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Abstract
Attaining personalized healthy aging requires accurate monitoring of physiological 
changes and identifying subclinical markers that predict accelerated or delayed aging. 
Classic biostatistical methods most rely on supervised variables to estimate physi-
ological aging and do not capture the full complexity of inter-parameter interactions. 
Machine learning (ML) is promising, but its black box nature eludes direct understand-
ing, substantially limiting physician confidence and clinical usage. Using a broad popu-
lation dataset from the National Health and Nutrition Examination Survey (NHANES) 
study including routine biological variables and after selection of XGBoost as the 
most appropriate algorithm, we created an innovative explainable ML framework to 
determine a Personalized physiological age (PPA). PPA predicted both chronic disease 
and mortality independently of chronological age. Twenty-six variables were suffi-
cient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a 
precise quantitative associated metric for each variable explaining physiological (i.e., 
accelerated or delayed) deviations from age-specific normative data. Among the vari-
ables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation 
of PPA. Finally, clustering profiles of identical contextualized explanations reveal dif-
ferent aging trajectories opening opportunities to specific clinical follow-up. These 
data show that PPA is a robust, quantitative and explainable ML-based metric that 
monitors personalized health status. Our approach also provides a complete frame-
work applicable to different datasets or variables, allowing precision physiological age 
estimation.
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1  |  INTRODUC TION

The expansion in the aging population and concomitant age-
associated increase in chronic diseases and disabilities have resulted 
in a rising global socio-economic burden. As a consequence in recent 
years, the main goal of aging research tends to develop approaches 
promoting healthy aging and preventing loss of autonomy. In this 
regard, the WHO identified intrinsic capacity and associated func-
tions as a major target to facilitate accurate monitoring of healthy 
aging (Beard et al.,  2016). At the same time, the geroscience par-
adigm emphasized changes in physiological biology along aging as 
the primary cause for chronic disease (Kennedy et al.,  2014). Of 
note, geroscience investigations are often conducted at the cellular 
or molecular scales, far from the integrative view required to ad-
dress clinical aspects of healthy aging. Indeed, aging results from 
multifactorial small deviations in interdependent physiological pro-
cesses starting at earliest age and leading to highly variable health 
trajectories when comparing people of the same chronological age 
(Li et al., 2015). We recently proposed that healthy aging and gero-
science could be reconciled through the gerophysiology perspective 
(Ferrucci et al., 2020; Kemoun et al., 2022).

Several studies have proposed operational definitions of a “bio-
logical age.” These include sets of molecular biomarkers, such as the 
epigenetic clock or epigenetic markers (Hägg et al., 2019; Horvath 
& Raj, 2018; McCrory et al., 2021), or alternative integrative strat-
egies (Klemera-Doubal, i.e., KDM, Levine methods, homeostatic 
dysregulations, allostatic load) that are based on linear or non-linear 
combinations of phenotypic measures of aging (Cohen et al., 2013; 
Karlamangla et al., 2002; Klemera & Doubal, 2006; Liu et al., 2018). 
In most cases, individual biological age is estimated by comparing a 
set of variables from referent populations. For example, the homeo-
static dysregulation estimates the Mahalanobis distance deviation 
of biomarkers from a referent population considered to have optimal 
functions (Cohen et al., 2013; Liu et al., 2018) while KDM (Klemera & 
Doubal, 2006) estimates the relative age-dependent deviation from 
a referent population with different ages defined from linear regres-
sions of several biomarkers. All of these measures appear to be cor-
related with each other (Hastings et al., 2019; McCrory et al., 2019, 
2020). In all cases, most strategies remained hypothesis-driven, used 
a limited number of pre-selected variables (socio-economic, clinical, 
and/or biological variables) and hence share the risk of ignoring im-
portant variables in biological aging (Klemera & Doubal, 2006).

The recent rising development of machine learning (ML) has rev-
olutionized data mining by exploiting databases. In particular, ML 
strategies appear perfectly suited for studying integrated pheno-
types in large and high-dimensional databases. ML computes many 

covariates even in complex interactions, regardless of their yields 
and nature, may outperforming common statistical approaches (Bi 
et al., 2019; Shin et al., 2021). In the field of biological age estimation, 
a wide variety of data may be integrated, from images (brain magnetic 
resonance imaging, chest radiology, retinal or face photography; 
Lombardi et al., 2021; Nusinovici et al., 2022; Raghu et al., 2021), to 
physical activity data, up to blood biomarkers, gut microbiome or ge-
nomic data (Galkin et al., 2020, 2021). Deep learning (DL) has offered 
new powerful ways of handling some of these data types, in partic-
ular images and sequential data like physical activity. Convolutional 
neural networks (CNN) and recurrent neural networks (RNN) appear 
particularly relevant for knowledge extraction from images (Cole 
et al., 2017) and sequential data (Rahman & Adjeroh, 2019) for bi-
ological age estimation, respectively. Considering the adequacy of 
ML models with tabular data, a DL framework based on a deep neu-
ral network hybridized with an ElasticNet model has been proposed 
for biological age estimation based on blood chemistry (Mamoshina 
et al., 2018; Putin et al., 2016), revealing the existence of population-
specific aging patterns. Unfortunately, DL models displayed little 
explainability (Cohen et al., 2016; Putin et al., 2016), a feature favor-
ing medical professional acceptance and use, and relevant to pro-
vide potential explanatory pathophysiological hypotheses (Amann 
et al., 2020).

