&	Doubal,	2006; Liu et al., 2018). 
In most cases, individual biological age is estimated by comparing a 
set	of	variables	from	referent	populations.	For	example,	the	homeo-
static	 dysregulation	 estimates	 the	Mahalanobis	 distance	deviation	
of biomarkers from a referent population considered to have optimal 
functions (Cohen et al., 2013; Liu et al., 2018)	while	KDM	(Klemera	&	
Doubal, 2006)	estimates	the	relative	age-	dependent	deviation	from	
a referent population with different ages defined from linear regres-
sions	of	several	biomarkers.	All	of	these	measures	appear	to	be	cor-
related	with	each	other	(Hastings	et	al.,	2019;	McCrory	et	al.,	2019, 
2020).	In	all	cases,	most	strategies	remained	hypothesis-	driven,	used	
a	limited	number	of	pre-	selected	variables	(socio-	economic,	clinical,	
and/or biological variables) and hence share the risk of ignoring im-
portant	variables	in	biological	aging	(Klemera	&	Doubal,	2006).

The	recent	rising	development	of	machine	learning	(ML)	has	rev-
olutionized	 data	mining	 by	 exploiting	 databases.	 In	 particular,	ML	
strategies appear perfectly suited for studying integrated pheno-
types	in	large	and	high-	dimensional	databases.	ML	computes	many	

covariates even in complex interactions, regardless of their yields 
and	nature,	may	outperforming	common	statistical	approaches	 (Bi	
et al., 2019; Shin et al., 2021). In the field of biological age estimation, 
a wide variety of data may be integrated, from images (brain magnetic 
resonance imaging, chest radiology, retinal or face photography; 
Lombardi et al., 2021; Nusinovici et al., 2022; Raghu et al., 2021), to 
physical activity data, up to blood biomarkers, gut microbiome or ge-
nomic	data	(Galkin	et	al.,	2020, 2021). Deep learning (DL) has offered 
new powerful ways of handling some of these data types, in partic-
ular	images	and	sequential	data	like	physical	activity.	Convolutional	
neural networks (CNN) and recurrent neural networks (RNN) appear 
particularly relevant for knowledge extraction from images (Cole 
et al., 2017)	and	sequential	data	 (Rahman	&	Adjeroh,	2019) for bi-
ological	age	estimation,	 respectively.	Considering	 the	adequacy	of	
ML	models	with	tabular	data,	a	DL	framework	based	on	a	deep	neu-
ral	network	hybridized	with	an	ElasticNet	model	has	been	proposed	
for	biological	age	estimation	based	on	blood	chemistry	(Mamoshina	
et al., 2018; Putin et al., 2016),	revealing	the	existence	of	population-	
specific aging patterns. Unfortunately, DL models displayed little 
explainability (Cohen et al., 2016; Putin et al., 2016), a feature favor-
ing medical professional acceptance and use, and relevant to pro-
vide	 potential	 explanatory	 pathophysiological	 hypotheses	 (Amann	
et al., 2020).

Using	 the	 National	 Health	 and	 Nutrition	 Examination	 Survey	
(NHANES)	 database	 gathering	 routine	 laboratory	 values	 for	 phys-
iological	 functions,	 we	 built	 a	 comprehensive	 analytic	 ML-	based	
strategy to (i) define and estimate physiological age and capture 
differences to chronological age that show accelerated or delayed 
aging, (ii) provide the relative weights of the variables in comparison 
with an average individual in the total population or in comparison 
with an individual sharing chronological age (global and contextual-
ized	explainability,	respectively),	(iii)	unravel	how	variations	of	each	
variable	quantitatively	affect	the	explanations,	 (iv)	provide	a	range	
of biological values associated with healthy aging, and (v) identify 
different aging trajectories by clustering profiles of identical contex-
tualized	explanations.

2  |  MATERIAL S AND METHODS

2.1  |  Data source

All	 data	 from	 the	 NHANES	 study	 were	 collected	 at	 the	 Centers	
for Disease Control and Prevention website [https://wwwn.cdc.
gov/Nchs/Nhanes],	 from	NHANES	1999–	2000	to	NHANES	2017–	
2018. Data were available from multiple files, each containing a 
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set	of	 variables	 for	 a	 specific	 year.	All	 these	 files	were	merged	 to	
obtain a single database containing all the available data for each 
subject (with the SEQN— the id of the subject— providing the joint 
between all the information). This approach allowed the generation 
of	a	unique	database	that	gathers	all	the	subjects	examined,	as	well	
as	related	data,	over	a	20-	year	span.

2.2  |  Inclusion criteria of variables for algorithm 
development

In the database, only variables from laboratory parameters were 
selected, with the exception of pollutants, toxic exposure, and 
infection-	related	 variables.	 We	 chose	 simple	 biological	 variables	
routinely	assessed	for	diagnosis	and	treatment-	monitoring	because:	
(i) these variables span the landscape of physiological homeostasis 
and their variations have been widely documented, and (ii) their rou-
tine	use	makes	personalized	physiological	age	(PPA)	easy	to	translate	
into clinical settings or studies, including longitudinal analyses.

Chronological age and gender were taken from demographic 
data.	In	addition,	the	age	limit	of	79 years	was	chosen	because	de-
pending	 on	 the	 time	 period,	 1999–	2006	 or	 2007–	2018,	NHANES	
defined	 two	different	 ages,	 85	or	 80 years,	 respectively,	 as	 cutoff	
ages	for	their	coding.	Participants	under	12 years	old	were	excluded	
from the database because many laboratory variables were only col-
lected in this age group.

2.3  |  Variable selection and merging

To generate a consistent and large database, with a maximal number 
of common biological variables for subjects, we performed a manual 
data cleaning to eliminate redundant outcomes, both within the same 
year and in different years (Supplementary Text).	After	this	step,	and	
considering the distribution of the number of available variables for 
a given number of subjects, the largest dataset with the minimum 
amount of missing data was defined. The cutoff for this distribution 
selected	variables	with	at	least	50,000	individuals.	Individuals	with	
more than 10% missing values were also dropped from database. 
After	 processing,	 the	 selected	dataset	 contained	60,322	 individu-
als with 48 laboratory variables (Table S1) and limited missing data 
(0.6% of data, Figure S2).

2.4  |  Machine learning processing

2.4.1  |  Handling	missing	data

Processing	for	data	visualization	and	Machine	Learning	is	described	
below	 (except	 for	 XGBoost	which	 is	 able	 to	manage	missing	 data	
natively).	A	multivariate	single	imputation	method	for	missing	data	
based	on	 an	 iterative	 imputer	was	 implemented,	 using	 a	Bayesian	

Ridge	model	as	the	estimator	at	each	step	of	the	round-	robin	impu-
tation	(van	Buuren	&	Groothuis-	Oudshoorn,	2011).

