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Key Points

• Soft fibronectin–
coated substrates
favor MK adhesion and
proplatelet formation
through interaction
with β3 but not with β1
integrins.

• Stiff substrates
promote fibronectin
fibrillogenesis and
increase intracellular
contractility that
prevents proplatelet
formation.
Megakaryocytes (MKs) are the precursor cells of platelets, located in the bone marrow (BM).

Oncemature, they extend elongated projections named proplatelets through sinusoid vessels,

emerging from the marrow stroma into the circulating blood. Not all signals from the

microenvironment that regulate proplatelet formation are understood, particularly those

from the BM biomechanics. We sought to investigate how MKs perceive and adapt to

modifications of the stiffness of their environment. Although the BM is one of the softest

tissue of the body, its rigidification results from excess fibronectin (FN), and other matrix

protein deposition occur upon myelofibrosis. Here, we have shown that mouse MKs are able

to detect the stiffness of a FN-coated substrate and adapt their morphology accordingly. Using

a polydimethylsiloxane substrate with stiffness varying from physiological to pathological

marrow, we found that a stiff matrix favors spreading, intracellular contractility, and FN

fibrils assembly at the expense of proplatelet formation. Itgb3, but not Itgb1, is required for

stiffness sensing, whereas both integrins are involved in fibrils assembly. In contrast, soft

substrates promote proplatelet formation in an Itgb3-dependent manner, consistent with the

ex vivo decrease in proplatelet formation and the in vivo decrease in platelet number in

Itgb3-deficient mice. Our findings demonstrate the importance of environmental stiffness for

MK functions with potential pathophysiological implications during pathologies that

deregulate FN deposition and modulate stiffness in the marrow.

Introduction

The daily production of 1011 blood platelets required to maintain normal hemostasis is made possible
through unique mechanisms involving megakaryocytes (MKs). MKs are specialized giant cells derived
from the differentiation of hematopoietic stem cells in the bone marrow (BM). Mature MKs interact with
marrow sinusoid vessels and extend long cytoplasmic processes through the endothelial barrier.1

Proplatelets detach from the cell body to be further remodeled in the downstream microcirculation
to release mature platelets.1,2

Although MKs grow well in suspension in vitro, they, nevertheless, reach a less extensive maturation
state with poorly efficient proplatelet formation.3 Cells receive various signals from the environment
ranging from soluble factors, cell-cell or cell-extracellular matrix (ECM) interactions and mechanical
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cues in vivo. It is known that adhesion to several ECM proteins,
such as fibrinogen or fibronectin (FN), promotes proplatelet for-
mation, whereas adhesion onto collagen I inhibits the process.
However, these characteristics were observed upon the adhesion
of MKs onto ECM-coated glass coverslip whose stiffness is
physiologically irrelevant, and the proper impact of the substrate
stiffness has been poorly investigated so far. The BM is composed
mostly of hematopoietic cells and a few stromal cells, all tightly
packed and surrounded by a loose meshwork of ECM,4 embedded
in the trabeculae of the cancellous bone. The hematopoietic
marrow is one of the softest viscoelastic tissue (E estimated < 0.5-
24.7 kPa),5-7 being stiffer near the bone surface and softer near
sinusoid vessels, which is the exclusive site of hematopoietic cell
egress.8 These mechanical properties can change drastically dur-
ing some pathological conditions. Chemotherapeutically induced
myeloablation leads to a drastic, albeit transient, modification of the
balance between cells and matrix proteins, whereas pathological
conditions leading to marrow fibrosis increase tissue rigidity,9

emphasizing the need to understand how MKs react to various
stiffness conditions.

It is now well -known that most cells adapt to tissue stiffness with
responses that are cell-type dependent.10-13 Cells sense and
react to different degrees of matrix stiffness through mechano-
transduction mechanisms. Only a few studies suggested that
MKs are sensitive to mechanical constraints, being able to
respond to 3D confinement3 and collagen matrix stiffness.14,15