Using the National Health and Nutrition Examination Survey 
(NHANES) database gathering routine laboratory values for phys-
iological functions, we built a comprehensive analytic ML-based 
strategy to (i) define and estimate physiological age and capture 
differences to chronological age that show accelerated or delayed 
aging, (ii) provide the relative weights of the variables in comparison 
with an average individual in the total population or in comparison 
with an individual sharing chronological age (global and contextual-
ized explainability, respectively), (iii) unravel how variations of each 
variable quantitatively affect the explanations, (iv) provide a range 
of biological values associated with healthy aging, and (v) identify 
different aging trajectories by clustering profiles of identical contex-
tualized explanations.

2  |  MATERIAL S AND METHODS

2.1  |  Data source

All data from the NHANES study were collected at the Centers 
for Disease Control and Prevention website [https://wwwn.cdc.
gov/Nchs/Nhanes], from NHANES 1999–2000 to NHANES 2017–
2018. Data were available from multiple files, each containing a 
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set of variables for a specific year. All these files were merged to 
obtain a single database containing all the available data for each 
subject (with the SEQN—the id of the subject—providing the joint 
between all the information). This approach allowed the generation 
of a unique database that gathers all the subjects examined, as well 
as related data, over a 20-year span.

2.2  |  Inclusion criteria of variables for algorithm 
development

In the database, only variables from laboratory parameters were 
selected, with the exception of pollutants, toxic exposure, and 
infection-related variables. We chose simple biological variables 
routinely assessed for diagnosis and treatment-monitoring because: 
(i) these variables span the landscape of physiological homeostasis 
and their variations have been widely documented, and (ii) their rou-
tine use makes personalized physiological age (PPA) easy to translate 
into clinical settings or studies, including longitudinal analyses.

Chronological age and gender were taken from demographic 
data. In addition, the age limit of 79 years was chosen because de-
pending on the time period, 1999–2006 or 2007–2018, NHANES 
defined two different ages, 85 or 80 years, respectively, as cutoff 
ages for their coding. Participants under 12 years old were excluded 
from the database because many laboratory variables were only col-
lected in this age group.

2.3  |  Variable selection and merging

To generate a consistent and large database, with a maximal number 
of common biological variables for subjects, we performed a manual 
data cleaning to eliminate redundant outcomes, both within the same 
year and in different years (Supplementary Text). After this step, and 
considering the distribution of the number of available variables for 
a given number of subjects, the largest dataset with the minimum 
amount of missing data was defined. The cutoff for this distribution 
selected variables with at least 50,000 individuals. Individuals with 
more than 10% missing values were also dropped from database. 
After processing, the selected dataset contained 60,322 individu-
als with 48 laboratory variables (Table S1) and limited missing data 
(0.6% of data, Figure S2).

2.4  |  Machine learning processing

2.4.1  |  Handling missing data

Processing for data visualization and Machine Learning is described 
below (except for XGBoost which is able to manage missing data 
natively). A multivariate single imputation method for missing data 
based on an iterative imputer was implemented, using a Bayesian 

Ridge model as the estimator at each step of the round-robin impu-
tation (van Buuren & Groothuis-Oudshoorn, 2011).

2.4.2  |  Data visualization

A projection was made using the Uniform Manifold Approximation 
and Projection (UMAP) algorithm (McInnes et al., 2018). The method 
builds an undirected graph using K-Nearest-Neighbors on the entire 
dataset, viewed in a 2D scatter plot.

2.4.3  |  Development of the machine 
learning pipeline

The dataset was divided into a training and a test set in an 80:20 
proportion (Panesar, 2021) to train machine learning algorithm per 
se with chronological age as a target value. GrootCV algorithm was 
implemented using the “arfs 0.2.3” package to eliminate variables 
that did not contribute to the estimation of chronological age (cross-
validated feature selection based on lightGBM and feature impor-
tance derived from SHAP importance).

2.4.4  | Model robustness assessment

Three classes of models were compared: (i) Tree-based with Decision 
Tree, Random Forests (“scikit-learn 1.0.1” package) and Gradient 
Boosting Machine XGBoost (“xgboost 1.5.1” package), (ii) Neural 
Networks with Multi-Layer Perceptron (MLP), and (iii) penalized lin-
ear models with Elastic Net through the “scikit-learn 1.0.1” package. 
Grid-search exploration of hyperparameters with cross-validation 
was performed on training dataset for each model using the “optuna 
2.10.0” and “ray 1.9.1” packages (list of the hyperparameters grid 
search in Table  S2). Model training aimed at minimizing the mean 
absolute error (MAE). Models were evaluated based on their results 
on the train and test set in terms of R2 (coefficient of determination) 
and MAE. Standard deviations were provided for the train set, using 
fivefold cross-validation. To avoid performance discrepancy across 
the age group during model training, a custom objective function 
was introduced for XGBoost. It used a normalization per chronologi-
cal age to correct the gradient used by the model and thus correct its 
error at the next iteration (Equation 1).

where gradi is the gradient to be calculated for the ith individual, ŷ is 
the prediction of the model for a given iteration, y is the chronological 
age, age(i) represents all individuals that display the same age as the ith 
individual, and N is the total number of individuals.

(1)gradi =
�
ŷi − yi

�
×

���������

∑
j ∈ age(i)

(ŷj − yj)

�age(i)�
∑N

k=1(ŷk − yk)
N
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2.4.5  | Model explainability

SHapley Additive exPlanations (SHAP) was used as explainability 
model, “shap 0.39.0” package, to give local explanations and allow 
computation of the contribution of each variable to the prediction 
for each individual (Lundberg & Lee, 2017). Shapley values originate 
from the cooperative game theory field and are the average marginal 
contribution of a variable among all possible coalitions. The SHAP 
value for each variable for an individual corresponds to the contribu-
tion in age (positive or negative) of this variable to the age prediction 
of this individual. The predicted age of an individual PPA is there-
fore the sum of the total contributions of these variables to the base 
value (the mean predicted age of the individuals of the dataset).