2.4.2  |  Data	visualization

A	projection	was	made	using	the	Uniform	Manifold	Approximation	
and	Projection	(UMAP)	algorithm	(McInnes	et	al.,	2018). The method 
builds	an	undirected	graph	using	K-	Nearest-	Neighbors	on	the	entire	
dataset, viewed in a 2D scatter plot.

2.4.3  |  Development	of	the	machine	
learning pipeline

The dataset was divided into a training and a test set in an 80:20 
proportion (Panesar, 2021) to train machine learning algorithm per 
se	with	chronological	age	as	a	target	value.	GrootCV	algorithm	was	
implemented using the “arfs 0.2.3” package to eliminate variables 
that	did	not	contribute	to	the	estimation	of	chronological	age	(cross-	
validated	 feature	selection	based	on	 lightGBM	and	 feature	 impor-
tance	derived	from	SHAP	importance).

2.4.4  | Model	robustness	assessment

Three	classes	of	models	were	compared:	(i)	Tree-	based	with	Decision	
Tree,	 Random	 Forests	 (“scikit- learn 1.0.1”	 package)	 and	 Gradient	
Boosting	 Machine	 XGBoost	 (“xgboost 1.5.1” package), (ii) Neural 
Networks	with	Multi-	Layer	Perceptron	(MLP),	and	(iii)	penalized	lin-
ear models with Elastic Net through the “scikit- learn 1.0.1” package. 
Grid-	search	 exploration	 of	 hyperparameters	 with	 cross-	validation	
was performed on training dataset for each model using the “optuna 
2.10.0” and “ray 1.9.1” packages (list of the hyperparameters grid 
search in Table S2).	Model	 training	 aimed	 at	minimizing	 the	mean	
absolute	error	(MAE).	Models	were	evaluated	based	on	their	results	
on the train and test set in terms of R2 (coefficient of determination) 
and	MAE.	Standard	deviations	were	provided	for	the	train	set,	using	
fivefold	cross-	validation.	To	avoid	performance	discrepancy	across	
the age group during model training, a custom objective function 
was	introduced	for	XGBoost.	It	used	a	normalization	per	chronologi-
cal age to correct the gradient used by the model and thus correct its 
error at the next iteration (Equation 1).

where gradi is the gradient to be calculated for the ith individual, ŷ is 
the prediction of the model for a given iteration, y is the chronological 
age, age(i) represents all individuals that display the same age as the ith 
individual, and N is the total number of individuals.

(1)gradi =
�
ŷi − yi

�
×

���������

∑
j ∈ age(i)

(ŷj − yj)

�age(i)�
∑N

k=1(ŷk − yk)
N

���������
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2.4.5  | Model	explainability

SHapley	 Additive	 exPlanations	 (SHAP)	 was	 used	 as	 explainability	
model, “shap 0.39.0” package, to give local explanations and allow 
computation of the contribution of each variable to the prediction 
for	each	individual	(Lundberg	&	Lee,	2017). Shapley values originate 
from the cooperative game theory field and are the average marginal 
contribution	of	a	variable	among	all	possible	coalitions.	The	SHAP	
value for each variable for an individual corresponds to the contribu-
tion in age (positive or negative) of this variable to the age prediction 
of	 this	 individual.	The	predicted	age	of	an	 individual	PPA	 is	 there-
fore the sum of the total contributions of these variables to the base 
value (the mean predicted age of the individuals of the dataset).

2.4.6  |  Contextualized	explainability

To define the influence of each laboratory variable of the model for 
an individual, a separate explanation model was trained for each age 
group,	thus	defining	a	contextualized	explanation.	The	contextual-
ized	SHAP	value	of	a	variable	 for	a	given	 individual	 corresponded	
to the contribution in age (positive or negative) of this variable, not 
relative to the whole population, but relative to other individuals 
sharing the same chronological age (with the mean predicted age 
of the individuals sharing the same chronological age as the base 
value).	 Summing	 variables	 gave	 the	 individual	 PPA	 deviation	 from	
chronological age relative to the population that shares the same 
chronological age.

2.4.7  |  Partial	dependence	computations

Partial dependences for each variable were computed and plotted 
(PDP).	 PDP	 represents	 the	 contextualized	SHAP	 contribution	of	 a	
variable	according	to	its	raw	value.	An	example	of	interpretation	is	
given in Figure S3.

2.5  |  Model validation and robustness

2.5.1  |  Recursive	feature	elimination	for	obtaining	a	
reduced model

To	reduce	the	number	of	variables	without	degrading	the	quality	of	
the	model,	 the	principle	of	 the	 recursive	 feature	elimination	 (RFE)	
algorithm	was	followed	(Guyon	et	al.,	2002).	After	hyperparameter	
tuning	 (as	previously	described),	 training	 the	XGBoost	model	with	
custom	loss	and	computing	SHAP	values,	the	variable	with	the	least	
importance was removed from the dataset. These steps were re-
peated until all variables were removed and the evolution of the R2 
metric was monitored. The number of features necessary to obtain 
a model with less than 1% decrease of R2 compared to a complete 
model was considered as a performant reduced model.

2.5.2  |  Survival	analysis

The validation of the physiological age model was performed using 
mortality	data	from	the	2015	public	mortality	files	(Lu	et	al.,	2021) 
merged	with	the	NHANES	database	based	on	the	SEQN	of	the	re-
spondents	for	years	1999–	2015.	The	hypothesis	tested	was	that	a	
higher	PPA	deviation	may	be	predictive	of	an	increased	risk	of	mor-
tality,	and	conversely,	a	lower	PPA	predicts	decreased	risk.	PPA	was	
also	compared	to	homeostatic	dysregulation	(HD)	and	KDM	metrics	
using	the	same	set	of	variables	as	PPA	to	compute	them,	following	
the	methodology	previously	described	(Hastings	et	al.,	2019).	A	mul-
tivariate	Cox	proportional	hazards	regression	model	was	then	per-
formed	to	compute	the	mortality	hazard	ratio	of	the	PPA	deviation	
(categorized	into	deciles)	after	adjustment	on	the	chronological	age	
and	NHANES	year	of	subject	inclusion.