However, how MKs sense and react to FN-coated substrate
stiffness in the same range as that of the BM is unclear. FN is an
important matrix protein that polymerizes in a cell-dependent
process to give rise to an insoluble, biologically active fibrillar
conformation. FN matrix favors the deposition of other ECM
proteins, such as collagens I, III, and IV and various other glyco-
proteins and thus plays a critical role in development of tissue
fibrosis.16-21 FN from plasmatic origin is normally present
throughout the marrow stroma and in the sinusoid vessel base-
ment membrane.22,23 Importantly, MKs themselves also produce
FN, which contribute to the creation of their proper niche24, and
an increase in cellular FN protein deposition in the marrow stroma
upon myelofibrosis has been reported.22 Thus, understanding the
effects by which FN matrix stiffness influences MK behavior and
functions is particularly clinically relevant. In this study, using mice
as a model, we investigated the extent to which MKs were able to
perceive substrate rigidity and notably explored the role of
integrins as mechanosensors probing extracellular stiffness.25

Integrins, by exerting traction forces on the surrounding ECM,
adjust adhesion strength via the modulation of adhesion structure
composition and remodeling of the cytoskeleton. Each integrin
subtype produces specific signals, leading to a unique response
to the mechanics of its surroundings. Here, we found that
although a stiff matrix promoted MK spreading and FN fibrillo-
genesis, a soft matrix that maintained a low intracellular contrac-
tility was preferred for adhesion and proplatelet formation. We
also showed that FN stiffness-sensing and soft matrix–promoted
proplatelet formation depends on β3 rather than β1 integrins.

Material and methods

Materials and detailed methods are presented in supplemental
Material and Methods.
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Mice

Animal experiments were conducted in accordance with European
law, recommendations of the ethical committee, and national
agreement. All mice had a C57BL/6 background and were aged
between 3 and 4 months. The β1fl/fl26 and β3fl/fl27 mice were
crossed with mice expressing the Cre recombinase under the
control of the Pf4 promoter28 to obtain inactivation in the MK
lineage.

MKs culture, adhesion, and proplatelet formation

Culture of lineage-negative mouse progenitors from femurs and
tibia was performed as described.29 Polydimethylsiloxane (PDMS)
substrates were prepared by mixing silicone base and curing agent
in various ratios. The viscoelastic properties were characterized
using rheology (supplemental Methods; supplemental Figure 1).
For quantification of cell adhesion and proplatelet formation, we
used FN circular patterns on the various PDMS substrates, coated
with FN 50 μg/mL. For FN remodeling observation, we used biotin-
labeled FN (50 μg/mL). MKs (5000 cells) were deposited on the
micropatterns (50 μL) and counted 2-hours after seeding after a
gentle wash, directly by the observation under the microscope of
living cells. Evaluation of MK spreading over 5 hours was measured
either using images obtained from living cells via bright field
microscopy (Motic Image Plus 2.0 software) (apparent MK surface)
or after fixation and immunolabeling (phalloidin-labeled spreading
area). The proportion of MK extending proplatelets on PDMS was
directly counted on living cells under the microscope 24 hours after
MK seeding. As proplatelets frequently detached, MKs presenting
only 1 proplatelet extension was considered as MK forming pro-
platelets, whereas free floating proplatelets were not taken into
account. The proportion of MK extending proplatelets in liquid
culture was counted on day 4 of the lineage-negative culture as
described.29 The proportion of proplatelet formation in the explant
culture was performed as described.30

Immunostaining, confocal image acquisition, and

quantification

Five hours after seeding, MKs were washed and fixed using 4%
paraformaldehyde. Immunolabeling was performed with primary
antibodies followed by secondary antibodies and/or Alexa
Fluor–labeled phalloidin and 4′,6-diamidino-2-phenylindole. Images
were acquired using a Leica SP8 inverted confocal microscope.
MKs were selected randomly, based solely on the large and poly-
lobed 4′,6-diamidino-2-phenylindole (DAPI)–labeled nucleus,
characterizing mature MKs, without prior observation of the other
labeling, to be analyzed. To discriminate FN substrate remodeling
from endogenously synthesized and released FN, biotinylated FN
was coated on the PDMS substrates and revealed using fluores-
cein isothiocyanate–labeled streptavidin.

Electron microscopy

Electron microscopy was performed on intact flushed BM as
previously described3 and is detailed in supplemental Materials and
Methods.

Flow cytometry

Platelet integrins labeling was performed on whole blood
anticoagulated with 6 mM EDTA via flow cytometry (Fortessa,
8 AUGUST 2023 • VOLUME 7, NUMBER 15



Becton Dickinson). The mean fluorescence intensity was deter-
mined for each integrin subtype.