2.4.6  |  Contextualized explainability

To define the influence of each laboratory variable of the model for 
an individual, a separate explanation model was trained for each age 
group, thus defining a contextualized explanation. The contextual-
ized SHAP value of a variable for a given individual corresponded 
to the contribution in age (positive or negative) of this variable, not 
relative to the whole population, but relative to other individuals 
sharing the same chronological age (with the mean predicted age 
of the individuals sharing the same chronological age as the base 
value). Summing variables gave the individual PPA deviation from 
chronological age relative to the population that shares the same 
chronological age.

2.4.7  |  Partial dependence computations

Partial dependences for each variable were computed and plotted 
(PDP). PDP represents the contextualized SHAP contribution of a 
variable according to its raw value. An example of interpretation is 
given in Figure S3.

2.5  |  Model validation and robustness

2.5.1  |  Recursive feature elimination for obtaining a 
reduced model

To reduce the number of variables without degrading the quality of 
the model, the principle of the recursive feature elimination (RFE) 
algorithm was followed (Guyon et al., 2002). After hyperparameter 
tuning (as previously described), training the XGBoost model with 
custom loss and computing SHAP values, the variable with the least 
importance was removed from the dataset. These steps were re-
peated until all variables were removed and the evolution of the R2 
metric was monitored. The number of features necessary to obtain 
a model with less than 1% decrease of R2 compared to a complete 
model was considered as a performant reduced model.

2.5.2  |  Survival analysis

The validation of the physiological age model was performed using 
mortality data from the 2015 public mortality files (Lu et al., 2021) 
merged with the NHANES database based on the SEQN of the re-
spondents for years 1999–2015. The hypothesis tested was that a 
higher PPA deviation may be predictive of an increased risk of mor-
tality, and conversely, a lower PPA predicts decreased risk. PPA was 
also compared to homeostatic dysregulation (HD) and KDM metrics 
using the same set of variables as PPA to compute them, following 
the methodology previously described (Hastings et al., 2019). A mul-
tivariate Cox proportional hazards regression model was then per-
formed to compute the mortality hazard ratio of the PPA deviation 
(categorized into deciles) after adjustment on the chronological age 
and NHANES year of subject inclusion.

2.5.3  |  Validation on demographic, 
questionnaire and examination data

The hypothesis tested was that a higher PPA deviation reflected the 
overall poor, degraded health known to be the case in socially vul-
nerable and/or clinically at risk populations. We then assumed that 
PPA deviation was higher in these populations. PPA was compared 
to HD and KDM. The following socio-demographic variables were 
considered: family poverty index ratio, the family income, ethnicity, 
and education level. The following medical variables and categories 
were considered: body mass index BMI, tobacco consumption, alco-
hol consumption, sedentarity, systolic blood pressure, presence of 
chronic systemic diseases (digestive, cardiovascular, metabolic, eye, 
urogenital, respiratory tract, immune system, musculoskeletal dis-
eases, and neoplasms), abdominal aortic calcification score AAC24 
(Lewis et al., 2016), and drug counts. Details about each validation 
variable were presented in Table S3.

2.5.4  |  Contextualized SHAP values clusterization

To unravel similar explainability profiles and identify healthy aging 
trajectories, contextualized SHAP values were clustered. An agglom-
erative clustering technique has been used, with ward algorithm and 
Euclidean distance for linkage. Clustering results were then visual-
ized on UMAP. To define a unique cluster signature with variables 
(by the contextualized explainability) allowing discrimination of at 
least two clusters, a Mann and Whitney test was performed for each 
variable per pair of clusters together with the corresponding effect 
size r. Only variables with at least a medium effect (r ≥ 0.3) and a 
significant p-value after adjustment with the Benjamini–Hochberg 
test false discovery rate (FDR) were retained. For each cluster, the 
mean of the contextualized SHAP values was computed to produce 
an explanation of the cluster. For each cluster, explanations were 
presented in decision plots showing, on average, each variable's con-
tribution to PPA deviation.
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3  |  RESULTS

3.1 | Definition and estimation of physiological age, 
that also captures differences with chronological age

To develop an analytical framework unraveling personalized physio-
logical age (PPA) from routine biological variables, we first merged and 
filtered data sources to obtain a clean, robust, and workable dataset. 
We next selected the best machine learning strategies including train/
test splitting, feature selection, model selection, and optimization 
through performance comparison. We next developed a comprehen-
sive explainability process to reveal a new metric for variables defining 
PPA. Finally, we validated the new metric on socio-demographic data 
to predict mortality and chronic diseases (Figure 1).

3.1.1  |  Building a comprehensive and robust dataset 
from the NHANES data

To define PPA using a state-of-the-art and explainable ML-based 
framework with common biological variables, we built the larg-
est, most consistent and comprehensive dataset (Figure  1): (i) all 
NHANES data from 1999 to 2018 were merged, giving 36,945 vari-
ables, (ii) laboratory variables were selected and aggregated using 
a dedicated web interface (Figure  S1), and (iii) the largest dataset 
fitting inclusion criteria with a minimal missing data was defined 
(Figure 1, Figure S2). Once variables with sufficient subjects and a 
low rate of missing data are filtered out, the final dataset included 
48 laboratory variables (Table S1) for 60,322 individuals (30,747 fe-
males and 29,575 males, mean age 39.3 ± 19.7 and 39.5 ± 20.2 years, 
respectively). The distribution of individuals by age (Figure  S2A) 
showed that the amount of data from 12 to 20 years was two times 
that of other ages, with a 25% decrease of available subjects from 70 
to 79 years old. The different age groups showed no major gender 
imbalance. The amount of missing data was 0.1% of the total (linked 
to missing C-reactive protein CRP, folate, albumin, and creatinine 
values) and uniformly distributed across age and sex (Figure S2b,c). 
An imputation method for missing data was implemented, except for 
XGBoost machine learning algorithm, which is able to manage miss-
ing data. In the 2D UMAP data visualization projection, the oldest 
subjects were predominantly clustered to the left and center of the 
UMAP, and clear gender symmetry was highlighted along a diagonal 
(Figure S4).