2.5.3  |  Validation	on	demographic,	
questionnaire	and	examination	data

The	hypothesis	tested	was	that	a	higher	PPA	deviation	reflected	the	
overall poor, degraded health known to be the case in socially vul-
nerable	and/or	clinically	at	risk	populations.	We	then	assumed	that	
PPA	deviation	was	higher	in	these	populations.	PPA	was	compared	
to	HD	and	KDM.	The	following	socio-	demographic	variables	were	
considered: family poverty index ratio, the family income, ethnicity, 
and education level. The following medical variables and categories 
were	considered:	body	mass	index	BMI,	tobacco	consumption,	alco-
hol consumption, sedentarity, systolic blood pressure, presence of 
chronic systemic diseases (digestive, cardiovascular, metabolic, eye, 
urogenital, respiratory tract, immune system, musculoskeletal dis-
eases,	and	neoplasms),	abdominal	aortic	calcification	score	AAC24	
(Lewis et al., 2016), and drug counts. Details about each validation 
variable were presented in Table S3.

2.5.4  |  Contextualized	SHAP	values	clusterization

To unravel similar explainability profiles and identify healthy aging 
trajectories,	contextualized	SHAP	values	were	clustered.	An	agglom-
erative	clustering	technique	has	been	used,	with	ward	algorithm	and	
Euclidean distance for linkage. Clustering results were then visual-
ized	on	UMAP.	To	define	a	unique	cluster	signature	with	variables	
(by	 the	 contextualized	 explainability)	 allowing	 discrimination	 of	 at	
least	two	clusters,	a	Mann	and	Whitney	test	was	performed	for	each	
variable per pair of clusters together with the corresponding effect 
size	 r. Only variables with at least a medium effect (r ≥ 0.3)	 and	 a	
significant p-	value	after	 adjustment	with	 the	Benjamini–	Hochberg	
test	false	discovery	rate	(FDR)	were	retained.	For	each	cluster,	the	
mean	of	the	contextualized	SHAP	values	was	computed	to	produce	
an	 explanation	 of	 the	 cluster.	 For	 each	 cluster,	 explanations	were	
presented in decision plots showing, on average, each variable's con-
tribution	to	PPA	deviation.
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3  |  RESULTS

3.1 | Definition and estimation of physiological age, 
that also captures differences with chronological age

To	develop	an	analytical	 framework	unraveling	personalized	physio-
logical	age	(PPA)	from	routine	biological	variables,	we	first	merged	and	
filtered data sources to obtain a clean, robust, and workable dataset. 
We	next	selected	the	best	machine	learning	strategies	including	train/
test	 splitting,	 feature	 selection,	 model	 selection,	 and	 optimization	
through	performance	comparison.	We	next	developed	a	comprehen-
sive explainability process to reveal a new metric for variables defining 
PPA.	Finally,	we	validated	the	new	metric	on	socio-	demographic	data	
to predict mortality and chronic diseases (Figure 1).

3.1.1  |  Building	a	comprehensive	and	robust	dataset	
from	the	NHANES	data

To	 define	 PPA	 using	 a	 state-	of-	the-	art	 and	 explainable	 ML-	based	
framework with common biological variables, we built the larg-
est, most consistent and comprehensive dataset (Figure 1): (i) all 
NHANES	data	from	1999	to	2018	were	merged,	giving	36,945	vari-
ables, (ii) laboratory variables were selected and aggregated using 
a dedicated web interface (Figure S1), and (iii) the largest dataset 
fitting inclusion criteria with a minimal missing data was defined 
(Figure 1, Figure S2). Once variables with sufficient subjects and a 
low rate of missing data are filtered out, the final dataset included 
48 laboratory variables (Table S1) for 60,322 individuals (30,747 fe-
males	and	29,575	males,	mean	age	39.3 ± 19.7	and	39.5 ± 20.2 years,	
respectively). The distribution of individuals by age (Figure S2A) 
showed	that	the	amount	of	data	from	12	to	20 years	was	two	times	
that	of	other	ages,	with	a	25%	decrease	of	available	subjects	from	70	
to	79 years	old.	The	different	age	groups	showed	no	major	gender	
imbalance. The amount of missing data was 0.1% of the total (linked 
to	missing	 C-	reactive	 protein	 CRP,	 folate,	 albumin,	 and	 creatinine	
values) and uniformly distributed across age and sex (Figure S2b,c). 
An	imputation	method	for	missing	data	was	implemented,	except	for	
XGBoost	machine	learning	algorithm,	which	is	able	to	manage	miss-
ing	data.	 In	the	2D	UMAP	data	visualization	projection,	the	oldest	
subjects were predominantly clustered to the left and center of the 
UMAP,	and	clear	gender	symmetry	was	highlighted	along	a	diagonal	
(Figure S4).

Altogether,	we	succeeded	in	building	the	largest	possible	dataset	
from	the	whole	NHANES	database	corresponding	to	60,322	individ-
uals with very limited missing data.

3.1.2  |  Selection	of	the	best	explainable	algorithm	
to	define	PPA

To test different machine learning algorithms, we split the dataset 
into training and test datasets (80% and 20%, respectively). No age 

and gender imbalance was found between train and test datasets 
(Figure S5). The number of variables was first reduced to 44, using 
GrootCV	 feature	 selection	 to	 remove	 variables	with	 too	 little	 im-
pact	on	the	behavior	of	the	ML	model	 (Table S1). Three classes of 
machine	 learning	 algorithms	 were	 compared:	 tree-	based	 models	
(Decision	 Tree,	 Random	 Forests	 and	 XGBoost),	 a	 regularized	 re-
gression	method	 (ElasticNet,	 a	method	with	both	L1	and	L2-	norm	
regularization	of	the	coefficients),	and	a	neural	network	(MultiLayer	
Perceptron,	MLP).	Using	 the	 training	dataset,	 a	 grid-	search	explo-
ration	of	hyperparameters	with	a	fivefold	cross-	validation	was	per-
formed for each model (Table S2). Comparing R2	and	MAE	on	test	
dataset,	XGBoost	and	MLP	performed	the	best,	with	similar	perfor-
mances	and	the	lowest	standard	deviations	during	cross-	validation	
for	 XGBoost	 (Figure 2a,b; Figure S6).	 Given	 the	 high	 number	 of	
variables (high dimensionality) and number of subjects in the data-
base,	XGBoost	was	selected	for	 its	abilities	 to	efficiently	compute	
explanations (Doumard et al., 2023). The differential error of the 
model by age, predicting young individuals being older, or the op-
posite,	was	greatly	minimized	using	 the	custom	objective	 function	
during	XGBoost	 training	 (Figure 2b), with no significant impact on 
the global performance (0.72 and 8.1 on the test dataset for R2 and 
MAE,	respectively,	Figure 2B).