Statistics

Data are presented as mean ± standard error of the mean. Sta-
tistical analyses were performed using GraphPad Prism software
version 9.2.0. Comparison among ≥3 groups were performed
using ordinary 1-way analysis of variance (ANOVA) with Tukey
multiple comparison tests. In some experiments, 2-way ANOVA
analysis and Šidák multiple comparisons test were performed.
Comparison between 2 groups were performed using unpaired
2-tailed t test. *P < .05; **P < .01; ***P < .0001; ****P < .00001;
nonsignificant P > .05.

Results

MKs are able to sense and adapt to FN matrix

stiffness

In order to evaluate the stiffness-sensing behavior of MKs, mature
MKs were seeded onto PDMS substrates of various stiffnesses
coated with FN. Here, we used a stiffness range (Young modulus
ranging from 1.5 to 90 kPa) that encompasses normally soft and
pathologically stiffer fibrotic BM tissues and compared these with
glass coverslips that are commonly used for MK adhesion studies
(Young modulus ~70 Gpa; see “Materials and Methods”;
supplemental Figure 1). The adhesion capacity was evaluated
using FN-coated micropatterned surface (diameter 200 μm)
2-hours after MK seeding, with MKs still not being fully spread at
that time. We observed a gradual decrease in the number of
adhered MKs when stiffness increased, suggesting that MKs
adhesion is promoted with a soft matrix (Figure 1A). In the pres-
ence of blebbistatin, MKs behaved similarly irrespective of the
matrix stiffness and to the same extent as adhesion onto soft matrix
(Figure 1B). This confirms that preferential adhesion onto soft
matrix results from a stiffness-sensing mechanism and indicates
that a low intracellular contractility favors their adhesion. For the
spreading capacity evaluation, MKs were allowed to adhere for 5
hours. We observed that a higher stiffness led to more spreading
(Figure 1C). As observed via the bright field microscopy of living
cells, the surface of MK cells demonstrated a threefold increase
when cultured on glass, compared with that when grown on a soft
matrix (Figure 1C,D).

Matrix stiffness modulates the morphology of

adhered MK and their F-actin organization

At the intracellular level, we observed that stiffer matrixes increased
F-actin–positive spread area and cell flattening while decreasing
circularity, with more spreading being correlated with lower height
and lower circularity (Figure 2A,B; supplemental Figure 2). F-actin
cytoskeleton organization at the basal side was mostly organized
into F-actin puncta, whose number per cell increased with the
increase in stiffness. F-actin fibers, which were always thin rather
than in the form of large cables, were quasi-absent from soft
substrates and became more numerous when adhered onto stiffer
matrixes (Figure 2A,D,E). It has been described that MKs form
podosomes when adhering onto matrix-coated glass.31 Similarly,
we observed here that F-actin was mostly organized as puncta,
whose number increased on stiff substrates. On glass and stiff
substrates, podosome-like structures were characterized by central
8 AUGUST 2023 • VOLUME 7, NUMBER 15
F-actin puncta surrounded by rings composed of β3 or β1 integrins,
the 2 major β integrin subtypes expressed by MK (Figure 2D,E,
left).32-35 Notably, not all MKs presented this typical integrin
organization. Contrastingly, soft matrix did not promote this orga-
nization, with integrin being either independent of F-actin puncta or
colocalized with mostly fuzzy F-actin (Figure 2D,E, right). Overall,
this indicates that the organization/composition of F-actin adhe-
sions varies based on the stiffness of the substrate.

F-actin adhesions are organized in response to integrin outside-in
signaling after engagement. Accordingly, increased autophos-
phorylation of focal adhesion kinase (FAK) (pY397-FAK) at F-actin
puncta, and a higher level of RhoA activation was observed as the
stiffness increased (Figure 3A,B), suggesting enhanced signaling
on stiffer matrixes. Addition of Mn2+ to ensure that integrins were in
their activated ligand-binding state was not sufficient to promote
complete spreading on soft substrates, suggesting that the differ-
ence in spreading between soft and stiff relies on the differences in
stiffness sensing rather than on integrin-FN binding affinity
(supplemental Figure 3).

Matrix stiffness directs the extent of MK-mediated FN

reorganization

The presence of podosome-like structures suggest an increased
possibility of MKs being prone to remodel the underlying FN matrix.
Indeed, local FN accumulation was observed at the periphery of
MKs (Figure 4). This FN accumulation resulted from the remodeling
of the coated biotin-labeled FN. FN was assembled either at
anchorage points, accumulated around the periphery of the cell, or
formed radial arrays perpendicular to the cell edge. These radial
arrays sometimes, but not always, colocalized with F-actin and
integrins (Figure 4A-C). FN reorganization was different based on
the stiffness of the matrix. On softer surfaces, FN was mostly
forming aggregates. Increasing stiffness led to the appearance of
longer and more individualized FN fibrils that reached a maximal
length of ~4 or 5 μm (Figure 4A-C). FN internalization does not
seem to be a major event for fibrillogenesis because only a little
amount of biotinylated FN was observed inside the MKs, although it
was more on stiff matrix than on softer ones, in agreement with the
longer fibrils observed on stiff substrates (Figure 4D).