Altogether, we succeeded in building the largest possible dataset 
from the whole NHANES database corresponding to 60,322 individ-
uals with very limited missing data.

3.1.2  |  Selection of the best explainable algorithm 
to define PPA

To test different machine learning algorithms, we split the dataset 
into training and test datasets (80% and 20%, respectively). No age 

and gender imbalance was found between train and test datasets 
(Figure S5). The number of variables was first reduced to 44, using 
GrootCV feature selection to remove variables with too little im-
pact on the behavior of the ML model (Table S1). Three classes of 
machine learning algorithms were compared: tree-based models 
(Decision Tree, Random Forests and XGBoost), a regularized re-
gression method (ElasticNet, a method with both L1 and L2-norm 
regularization of the coefficients), and a neural network (MultiLayer 
Perceptron, MLP). Using the training dataset, a grid-search explo-
ration of hyperparameters with a fivefold cross-validation was per-
formed for each model (Table S2). Comparing R2 and MAE on test 
dataset, XGBoost and MLP performed the best, with similar perfor-
mances and the lowest standard deviations during cross-validation 
for XGBoost (Figure  2a,b; Figure  S6). Given the high number of 
variables (high dimensionality) and number of subjects in the data-
base, XGBoost was selected for its abilities to efficiently compute 
explanations (Doumard et al.,  2023). The differential error of the 
model by age, predicting young individuals being older, or the op-
posite, was greatly minimized using the custom objective function 
during XGBoost training (Figure 2b), with no significant impact on 
the global performance (0.72 and 8.1 on the test dataset for R2 and 
MAE, respectively, Figure 2B).

3.2  |  Estimation of the relative weightsof 
each variable compared to the whole 
population or by age group: The global and 
contextualized explainability of PPA

3.2.1  | Model explainability

To define the contribution of each variable in individual PPA predic-
tion, the Shapley Additive exPlanations (SHAP) Tree framework was 
applied on the XGBoost model with Custom Loss model (Doumard 
et al., 2023). The SHAP value integrates both the effect per se of a 
given biological variable and the effects of this variable in interac-
tion with other biological parameters. For a given individual (local 
explanations), the sum of the SHAP values of all variables of the 
model represents the individual deviation from the mean of chrono-
logical age predicted from the entire dataset (39.9 years old in our 
dataset, i.e., the base value to add to the sum of all SHAP values). The 
higher the overall SHAP value, the more the variable contributes to 
the PPA. The summary plot shows the ranking by the mean absolute 
value of global SHAP contribution for each variable by decreasing 
importance (Figure S7). The global SHAP values of the top-20 vari-
ables are depicted in Figure 3a, representing 76% of the mean total 
SHAP sum contribution.

Many of the top-20 variables were related to metabolism, nitro-
gen (e.g., uric metabolites and creatinine), carbon (e.g., glycohemo-
globin, triglycerides, and glucose), or related to liver function (e.g., 
albumin, ALT, and GGT). Glycohemoglobin was the biggest contrib-
uting parameter (10.7% of the mean total SHAP sum contribution) 
while serum glucose was ranked 9th (Figure 3a). Urinary and blood 
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F I G U R E  1 Machine learning analysis pipeline. All data from the National Health and Nutrition Examination Surveys (i.e., NHANES 
study) 1999–2018 were collected. A large, consistent database containing the maximal number of common biological variables reported on 
the maximal number of subjects, and with minimal missing data was generated. This resulted in a dataset with 60,402 individuals with 48 
biological variables and 0.01% missing data. Using this dataset, five classes of algorithm models were trained, tested and compared based 
on performance. The XGBoost model with custom loss was considered (see Figure 2), and explainability was computed using SHAP values 
for the personalized physiological age (PPA) estimation. Deviation of PPA from chronological age is therefore the sum of the contextualized 
SHAP contributions of all the laboratory variables for a given subject (PPA deviation). Partial dependence plots and heatmaps of SHAP 
values also identify the precise range of biological values and thresholds for each variable and age group delineating accelerated or reduced 
aging. Clustering of SHAP values identifies specific PPA profiles. Finally, using recursive feature elimination, the list of variables was reduced 
to 26 biological variables without significant loss of model performance, providing a ready-to-use personalized and explainable model that is 
potentially clinically useful for monitoring physiological age to achieve healthy aging. PPA deviation was validated as a predictor of lifespan 
but also a risk factor for chronic diseases.
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creatinine, reflecting renal function, were also shown to contribute 
to PPA prediction. Several parameters directly or indirectly related 
to erythropoiesis (mean cell volume, red cell distribution width, he-
matocrit, and serum folate) were also among the top-20 variables. 
Immunity/inflammation (CRP and lymphocyte number) were ranked 
19th and 20th, respectively, while other parameters of the immune 
system (e.g., monocyte or lymphocyte percent, white blood cell 
count) displayed lower impact on SHAP values (Figure S7, Figure S8). 
For most of the variables (11 variables over 20), the higher was the 
variable value, the higher was the deviation from chronological age. 
No significant difference between males and females in explainabil-
ity profile and ranking of variables was observed (Figure S9).