3.2  |  Estimation of the relative weightsof 
each variable compared to the whole 
population or by age group: The global and 
contextualized explainability of PPA

3.2.1  | Model	explainability

To	define	the	contribution	of	each	variable	in	individual	PPA	predic-
tion,	the	Shapley	Additive	exPlanations	(SHAP)	Tree	framework	was	
applied	on	the	XGBoost	model	with	Custom	Loss	model	(Doumard	
et al., 2023).	The	SHAP	value	integrates	both	the	effect	per	se	of	a	
given biological variable and the effects of this variable in interac-
tion	with	other	biological	parameters.	For	a	given	 individual	 (local	
explanations),	 the	 sum	 of	 the	 SHAP	 values	 of	 all	 variables	 of	 the	
model represents the individual deviation from the mean of chrono-
logical	age	predicted	from	the	entire	dataset	 (39.9 years	old	 in	our	
dataset,	i.e.,	the	base	value	to	add	to	the	sum	of	all	SHAP	values).	The	
higher	the	overall	SHAP	value,	the	more	the	variable	contributes	to	
the	PPA.	The	summary	plot	shows	the	ranking	by	the	mean	absolute	
value	of	global	SHAP	contribution	 for	each	variable	by	decreasing	
importance (Figure S7).	The	global	SHAP	values	of	the	top-	20	vari-
ables are depicted in Figure 3a, representing 76% of the mean total 
SHAP	sum	contribution.

Many	of	the	top-	20	variables	were	related	to	metabolism,	nitro-
gen (e.g., uric metabolites and creatinine), carbon (e.g., glycohemo-
globin, triglycerides, and glucose), or related to liver function (e.g., 
albumin,	ALT,	and	GGT).	Glycohemoglobin	was	the	biggest	contrib-
uting	parameter	 (10.7%	of	the	mean	total	SHAP	sum	contribution)	
while	serum	glucose	was	ranked	9th	(Figure 3a). Urinary and blood 



6 of 18  |     BERNARD et al.

F I G U R E  1 Machine	learning	analysis	pipeline.	All	data	from	the	National	Health	and	Nutrition	Examination	Surveys	(i.e.,	NHANES	
study)	1999–	2018	were	collected.	A	large,	consistent	database	containing	the	maximal	number	of	common	biological	variables	reported	on	
the maximal number of subjects, and with minimal missing data was generated. This resulted in a dataset with 60,402 individuals with 48 
biological variables and 0.01% missing data. Using this dataset, five classes of algorithm models were trained, tested and compared based 
on	performance.	The	XGBoost	model	with	custom	loss	was	considered	(see	Figure 2),	and	explainability	was	computed	using	SHAP	values	
for	the	personalized	physiological	age	(PPA)	estimation.	Deviation	of	PPA	from	chronological	age	is	therefore	the	sum	of	the	contextualized	
SHAP	contributions	of	all	the	laboratory	variables	for	a	given	subject	(PPA	deviation).	Partial	dependence	plots	and	heatmaps	of	SHAP	
values also identify the precise range of biological values and thresholds for each variable and age group delineating accelerated or reduced 
aging.	Clustering	of	SHAP	values	identifies	specific	PPA	profiles.	Finally,	using	recursive	feature	elimination,	the	list	of	variables	was	reduced	
to	26	biological	variables	without	significant	loss	of	model	performance,	providing	a	ready-	to-	use	personalized	and	explainable	model	that	is	
potentially	clinically	useful	for	monitoring	physiological	age	to	achieve	healthy	aging.	PPA	deviation	was	validated	as	a	predictor	of	lifespan	
but also a risk factor for chronic diseases.
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creatinine, reflecting renal function, were also shown to contribute 
to	PPA	prediction.	Several	parameters	directly	or	indirectly	related	
to erythropoiesis (mean cell volume, red cell distribution width, he-
matocrit,	and	serum	folate)	were	also	among	the	top-	20	variables.	
Immunity/inflammation (CRP and lymphocyte number) were ranked 
19th	and	20th,	respectively,	while	other	parameters	of	the	immune	
system (e.g., monocyte or lymphocyte percent, white blood cell 
count)	displayed	lower	impact	on	SHAP	values	(Figure S7, Figure S8). 
For	most	of	the	variables	(11	variables	over	20),	the	higher	was	the	
variable value, the higher was the deviation from chronological age. 
No significant difference between males and females in explainabil-
ity profile and ranking of variables was observed (Figure S9).

3.2.2  |  Contextualized	explainability	of	PPA	
(deviations	from	age-	specific	normative	data)

While	global	explainability	uses	 the	mean	prediction	of	 the	whole	
population	as	a	reference,	contextualization	refers	to	the	mean	pre-
diction of the individuals sharing the same chronological age, in order 
to	overcome	putative	generational	effects.	The	SHAP	contribution	
of	each	variable	is	quoted	“contextualized	SHAP”	in	the	manuscript.	
The	 absolute	 values	 of	 contextualized	 SHAP	values	 for	 each	 vari-
able are presented in Figure 3b.	Glycohemoglobin	 (HbA1c),	 blood	
urea nitrogen, mean cell volume, and urinary creatinine proved to 
contribute	 throughout	 life-	course,	albeit	with	a	 stronger	contribu-
tion	 between	 40	 and	 70 years	 of	 age.	 Other	 variables	 had	 more	
age-	specific	contributions,	such	as	alkaline	phosphatase	(12–	18 y.o.),	
alanine	transferase	ALT	and	cholesterol	(20–	40 y.o.),	or	lymphocyte	
number	and	folate	(60 y.o.	and	over).

3.3  |  Clinical and socio- economic validation of PPA

3.3.1  |  Validation	on	mortality	data

We	derived	the	PPA	deviation	metric,	defined	for	a	given	individual	
as	 the	 sum	of	 the	 contextualized	 SHAP	 values.	Using	 a	multivari-
ate	Cox	survival	model,	PPA	deviation	was	 found	 to	be	a	 relevant	
predictor of mortality independently of the chronological age 
(Table 1).	 Indeed,	 a	 positive	 PPA	 deviation	 value	was	 significantly	
associated	with	gradual	 increase	 in	mortality	 risk	 (adjusted	hazard	
ratio	 with	 95%	 confidence	 interval,	 aHR	 95%CI	 1.18[1.01;1.38],	
1.37[1.17;1.59],	1.38[1.18;1.60],	 and	1.69[1.45;1.97]	 for	 the	7th	 to	
10th	deciles,	compared	to	the	5th	decile,	respectively).

3.3.2  |  Validation	on	socio-	demographic	and	
medical variables (Table 2)

The	regression	coefficient	is	the	PPA	deviation	contribution	to	vali-
dation	variable,	adjusted	for	chronological	age	and	gender.	Altered	
health condition or being in a socially disadvantaged population were 

significantly	associated	with	increased	PPA	deviation	for	a	majority	
of	variables.	Being	a	male,	poor,	exposed	to	tobacco,	obese,	seden-
tary or with a systemic disease was associated with a significantly 
increased	PPA	deviation	values.	Of	note,	having	high	family	income	
was	significantly	associated	with	a	lower	PPA	deviation	value.