β3 integrin is the main integrin for FN stiffness

sensing, whereas both β1 and β3 contribute to

fibrillogenesis

We then questioned which integrin receptors were involved in MK
stiffness sensing and FN remodeling. MKs express several integrins
acting as FN receptors.36 In the BM, FN was regularly found sur-
rounding MKs and in contact with β1 and β3 integrin subunits
(Figure 5A). Upon its adhesion to FN, we found 3 times more Itgb3
than Itgb1 present on the basal side, in contact with the matrix.
There, Itgb3 was mostly colocalized with the Itgb1 subunit
(supplemental Figure 4). To evaluate their respective roles, we
resorted to use MKs from β1- and β3-deficient mice (supplemental
Figure 5). Absence of β1 integrin had no effect (Figure 5B,C). In
striking contrast, the absence of β3 integrin strongly modified the
capacity of MKs to react to stiffness. The number of adhering
Itgb3–/– MKs on soft surface was leveled down to that on stiff
surface, indicating that soft matrix–promoted adhesion depends on
β3 integrin rather than on β1 (Figure 5B). Further, the increased
MEGAKARYOCYTES ADAPT TO MATRIX STIFFNESS 4005
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printing (circular patterns of 200 μm diameter). (Left) bright field image illustrating MK adhesion, bar is 50 μm; (right) quantification of the number of MK adhered per unit
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and observed by bright field microscopy; (C) measurement of the visible surface of each MK measured; mean ± SEM, n = 3 independent experiments; statistics, ordinary 1-way

ANOVA with Tukey multiple comparisons test. (D) Photomicrographs illustrating bright field microscopy observations; representative of at least 8 independent experiments; scale

bar, 20 μm.
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puncta for all the stiffness with some F-actin fibers in stiff and glass substrate (arrows). Representative of at least 8 experiments. (B) Quantification of (i) F-actin positive spread
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spreading promoted by the stiff substrate was impaired in β3
integrin–deficient MKs (Figure 5C). No additional effect was
observed with a double inactivation of these 2 integrin subunits. At
the intracellular level, Itgb3–/–prevented glass coverslip-mediated
F-actin fibers formation, increased the spreading area and
decreased circularity as well as RhoA activation and FAK phos-
phorylation, whereas Itgb1 inactivation had no impact
(Figure 5D,E). Overall, these data indicate that FN-coated sub-
strate stiffness sensing depends mainly on β3 integrin. Further-
more, we questioned which of the αvβ3 and αIIbβ3 integrins were
involved in the process. We measured the MK spread area in the
4008 GUINARD et al
presence of either a blocking anti-αv antibody or integrilin that
blocks αIIbβ3. As shown in supplemental Figure 6, αIIbβ3 was the
integrin responsible for stiffness sensing because blocking αvβ3
had no impact, whereas integrilin decreased both the spreading on
stiff substrate and proplatelet formation on soft substrate in control
MKs, to a value similar to that of Itgb3–/– MKs.

The main integrin reported to mediate FN fibrillogenesis is α5β1.
Interestingly, we found, here, that not only the absence of β1 but
also β3 integrin altered the extent of remodeling and the number of
MKs presenting ECM accumulation and fibrils (Figure 5F).
8 AUGUST 2023 • VOLUME 7, NUMBER 15
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Furthermore, increasing integrin affinity using Mn2+ increased the
fibrillogenesis capacity for both Itgb1–/– or Itgb3–/– MKs (data not
shown). Together, this suggests a partial redundant role for both
receptors in the process of FN assembly, and in the absence of
one subunit, the other takes over. Accordingly, the absence of both
integrin subtypes virtually suppressed all remodeling (Figure 5F).