3.2.2  |  Contextualized explainability of PPA 
(deviations from age-specific normative data)

While global explainability uses the mean prediction of the whole 
population as a reference, contextualization refers to the mean pre-
diction of the individuals sharing the same chronological age, in order 
to overcome putative generational effects. The SHAP contribution 
of each variable is quoted “contextualized SHAP” in the manuscript. 
The absolute values of contextualized SHAP values for each vari-
able are presented in Figure  3b. Glycohemoglobin (HbA1c), blood 
urea nitrogen, mean cell volume, and urinary creatinine proved to 
contribute throughout life-course, albeit with a stronger contribu-
tion between 40 and 70 years of age. Other variables had more 
age-specific contributions, such as alkaline phosphatase (12–18 y.o.), 
alanine transferase ALT and cholesterol (20–40 y.o.), or lymphocyte 
number and folate (60 y.o. and over).

3.3  |  Clinical and socio-economic validation of PPA

3.3.1  |  Validation on mortality data

We derived the PPA deviation metric, defined for a given individual 
as the sum of the contextualized SHAP values. Using a multivari-
ate Cox survival model, PPA deviation was found to be a relevant 
predictor of mortality independently of the chronological age 
(Table  1). Indeed, a positive PPA deviation value was significantly 
associated with gradual increase in mortality risk (adjusted hazard 
ratio with 95% confidence interval, aHR 95%CI 1.18[1.01;1.38], 
1.37[1.17;1.59], 1.38[1.18;1.60], and 1.69[1.45;1.97] for the 7th to 
10th deciles, compared to the 5th decile, respectively).

3.3.2  |  Validation on socio-demographic and 
medical variables (Table 2)

The regression coefficient is the PPA deviation contribution to vali-
dation variable, adjusted for chronological age and gender. Altered 
health condition or being in a socially disadvantaged population were 

significantly associated with increased PPA deviation for a majority 
of variables. Being a male, poor, exposed to tobacco, obese, seden-
tary or with a systemic disease was associated with a significantly 
increased PPA deviation values. Of note, having high family income 
was significantly associated with a lower PPA deviation value.

3.3.3  |  Comparison to KDM and homeostatic 
dysregulation (HD) metrics (Table 2)

To further validate PPA, KDM and HD metrics were computed using 
the same set of variables. As revealed by a lower Akaike informa-
tion criterion (AIC), PPA better fits with socio-demographic variables 
and most of medical variables than KDM and HD. For mortality, HD 
metric achieved the lowest AIC. However, PPA also successfully cap-
tured mortality, with a decreased mortality risk for a negative PPA 
value, and conversely.

3.4  |  Impact of variations of each variable on the 
SHAP explanations: A range of biological values 
associated with healthy aging

Partial dependence plots revealed the impact of one variable on 
the PPA by averaging the influence of all other variables (Figure 4a; 
Figure S10a). Curve shapes that were similar between ages clearly 
revealed the different ranges of the variable value for which the cor-
responding contextualized SHAP values were positive, neutral, or 
negative. For example, while the contextualized SHAP values were 
negative for low glycohemoglobin, a sharp increase occurred for val-
ues in the 5%–6% window, confirming the accuracy of the follow-up 
value (Figure 4a; Figure S3a). This transition zone, characterized by 
crossing the zero-line between age scales, was different according 
to age groups. This was visualized as a dark zone in the heatmap in 
Figure 4b and Figure S10b. Thus, while the threshold of 5.4% char-
acterized a border for young subjects, it evolved with age, increasing 
to 5.8% for subjects older than 50 (Figure 4b; Figure S3b). This pro-
duces biological alert thresholds, adaptable to chronological age of 
a subject. Similar analysis can be applied to all variables (Figure 4a). 
Figure 4b underscores the decrease in the normal range of biologi-
cal values with age. Altogether, these results show the contribution 
and relevance of contextualized SHAP values to define a new metric 
and standard suitable to define a physiological health status for all 
age groups.

3.5  |  Identification of different aging trajectories 
by clustering profiles of identical contextualized 
explanations

To identify putative pathways linked to aging, all contextualized SHAP 
values were clustered, irrespective of chronological age (Figure 5a). 
Ten SHAP clusters grouped into two classes according to the 
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glycohemoglobin SHAP value were identified. This suggested that 
profiles corresponding to the same PPA deviation involved different 
physiological pathways supporting aging. Clustering was strongly 
driven by the SHAP values of glycohemoglobin. Contribution of low 
(below clinical threshold at 6%) glycohemoglobin appeared to corre-
late with a “younger physiology” in older individuals. Within classes 
corresponding to positive and negative SHAP values of glycohemo-
globin, changes in a limited set of variables (urinary creatinine, cho-
lesterol, ALT, mean cell volume (MCV), aspartate transferase (AST), 
blood urea nitrogen (BUN), gamma-glutamyl transferase (GGT)) dis-
tinguished the clusters. All other variables weakly contributed to the 
PPA estimation (Figure 5b,c). Clusters 2 and 4 were characterized by 
a systematic negative and positive PPA deviation of key biological 
variables (Figure 5c). All other profiles were characterized by a mix of 
positive and negative SHAP values of the same key variables.

3.6  |  Generation of a minimal model by recursive 
feature elimination

In order to test the robustness of the model with a perspective of 
PPA application to the general population, we iteratively eliminated 
variables one by one. The run-out RFE algorithm (Figure 6) indicated 
that 26 variables were sufficient to predict PPA without significantly 
decreasing the performance of the model estimated by the R2. 
Similar to the complete model, this minimal model was also predic-
tive of mortality, and fitted well with socio-demographic and medi-
cal variables (Tables 1; 2).