3.3.3  |  Comparison	to	KDM	and	homeostatic	
dysregulation	(HD)	metrics	(Table 2)

To	further	validate	PPA,	KDM	and	HD	metrics	were	computed	using	
the	same	set	of	variables.	As	 revealed	by	a	 lower	Akaike	 informa-
tion	criterion	(AIC),	PPA	better	fits	with	socio-	demographic	variables	
and	most	of	medical	variables	than	KDM	and	HD.	For	mortality,	HD	
metric	achieved	the	lowest	AIC.	However,	PPA	also	successfully	cap-
tured	mortality,	with	a	decreased	mortality	risk	for	a	negative	PPA	
value, and conversely.

3.4  |  Impact of variations of each variable on the 
SHAP explanations: A range of biological values 
associated with healthy aging

Partial dependence plots revealed the impact of one variable on 
the	PPA	by	averaging	the	influence	of	all	other	variables	(Figure 4a; 
Figure S10a). Curve shapes that were similar between ages clearly 
revealed the different ranges of the variable value for which the cor-
responding	 contextualized	 SHAP	 values	were	 positive,	 neutral,	 or	
negative.	For	example,	while	the	contextualized	SHAP	values	were	
negative for low glycohemoglobin, a sharp increase occurred for val-
ues	in	the	5%–	6%	window,	confirming	the	accuracy	of	the	follow-	up	
value (Figure 4a; Figure S3a).	This	transition	zone,	characterized	by	
crossing	the	zero-	line	between	age	scales,	was	different	according	
to	age	groups.	This	was	visualized	as	a	dark	zone	in	the	heatmap	in	
Figure 4b and Figure S10b.	Thus,	while	the	threshold	of	5.4%	char-
acterized	a	border	for	young	subjects,	it	evolved	with	age,	increasing	
to	5.8%	for	subjects	older	than	50	(Figure 4b; Figure S3b). This pro-
duces biological alert thresholds, adaptable to chronological age of 
a subject. Similar analysis can be applied to all variables (Figure 4a). 
Figure 4b underscores the decrease in the normal range of biologi-
cal	values	with	age.	Altogether,	these	results	show	the	contribution	
and	relevance	of	contextualized	SHAP	values	to	define	a	new	metric	
and standard suitable to define a physiological health status for all 
age groups.

3.5  |  Identification of different aging trajectories 
by clustering profiles of identical contextualized 
explanations

To	identify	putative	pathways	linked	to	aging,	all	contextualized	SHAP	
values were clustered, irrespective of chronological age (Figure 5a). 
Ten	 SHAP	 clusters	 grouped	 into	 two	 classes	 according	 to	 the	



8 of 18  |     BERNARD et al.



    |  9 of 18BERNARD et al.

glycohemoglobin	SHAP	value	were	 identified.	This	 suggested	 that	
profiles	corresponding	to	the	same	PPA	deviation	involved	different	
physiological pathways supporting aging. Clustering was strongly 
driven	by	the	SHAP	values	of	glycohemoglobin.	Contribution	of	low	
(below clinical threshold at 6%) glycohemoglobin appeared to corre-
late	with	a	“younger	physiology”	in	older	individuals.	Within	classes	
corresponding	to	positive	and	negative	SHAP	values	of	glycohemo-
globin, changes in a limited set of variables (urinary creatinine, cho-
lesterol,	ALT,	mean	cell	volume	(MCV),	aspartate	transferase	(AST),	
blood	urea	nitrogen	(BUN),	gamma-	glutamyl	transferase	(GGT))	dis-
tinguished	the	clusters.	All	other	variables	weakly	contributed	to	the	
PPA	estimation	(Figure 5b,c).	Clusters	2	and	4	were	characterized	by	
a	systematic	negative	and	positive	PPA	deviation	of	key	biological	
variables (Figure 5c).	All	other	profiles	were	characterized	by	a	mix	of	
positive	and	negative	SHAP	values	of	the	same	key	variables.

3.6  |  Generation of a minimal model by recursive 
feature elimination

In order to test the robustness of the model with a perspective of 
PPA	application	to	the	general	population,	we	iteratively	eliminated	
variables	one	by	one.	The	run-	out	RFE	algorithm	(Figure 6) indicated 
that	26	variables	were	sufficient	to	predict	PPA	without	significantly	
decreasing the performance of the model estimated by the R2. 
Similar to the complete model, this minimal model was also predic-
tive	of	mortality,	and	fitted	well	with	socio-	demographic	and	medi-
cal variables (Tables 1; 2).

4  |  DISCUSSION

Personalized	estimation	of	physiological	aging	requires	the	capture	
of subtle physiological changes/dysfunctions as early as possible 
before any clinical manifestation. Such an objective is highly chal-
lenging	(Jylhävä	et	al.,	2017;	Ferrucci	et	al.,	2020) and deviates from 
the traditional medical approach where interventions mostly occur 
in the presence of clinical manifestations.

Using	an	innovative	explainable	ML	pipeline	with	non-	supervised	
selection	of	biological	variables,	we	defined	personalized	physiolog-
ical	age	 (PPA)	as	a	predictor	of	mortality	and	 lifespan,	as	well	as	a	
risk	 factor	 for	chronic	diseases.	PPA	framework	also	 identifies	 the	
relative	and	precise	quantitative	weight	of	variables	contributing	to	
its	estimation	from	the	earliest	age.	PPA	gives	accelerated	or	delayed	
aging	relative	to	specific	aging	profiles.	Because	PPA	is	derived	from	
biological variables routinely available, it represents an efficient and 

cost-	effective	 tool	 for	 general	 populations.	 Furthermore,	 the	 PPA	
framework can be easily translated to address other clinical issues 
and	to	quantify	the	relevance	of	new	biomarkers	with	an	accurate	
associated metric.

For	 complex	 systems	 such	 as	 physiological	 aging,	 the	 use	 of	
ML	appears	particularly	suitable	to	capture,	whatever	 their	nature	
and intensity, complex interactions among a wide type of variables. 
Although	 some	 studies	 have	 used	ML	 to	 define	 physiological	 age	
(Sun et al., 2021),	these	models	are	black-	boxes	lacking	explainabil-
ity,	hence	preventing	the	ability	to	check	for	reliability	and	model-	
inferences (Diprose et al., 2020; Linardatos et al., 2021).	An	exception	
is a very recent report on the prediction of individual trajectories 
and survival combining machine learning and interaction network 
(Farrell	et	al.,	2022).	Future	developments	could	also	consider	tree-	
based	glass-	box	models	such	as	Explainable	Boosting	Machine	(Lou	
et al., 2013) or feature attribution methods for neural networks 
(Janizek	et	al.,	2021; Lombardi et al., 2021). Explainability better sus-
tains	evidence-	based	acceptability	and	could	allow	for	data-	driven	
personalized	medical-	management	 (Stiglic	et	al.,	2020). To achieve 
this	goal,	we	developed	an	explainable	PPA	estimation	where	(1)	all	
subgroups were represented without significant imbalance, (2) ad-
equate	ML	techniques	were	able	to	consider	performance	discrep-
ancy across the age group (custom loss), (3) the training data (source 
population) were representative of the target population by creating 
a	test	dataset	and	minimizing	overfitting.

For	 PPA	 explainability,	 we	 used	 state-	of-	the-	art	 explainable	
techniques,	such	as	the	SHAP	algorithm,	to	compute	local	explana-
tions at the individual level. This integrates the effects of the bio-
logical variable per se, but also the effects of interactions between 
variables (Doumard et al., 2023).	Compared	 to	other	 indexes,	PPA	
performs	better	to	capture	socio-	demographic	disparities	and	med-
ical	 conditions	 than	KDM	or	 homeostatic	 dysregulation	 (HD),	 and	
better	capture	mortality	than	KDM.	The	global	and	contextualized	
SHAP	analyses	are	similar	to	HD	and	KDM	approaches,	respectively,	
but	in	addition	allow	capture	of	complex	interactions	(including	non-	
linear ones) between variables, contrary to classical biostatistical 
approaches.	Contextualized	SHAP	strategies	reduce	the	risk	of	pos-
sible generational bias since in other studies, age predictors suitable 
for one group may not operate for other groups (Sagers et al., 2020). 
The	difference	between	global	and	contextualized	analysis	can	be	
illustrated	 using	 alkaline	 phosphatase	 (ALP).	 In	 a	 global	 approach,	
ALP	makes	 sense	 over	 age,	 while	 in	 a	 contextualized	 approach	 it	
is meaningful at a young age, certainly in accordance with a role in 
bone development (Sekaran et al., 2021).	All	SHAP	value	analyses	
highlight	the	major	contribution	of	HbA1c	to	PPA	explainability,	as	
well as the identification of aging clusters. This is consistent with 

F I G U R E  2 Model	selection	of	different	classes	of	machine	learning	models.	(a)	Several	classes	of	models	were	tested	to	estimate	
physiological	age,	defined	as	the	chronological	age	predicted	by	the	model.	An	optimization	of	the	hyperparameters	of	each	model	was	
performed on the training dataset, and the final achieved performance tested on the training and test datasets (coefficient of determination 
R2	and	mean	absolute	error	MAE).	MultiLayer	Perceptron	MLP	and	XGBoost	model	achieved	the	best	performances.	(b)	Graphical	
representation	of	the	predicted	physiological	age	defined	using	MLP,	XGBoost	and	XGBoost	with	Custom	loss	as	function	of	chronological	
age.	The	red	line	highlights	situations	where	physiological	age	is	identical	to	chronological	age.	Custom	loss	applied	to	XGBoost	improved	
XGBoost,	by	moderating	the	performance	discrepancy	across	the	age	groups.
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its biogenesis reflecting disturbance in glucose homeostasis affect-
ing multiple pathways over long intervals (Little et al., 2019; Ravera 
et al., 2019;	RaviKumar	et	al.,	2011).	More	indirectly,	it	connects	to	

energy homeostasis control and carbohydrate metabolism in organ-
isms	(Wilson	&	Matschinsky,	2021). Recently, a genome wide analy-
sis	for	polygenic	traits	has	highlighted	the	high	heritability	of	HbA1c	

F I G U R E  3 Global	and	contextualized	explainability	of	physiological	age.	(a)	Global	explainability	of	the	PPA	model	for	the	top-	20	most	
important	variables	(in	order	of	importance	based	on	the	mean	of	absolute	SHAP	values).	Each	point	color	encodes	the	SHAP	value	of	
each	variable	for	each	individual;	red	and	blue	colors	indicate	high	and	low	values	of	the	variable,	respectively.	A	positive	or	negative	SHAP	
value	on	the	x-	axis	means	that	the	variable	contributed	to	the	positive	or	negative	estimation	of	physiological	age	for	a	given	individual.	The	
evolution of the raw variable values over time is depicted as a black line to the right of each variable name. This shows that the evolution 
of	the	SHAP	values	over	time	does	not	always	follow	the	evolution	of	its	raw	value.	(b)	Contextualized	explainability	of	the	physiological	
age.	SHAP	values	have	been	contextualized,	taking	as	a	base	value	the	mean	predicted	age	of	the	individuals	with	the	same	chronological	
age.	Heatmap	represents	the	mean	of	the	absolute	contextualized	SHAP	values	for	each	variable	(the	whiter	the	color,	the	higher	the	mean	
absolute	SHAP	value)	for	each	chronological	age.
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value, which strengthen the value of this parameter in reflecting glu-
cose metabolic regulation, and thus its importance in contributing 
to	 the	determination	of	biological	age	 (Weiner	et	al.,	2023).	Being	
more	strongly	involved	in	PPA	than	glycemia	itself,	HbA1c	is	a	par-
adigm suggesting that indirect and cumulative parameters might be 
more relevant to assess physiological age than regulated variables, 
changes in which reveal pathology at a late stage of dysfunction. 
Given	the	 importance	of	HbA1c,	 it	may	be	appropriate	to	use	this	
variable	in	complement	to	the	first	10–	15	variables	that	contribute	
significantly	 to	PPA	not	only	 for	monitoring	diseases	but	also	as	a	
signal	for	subclinical	events	as	shown	by	contextualized	SHAP.	The	
general	involvement	of	metabolism	is	also	emphasized	in	the	SHAP	
clusters by the differentiating weight of variables related to red 
blood	cells,	liver	(ALT,	AST,	and	GGT),	and	kidney	(BUN	and	urinary	
creatinine). The centrality of metabolism was previously reported 
(Hao	et	al.,	2021), together with that of the liver/kidney axis, both in 
line	with	previous	findings	(Ahadi	et	al.,	2020) proposing to stratify 
individuals into different ageotypes using four groups of pathways: 
liver and kidney dysfunctions, immunity pathways, metabolism, and 
inflammation. The number and the weight of variables related to 
red blood cells is reminiscent of the importance of such multistep, 
finely-	tuned	process	gradually	affected	in	aging.	Except	for	lipid	me-
tabolism, no variable seems to be clearly related to cardiovascular 
system.	Because	heart	and	kidney	variables	are	strongly	correlated	
(Hao	et	 al.,	2021),	 the	PPA	algorithm	could	have	 selected	a	 single	
class	of	variables	bringing	similar	relevant	information.	Alternatively,	
chronic inflammation being major contributor of cardiovascular 

alteration,	 ultrasensitive-	CRP	 could	 be	 more	 informative.	 As	 for	
HbA1c,	the	selection	of	urinary	metabolites	by	the	algorithm	could	
also be explained by the consideration that their evolution reflects 
a cumulative temporal effect. Surprisingly, immune components 
have	a	 low	 influence	on	PPA	and	appear	 in	 the	 small	but	multiple	
adjustments associated with immune variables. These variables are 
included	 in	 top-	20	of	 variables	 for	global	 explainability,	 but	not	 in	
contextualized	ones	that	described	the	relative	evolution	compared	
to contemporaries. This could be explained by the very limited num-
ber of immunologic variables and/or the fact that the immune vari-
able available in routine clinical testing is not very informative for 
estimating physiological aging because the selected variables clas-
sically measured allow the identification of immune responses to 
acute aggressions rather than small deviations.