4  |  DISCUSSION

Personalized estimation of physiological aging requires the capture 
of subtle physiological changes/dysfunctions as early as possible 
before any clinical manifestation. Such an objective is highly chal-
lenging (Jylhävä et al., 2017; Ferrucci et al., 2020) and deviates from 
the traditional medical approach where interventions mostly occur 
in the presence of clinical manifestations.

Using an innovative explainable ML pipeline with non-supervised 
selection of biological variables, we defined personalized physiolog-
ical age (PPA) as a predictor of mortality and lifespan, as well as a 
risk factor for chronic diseases. PPA framework also identifies the 
relative and precise quantitative weight of variables contributing to 
its estimation from the earliest age. PPA gives accelerated or delayed 
aging relative to specific aging profiles. Because PPA is derived from 
biological variables routinely available, it represents an efficient and 

cost-effective tool for general populations. Furthermore, the PPA 
framework can be easily translated to address other clinical issues 
and to quantify the relevance of new biomarkers with an accurate 
associated metric.

For complex systems such as physiological aging, the use of 
ML appears particularly suitable to capture, whatever their nature 
and intensity, complex interactions among a wide type of variables. 
Although some studies have used ML to define physiological age 
(Sun et al., 2021), these models are black-boxes lacking explainabil-
ity, hence preventing the ability to check for reliability and model-
inferences (Diprose et al., 2020; Linardatos et al., 2021). An exception 
is a very recent report on the prediction of individual trajectories 
and survival combining machine learning and interaction network 
(Farrell et al., 2022). Future developments could also consider tree-
based glass-box models such as Explainable Boosting Machine (Lou 
et al.,  2013) or feature attribution methods for neural networks 
(Janizek et al., 2021; Lombardi et al., 2021). Explainability better sus-
tains evidence-based acceptability and could allow for data-driven 
personalized medical-management (Stiglic et al., 2020). To achieve 
this goal, we developed an explainable PPA estimation where (1) all 
subgroups were represented without significant imbalance, (2) ad-
equate ML techniques were able to consider performance discrep-
ancy across the age group (custom loss), (3) the training data (source 
population) were representative of the target population by creating 
a test dataset and minimizing overfitting.

For PPA explainability, we used state-of-the-art explainable 
techniques, such as the SHAP algorithm, to compute local explana-
tions at the individual level. This integrates the effects of the bio-
logical variable per se, but also the effects of interactions between 
variables (Doumard et al., 2023). Compared to other indexes, PPA 
performs better to capture socio-demographic disparities and med-
ical conditions than KDM or homeostatic dysregulation (HD), and 
better capture mortality than KDM. The global and contextualized 
SHAP analyses are similar to HD and KDM approaches, respectively, 
but in addition allow capture of complex interactions (including non-
linear ones) between variables, contrary to classical biostatistical 
approaches. Contextualized SHAP strategies reduce the risk of pos-
sible generational bias since in other studies, age predictors suitable 
for one group may not operate for other groups (Sagers et al., 2020). 
The difference between global and contextualized analysis can be 
illustrated using alkaline phosphatase (ALP). In a global approach, 
ALP makes sense over age, while in a contextualized approach it 
is meaningful at a young age, certainly in accordance with a role in 
bone development (Sekaran et al., 2021). All SHAP value analyses 
highlight the major contribution of HbA1c to PPA explainability, as 
well as the identification of aging clusters. This is consistent with 

F I G U R E  2 Model selection of different classes of machine learning models. (a) Several classes of models were tested to estimate 
physiological age, defined as the chronological age predicted by the model. An optimization of the hyperparameters of each model was 
performed on the training dataset, and the final achieved performance tested on the training and test datasets (coefficient of determination 
R2 and mean absolute error MAE). MultiLayer Perceptron MLP and XGBoost model achieved the best performances. (b) Graphical 
representation of the predicted physiological age defined using MLP, XGBoost and XGBoost with Custom loss as function of chronological 
age. The red line highlights situations where physiological age is identical to chronological age. Custom loss applied to XGBoost improved 
XGBoost, by moderating the performance discrepancy across the age groups.
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its biogenesis reflecting disturbance in glucose homeostasis affect-
ing multiple pathways over long intervals (Little et al., 2019; Ravera 
et al., 2019; RaviKumar et al., 2011). More indirectly, it connects to 

energy homeostasis control and carbohydrate metabolism in organ-
isms (Wilson & Matschinsky, 2021). Recently, a genome wide analy-
sis for polygenic traits has highlighted the high heritability of HbA1c 