Although	a	limited	number	of	variables	carry	weight	in	the	differ-
ent profiles, the low range involvement of many other biological vari-
ables	 in	 the	PPA	estimation	perfectly	 illustrates	 the	complexity	of	
the physiological networks and the importance to detect subclinical 
signals. This also highlights the need for a combination of biomark-
ers for an accurate physiological age estimation (Cohen et al., 2015). 
Even when findings are consistent with the literature (i.e., the role 
of	 energy	metabolism),	 the	 PPA	 explainable	model	 allows	 further	
insight, allowing for a precise analysis of the positive or negative 
contribution	to	PPA	of	each	metabolism-	related	variable	with	a	high	
level of refinement. The partial dependence plots not only reveal 
the	evolution	of	the	contribution	to	the	PPA	of	each	variable	with	
age, but also provide precise information about the contribution of a 

TA B L E  1 Validation	on	mortality	data.

aHR [95%CI]

Complete model Minimal model Klemera– Doubal Model Homeostatic dysregulation

AIC 57,820 57,819 57,607 57,056

Metric	deviation	(deciles)

Decile 1 0.80	[0.68;0.94] 0.78	[0.66;0.92] 1.17	[0.91;1.51] 0.57	[0.46;0.72]

Decile 2 0.93	[0.78;	1.09] 0.84	[0.71;0.99] 1.06 [0.83;1.36] 0.62	[0.51;0.76]

Decile 3 0.84	[0.71;	0.99] 0.90	[0.77;1.06] 1.2	[0.97;1.49] 0.90	[0.75;1.07]

Decile 4 0.95	[0.81;	1.11] 0.88	[0.75;1.03] 1.21	[0.99;1.47] 1.09	[0.92;1.29]

Decile	5 1 1 1 1

Decile 6 1.19	[1.03;1.39] 1.21 [1.04;1.40] 1.16	[0.97;1.38] 1.12	[0.95;1.33]

Decile 7 1.20	[1.03;1.39] 1.20	[1.03;1.39] 1.30	[1.1;1.55] 1.45	[1.23;1.69]

Decile 8 1.41 [1.21;1 0.64] 1.25	[1.07;1.45] 1.46 [1.24;1.73] 1.89	[1.62;2.20]

Decile	9 1.29	[1.11;1.50] 1.39	[1.19;1.61] 1.71	[1.45;2.03] 2.7	[2.35;3.15]

Decile 10 1.76	[1.51;2.05] 1.65	[1.41;1.93] 3.26 [2.77;3.83] 3.49	[3.02;4.04]

Gender:	Male 0.65	[0.61;0.69] 0.65	[0.61;0.69] 0.59	[0.55;0.63] 0.63	[0.59;0.68]

Age 31.45	[6.23;159] 27	[5.4;138] 74	[15;360] 86	[16;435]

Year of inclusion 1.08 [1.03;1.14] 1.08 [1.02;1.13] 1.11	[0.99;1.07] 1.12 [1.06;1.18]

Age:	Year	of	inclusion 0.998	[0.998;1] 0.998	[0.998;1] 0.998	[0.998;1] 0.999	[0.998;1]

Note:	Adjusted	hazard	ratios	aHR	based	on	gender,	chronological	age,	and	NHANES	year	of	inclusion	with	95%	confidence	interval	were	computed	
according	to	PPA	deviation	value	(the	sum	of	contextualized	SHAP	values	for	the	complete	or	minimal	model),	Klemera–	Doubal	Model	or	
Homeostatic	Dysregulation,	taken	as	deciles.	Akaike	criterion	(AIC)	was	computed	for	each	model.	Subjects	at	least	18 years	old	were	included	in	
this	analysis.	An	aHR	inferior	to	1	indicates	decreased	risk	of	mortality,	and	conversely.	The	lower	the	AIC,	the	more	the	model	minimizes	the	loss	of	
information (the better the model).
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given	variable	to	PPA	according	to	its	raw	value.	Beyond	the	shape	of	
the profiles, which indicates proportionality (linear contribution) or 
a	shift	(sigmoid-	like	contribution)	in	the	importance	of	the	variables,	
the remarkable result is the unsupervised identification of critical 
ranges of precise values for each variable, whether it is widely char-
acterized	(such	as	HbA1c)	or	not.	Whatever	the	profiles	of	contextu-
alized	partial	dependence	plots,	the	contextualized	SHAP	values	are	
consistent	with	a	natural	age-	related	drift	of	biological	parameters.	
This	age-	dependent	adjustment	of	referent	value	for	each	variable	

should lead to the early and accurate identification of small changes 
anticipating future dysfunction tissue/organ dysfunction and intrin-
sic capacity of decline.

The	clustering	of	the	contextualized	SHAP	values	reveals	differ-
ent individual physiological age deviation profiles with specific vari-
able patterns, overcoming the natural drift in balance of biological 
parameters	with	age.	In	other	words,	PPA	would	support	identifica-
tion and deciphering of pathophysiological profiles at risk of accel-
erated aging. In the context of medical care, this makes it possible 

F I G U R E  4 Partial	Dependence	Plots	of	contextualized	SHAP	values.	(a)	Contextualized	SHAP	values	as	a	function	of	variable	values	for	
the	top-	8	variables.	Each	dot	represents	an	individual.	The	color	indicates	the	corresponding	chronological	age	(scale	on	the	right).	X-	axis	
corresponds	to	the	real	value	of	the	variable,	while	the	y-	axis	corresponds	to	the	SHAP	value	given	to	this	individual	for	this	variable.	The	
dotted	line	corresponds	to	a	SHAP	value	of	0,	which	means	that	when	the	individual	displays	a	variable	value	for	which	the	SHAP	value	is	0,	
the	variable	has	no	impact	on	the	physiological	age.	(b)	Heatmap	of	contextualized	SHAP	values	as	a	function	of	chronological	age.	The	color	
of	each	pixel	indicates	the	average	SHAP	value	of	a	variable	(x-	axis)	as	a	function	of	chronological	age	(y-	axis).	An	example	of	interpretation	
is illustrated in Figure S3.
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to	 identify	 sub-	categories	 of	 patients	 and	 their	 underlying	 hierar-
chy	 that	could	be	used	to	 implement	 targeted	follow-	up	and	care.	
In a research and development context, the analysis of these pro-
files, with additional biological parameters, will make identify new 
pathophysiological targets for early identification and management 
of	age-	related	dysfunctions.