F I G U R E  3 Global and contextualized explainability of physiological age. (a) Global explainability of the PPA model for the top-20 most 
important variables (in order of importance based on the mean of absolute SHAP values). Each point color encodes the SHAP value of 
each variable for each individual; red and blue colors indicate high and low values of the variable, respectively. A positive or negative SHAP 
value on the x-axis means that the variable contributed to the positive or negative estimation of physiological age for a given individual. The 
evolution of the raw variable values over time is depicted as a black line to the right of each variable name. This shows that the evolution 
of the SHAP values over time does not always follow the evolution of its raw value. (b) Contextualized explainability of the physiological 
age. SHAP values have been contextualized, taking as a base value the mean predicted age of the individuals with the same chronological 
age. Heatmap represents the mean of the absolute contextualized SHAP values for each variable (the whiter the color, the higher the mean 
absolute SHAP value) for each chronological age.
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value, which strengthen the value of this parameter in reflecting glu-
cose metabolic regulation, and thus its importance in contributing 
to the determination of biological age (Weiner et al., 2023). Being 
more strongly involved in PPA than glycemia itself, HbA1c is a par-
adigm suggesting that indirect and cumulative parameters might be 
more relevant to assess physiological age than regulated variables, 
changes in which reveal pathology at a late stage of dysfunction. 
Given the importance of HbA1c, it may be appropriate to use this 
variable in complement to the first 10–15 variables that contribute 
significantly to PPA not only for monitoring diseases but also as a 
signal for subclinical events as shown by contextualized SHAP. The 
general involvement of metabolism is also emphasized in the SHAP 
clusters by the differentiating weight of variables related to red 
blood cells, liver (ALT, AST, and GGT), and kidney (BUN and urinary 
creatinine). The centrality of metabolism was previously reported 
(Hao et al., 2021), together with that of the liver/kidney axis, both in 
line with previous findings (Ahadi et al., 2020) proposing to stratify 
individuals into different ageotypes using four groups of pathways: 
liver and kidney dysfunctions, immunity pathways, metabolism, and 
inflammation. The number and the weight of variables related to 
red blood cells is reminiscent of the importance of such multistep, 
finely-tuned process gradually affected in aging. Except for lipid me-
tabolism, no variable seems to be clearly related to cardiovascular 
system. Because heart and kidney variables are strongly correlated 
(Hao et al.,  2021), the PPA algorithm could have selected a single 
class of variables bringing similar relevant information. Alternatively, 
chronic inflammation being major contributor of cardiovascular 

alteration, ultrasensitive-CRP could be more informative. As for 
HbA1c, the selection of urinary metabolites by the algorithm could 
also be explained by the consideration that their evolution reflects 
a cumulative temporal effect. Surprisingly, immune components 
have a low influence on PPA and appear in the small but multiple 
adjustments associated with immune variables. These variables are 
included in top-20 of variables for global explainability, but not in 
contextualized ones that described the relative evolution compared 
to contemporaries. This could be explained by the very limited num-
ber of immunologic variables and/or the fact that the immune vari-
able available in routine clinical testing is not very informative for 
estimating physiological aging because the selected variables clas-
sically measured allow the identification of immune responses to 
acute aggressions rather than small deviations.

Although a limited number of variables carry weight in the differ-
ent profiles, the low range involvement of many other biological vari-
ables in the PPA estimation perfectly illustrates the complexity of 
the physiological networks and the importance to detect subclinical 
signals. This also highlights the need for a combination of biomark-
ers for an accurate physiological age estimation (Cohen et al., 2015). 
Even when findings are consistent with the literature (i.e., the role 
of energy metabolism), the PPA explainable model allows further 
insight, allowing for a precise analysis of the positive or negative 
contribution to PPA of each metabolism-related variable with a high 
level of refinement. The partial dependence plots not only reveal 
the evolution of the contribution to the PPA of each variable with 
age, but also provide precise information about the contribution of a 

TA B L E  1 Validation on mortality data.

aHR [95%CI]

Complete model Minimal model Klemera–Doubal Model Homeostatic dysregulation

AIC 57,820 57,819 57,607 57,056

Metric deviation (deciles)

Decile 1 0.80 [0.68;0.94] 0.78 [0.66;0.92] 1.17 [0.91;1.51] 0.57 [0.46;0.72]

Decile 2 0.93 [0.78; 1.09] 0.84 [0.71;0.99] 1.06 [0.83;1.36] 0.62 [0.51;0.76]

Decile 3 0.84 [0.71; 0.99] 0.90 [0.77;1.06] 1.2 [0.97;1.49] 0.90 [0.75;1.07]

Decile 4 0.95 [0.81; 1.11] 0.88 [0.75;1.03] 1.21 [0.99;1.47] 1.09 [0.92;1.29]

Decile 5 1 1 1 1

Decile 6 1.19 [1.03;1.39] 1.21 [1.04;1.40] 1.16 [0.97;1.38] 1.12 [0.95;1.33]

Decile 7 1.20 [1.03;1.39] 1.20 [1.03;1.39] 1.30 [1.1;1.55] 1.45 [1.23;1.69]

Decile 8 1.41 [1.21;1 0.64] 1.25 [1.07;1.45] 1.46 [1.24;1.73] 1.89 [1.62;2.20]

Decile 9 1.29 [1.11;1.50] 1.39 [1.19;1.61] 1.71 [1.45;2.03] 2.7 [2.35;3.15]

Decile 10 1.76 [1.51;2.05] 1.65 [1.41;1.93] 3.26 [2.77;3.83] 3.49 [3.02;4.04]

Gender: Male 0.65 [0.61;0.69] 0.65 [0.61;0.69] 0.59 [0.55;0.63] 0.63 [0.59;0.68]

Age 31.45 [6.23;159] 27 [5.4;138] 74 [15;360] 86 [16;435]

Year of inclusion 1.08 [1.03;1.14] 1.08 [1.02;1.13] 1.11 [0.99;1.07] 1.12 [1.06;1.18]

Age: Year of inclusion 0.998 [0.998;1] 0.998 [0.998;1] 0.998 [0.998;1] 0.999 [0.998;1]

Note: Adjusted hazard ratios aHR based on gender, chronological age, and NHANES year of inclusion with 95% confidence interval were computed 
according to PPA deviation value (the sum of contextualized SHAP values for the complete or minimal model), Klemera–Doubal Model or 
Homeostatic Dysregulation, taken as deciles. Akaike criterion (AIC) was computed for each model. Subjects at least 18 years old were included in 
this analysis. An aHR inferior to 1 indicates decreased risk of mortality, and conversely. The lower the AIC, the more the model minimizes the loss of 
information (the better the model).
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given variable to PPA according to its raw value. Beyond the shape of 
the profiles, which indicates proportionality (linear contribution) or 
a shift (sigmoid-like contribution) in the importance of the variables, 
the remarkable result is the unsupervised identification of critical 
ranges of precise values for each variable, whether it is widely char-
acterized (such as HbA1c) or not. Whatever the profiles of contextu-
alized partial dependence plots, the contextualized SHAP values are 
consistent with a natural age-related drift of biological parameters. 
This age-dependent adjustment of referent value for each variable 

should lead to the early and accurate identification of small changes 
anticipating future dysfunction tissue/organ dysfunction and intrin-
sic capacity of decline.