Some	limitations	may	be	mentioned	in	the	present	study.	First,	
the	 NHANES	 study	 is	 based	 on	 a	 USA-	based	 population	 cohort	
and	 reflects	 the	 impact	 of	 a	 certain	 type	 of	 regimen	 and	 socio-	
economic	 environment	 on	 aging.	 This	 hampers	 generalization,	
making it necessary to validate the metric on other populations 
from other countries, although physiological dysregulations appear 
stable	 across	 European	 and	North	 American	 populations	 (Cohen	
et al., 2014) and even primates (Dansereau et al., 2019). The use of 
this large database suggests that the model could be used on any 
consistent	database.	Cross-	sectional	in	nature,	the	use	of	NHANES	
data prevents from inferring causalities of results, even though sev-
eral studies are reasonably supporting. Similar investigations per-
formed on longitudinal studies will bring additional data that better 
defines	the	pathophysiological	consequences	on	healthy	aging	and	
particularly	on	frailty	status	(Ahadi	et	al.,	2020; Elliott et al., 2021). 
Of course, the precise causal link and the types of interactions be-
tween the variables remain to be definitively established.

The use of a limited number of biological variables from stan-
dard biochemical analyses paves the way for routine medical use 
of	 PPA	with	 a	 minimum	 investment.	 However,	 the	methodology	
of this study should not be seen as an end, but as a general and 
evolving framework, where biomarkers can be implemented to 
improve	 and	 precisely	 identify	 age-	related	 imbalances.	 Variables	
related to the architecture and the structure of the tissue could be 
particularly appropriate to identify a drift in architecture/function 
relationship	 as	we	 recently	proposed	 (Kemoun	et	 al.,	2022). This 
work does not take into account the biological/mechanical rela-
tionships between the different variables. Of note, the low relative 
importance of immunity parameters may be due to a lack of rele-
vant variables in the dataset or reflect the fact that inflammatory 
component, defined as inflammaging, could be masked by another 
variable.	Also,	variation	of	low	range	CRP	values,	which	are	widely	
used	in	the	follow-	up	of	cardiological	patients,	was	not	accessible	
in the dataset. It is noteworthy that the serological status was not 
available in the dataset and hence not considered, while it is now 
well accepted that most chronic infectious diseases have direct and 
indirect,	 treatment-	related,	 impacts	 on	 aging	 trajectories.	 In	 the	
present study, inflammatory markers could address part of these 
impacts	 (Ray	 &	 Yung,	2018). In the future, the inclusion of new 
parameters	 revealing	 a	 cumulative	 effect	 such	 as	 HbA1c	 should	

F I G U R E  5 Clustering	SHAP	values	to	reveal	healthy	aging	trajectories.	Individuals	were	clustered	by	agglomerative	clustering	based	
on	their	contextualized	SHAP	values.	Chronological	age	was	not	added	as	a	clustering	variable	(a)	UMAP	2D-	projections	were	colored	
by	chronological	age,	identified	cluster	and	sum	of	contextualized	SHAP	values	from	left	to	right,	respectively.	It	is	thus	possible	to	see,	
according to the age distribution of the different clusters, profiles of individuals with accelerated aging. (b) Signature of each cluster for the 
24 variables allowing significant distinction between at least 2 clusters. The heatmap shows the average value of each variable for each 
cluster. (c) Decision plot profile for each cluster. Starting from the bottom, the cumulative contribution of each variable was presented (in 
positive	and	negative	values)	to	the	predicted	final	value	(at	the	top	of	the	diagram).	For	each	cluster,	we	indeed	have	the	“average”	individual	
representative of the cluster.
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improve the precision of the estimation and thus the recognition of 
smaller	age-	related	deviations.

In a nutshell, this work, using standard biological variables, pro-
vides not only a practical and powerful tool ready to use in medical 
care while remaining scalable with integration of other biomarkers, 
but	also	a	complete	explainable	ML	framework	to	quantitatively	de-
cipher	the	basis	of	complex	physiological	phenotypes.	At	the	cross-
roads between biology, epidemiology, and informatics, this work 
offers both the opportunity to reflect on pathophysiology, a predic-
tive tool for precision medicine, and a study framework that can be 
extended to many other topics.
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F I G U R E  6 Generation	of	a	minimal	model	to	estimate	physiological	age	(RFE	model).	(a)	Evolution	of	XGBoost	custom	loss	model	
performance (R2	and	MAE	scores)	through	recursive	feature	elimination	(RFE).	A	model	with	26	variables	seems	sufficient	without	
significantly	altering	the	model	performance.	Global	explainability	of	the	PPA	model.	(b)	Graphical	representation	of	the	predicted	
physiological	age	defined	by	the	RFE	model	(based	on	XGBoost	with	Custom	loss)	as	a	function	of	chronological	age,	on	the	train	and	
test	datasets.	The	red	line	indicates	situations	where	physiological	age	is	identical	to	chronological	age.	(c)	Global	explanation	of	the	RFE	
model	with	the	mean	of	absolute	SHAP	values	in	order	of	importance.	Each	point	color	encodes	the	SHAP	value	of	each	variable	for	each	
individual,	red	and	blue	colors	for	high	and	low	values	of	the	variable,	respectively.	On	the	x-	axis,	a	positive	or	negative	SHAP	value	means	
that the variable for one individual contributes to a positive or negative estimation of physiological age relative to chronological age. (d) 
Heatmap	of	the	mean	of	the	absolute	contextualized	SHAP	values	for	each	variable	(the	whiter	the	color,	the	higher	the	mean	absolute	
SHAP	value)	for	each	chronological	age.	(e,	f)	For	a	given	individual,	a	personalized	and	contextualized	explanation	of	physiological	age	wan	
be given. To the base value (mean predicted age of the individuals of the same chronological age), several contributions of each variable 
contextualized	SHAP	value	were	added	to	obtain	the	physiological	age	(increase	of	PPA	in	red,	decrease	of	PPA	in	blue).	(e)	Example	of	an	
individual	of	61	y.o	predicted	49,	(f)	and	an	individual	of	64	y.o.	predicted	76.
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