The clustering of the contextualized SHAP values reveals differ-
ent individual physiological age deviation profiles with specific vari-
able patterns, overcoming the natural drift in balance of biological 
parameters with age. In other words, PPA would support identifica-
tion and deciphering of pathophysiological profiles at risk of accel-
erated aging. In the context of medical care, this makes it possible 

F I G U R E  4 Partial Dependence Plots of contextualized SHAP values. (a) Contextualized SHAP values as a function of variable values for 
the top-8 variables. Each dot represents an individual. The color indicates the corresponding chronological age (scale on the right). X-axis 
corresponds to the real value of the variable, while the y-axis corresponds to the SHAP value given to this individual for this variable. The 
dotted line corresponds to a SHAP value of 0, which means that when the individual displays a variable value for which the SHAP value is 0, 
the variable has no impact on the physiological age. (b) Heatmap of contextualized SHAP values as a function of chronological age. The color 
of each pixel indicates the average SHAP value of a variable (x-axis) as a function of chronological age (y-axis). An example of interpretation 
is illustrated in Figure S3.
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to identify sub-categories of patients and their underlying hierar-
chy that could be used to implement targeted follow-up and care. 
In a research and development context, the analysis of these pro-
files, with additional biological parameters, will make identify new 
pathophysiological targets for early identification and management 
of age-related dysfunctions.

Some limitations may be mentioned in the present study. First, 
the NHANES study is based on a USA-based population cohort 
and reflects the impact of a certain type of regimen and socio-
economic environment on aging. This hampers generalization, 
making it necessary to validate the metric on other populations 
from other countries, although physiological dysregulations appear 
stable across European and North American populations (Cohen 
et al., 2014) and even primates (Dansereau et al., 2019). The use of 
this large database suggests that the model could be used on any 
consistent database. Cross-sectional in nature, the use of NHANES 
data prevents from inferring causalities of results, even though sev-
eral studies are reasonably supporting. Similar investigations per-
formed on longitudinal studies will bring additional data that better 
defines the pathophysiological consequences on healthy aging and 
particularly on frailty status (Ahadi et al., 2020; Elliott et al., 2021). 
Of course, the precise causal link and the types of interactions be-
tween the variables remain to be definitively established.

The use of a limited number of biological variables from stan-
dard biochemical analyses paves the way for routine medical use 
of PPA with a minimum investment. However, the methodology 
of this study should not be seen as an end, but as a general and 
evolving framework, where biomarkers can be implemented to 
improve and precisely identify age-related imbalances. Variables 
related to the architecture and the structure of the tissue could be 
particularly appropriate to identify a drift in architecture/function 
relationship as we recently proposed (Kemoun et al.,  2022). This 
work does not take into account the biological/mechanical rela-
tionships between the different variables. Of note, the low relative 
importance of immunity parameters may be due to a lack of rele-
vant variables in the dataset or reflect the fact that inflammatory 
component, defined as inflammaging, could be masked by another 
variable. Also, variation of low range CRP values, which are widely 
used in the follow-up of cardiological patients, was not accessible 
in the dataset. It is noteworthy that the serological status was not 
available in the dataset and hence not considered, while it is now 
well accepted that most chronic infectious diseases have direct and 
indirect, treatment-related, impacts on aging trajectories. In the 
present study, inflammatory markers could address part of these 
impacts (Ray & Yung,  2018). In the future, the inclusion of new 
parameters revealing a cumulative effect such as HbA1c should 

F I G U R E  5 Clustering SHAP values to reveal healthy aging trajectories. Individuals were clustered by agglomerative clustering based 
on their contextualized SHAP values. Chronological age was not added as a clustering variable (a) UMAP 2D-projections were colored 
by chronological age, identified cluster and sum of contextualized SHAP values from left to right, respectively. It is thus possible to see, 
according to the age distribution of the different clusters, profiles of individuals with accelerated aging. (b) Signature of each cluster for the 
24 variables allowing significant distinction between at least 2 clusters. The heatmap shows the average value of each variable for each 
cluster. (c) Decision plot profile for each cluster. Starting from the bottom, the cumulative contribution of each variable was presented (in 
positive and negative values) to the predicted final value (at the top of the diagram). For each cluster, we indeed have the “average” individual 
representative of the cluster.
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improve the precision of the estimation and thus the recognition of 
smaller age-related deviations.

In a nutshell, this work, using standard biological variables, pro-
vides not only a practical and powerful tool ready to use in medical 
care while remaining scalable with integration of other biomarkers, 
but also a complete explainable ML framework to quantitatively de-
cipher the basis of complex physiological phenotypes. At the cross-
roads between biology, epidemiology, and informatics, this work 
offers both the opportunity to reflect on pathophysiology, a predic-
tive tool for precision medicine, and a study framework that can be 
extended to many other topics.
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