Soft matrixes promote proplatelet formation

The fate of all mature MKs is to extend proplatelets, which were
evaluated 24 hours after the seeding of MKs. We observed that a soft
matrix was more favorable, with ~40% MKs extending proplatelets on
1.5 kPa compared with 20% of those extending proplatelets on a
90 kPa substrate (Figure 6A), and only a little percentage of them on
FN-coated glass (Figure 6A). Interestingly, we observed that MKs that
8 AUGUST 2023 • VOLUME 7, NUMBER 15
were well spread on glass surfaces from 4 to 5 hours, tended to
become more rounded at 24 hours (Figure 6B; supplemental Movie
1), similar to MKs that adhered for 5 hours on soft matrix (compare
Figure 2Biv to Figure 6B). This could reflect a reorganization of the
cytoskeleton toward less contractility and be a prerequisite to allow
proplatelet extension. Accordingly, decreasing the myosin activity via
the addition of blebbistatin resulted in loss of stress fibers (not shown)
and increased the proplatelet formation on stiff matrixes. This sug-
gests that a stiff substrate, notably by promoting a very strong intra-
cellular contractility, is detrimental for proplatelet formation
(Figure 6C). The capacity of MKs to extend proplatelets after bleb-
bistatin treatment was similar irrespective of substrate stiffness and
intermediate between that observed for soft and stiff matrixes, indi-
cating that an intermediate range of intracellular actomyosin is
beneficial for proplatelet extension.
MEGAKARYOCYTES ADAPT TO MATRIX STIFFNESS 4009
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Integrin β3 engagement is critical for proplatelet

formation

Next, we evaluated the role of integrin in soft matrix–promoted
proplatelet formation. We found that β1 deficiency did not affect
proplatelet formation (Figure 7A). In contrast, β3 integrin controlled
proplatelet formation depending on the matrix stiffness, which is in
line with its role in stiffness sensing, whereas inactivation of both β1
and β3 integrins had no further additional impact. This suggested
that although stiff matrix inhibited proplatelet extension indepen-
dently on integrins, soft matrix promotion of proplatelet extension
depends on β3 integrin.

To rule out a possible proplatelet formation defect that could result
from β3 integrin deficiency independently on matrix interaction, we
examined proplatelet formation in liquid culture. In striking contrast
with the presented data, proplatelet formation in liquid culture was
not impaired by Itgb3–/– deletion, showing that under these con-
ditions, Itgb3 is dispensable for proplatelet formation (Figure 7B).
We then evaluated proplatelet formation in an ex vivo model of BM
explant culture, similar to native conditions in which MKs interact
with the ECM.30 In these conditions, the proplatelet formation rate
was decreased by half in MKs from Itgb3–/– or Itgb1b3–/–- explant
marrow (Figure 7C), consistent with our data on soft FN-coated
substrates (Figure 7A). Furthermore, it supports the importance
of β3 integrin engagement in controlling proplatelet formation.
Accordingly, in vivo circulating platelet count had decreased by
30% in Itgb3–/–- and 55% in Itgb1b3–/– mice, respectively
(Figure 7D). This decreased platelet number is probably, largely,
due to the defective proplatelet formation, because Itgb1b3–/–

mice had normal amounts of hematopoietic progenitors, MK pro-
genitors, and mature MKs (supplemental Figure 7; Figure 7E). In
addition, we ruled out potential defects in MK migration toward
sinusoid vessels (Figure 7E). The significantly lower platelet counts
in Itgb1b3–/– compared with Itgb3 inactivation alone was surpris-
ing, considering the proplatelet data. In an attempt to understand
this discrepancy between in vitro and in vivo conditions, we per-
formed in situ observations using transmission electron micro-
scopy. We sought to evaluate the close interaction between MKs
and sinusoid vessels that are surrounded by a complex matrix and
the level of MK maturation because we know that in vitro, MKs do
not reach the same level of maturation as they do in vivo. Inter-
estingly, we observed that although MK from Itgb1–/– and Itgb3–/–

mice appeared normal at the ultrastructural level, inactivation of
both integrins led to an abnormal organization of the demarcation
membrane system (DMS), the reservoir for the elongation of
Figure 5. Integrin β3 is required for FN stiffness sensing and fibrillogenesis. (A) Im

Itgb3 (left) or Itgb1-positive MK (right) (red labeling). Representative of at least 3 independ

adhered for 2 hours onto PDMS substrates of various stiffness coated with FN 50 μg/mL

experiments performed simultaneously with the 4 genotypes, each dot represents the mea

(C) Measurement of the visible surface of MK adhered for 5 hours, observed by bright field

comparing the control with the substrate of same stiffness. (D) (i) F-actin labeling of WT a

(ii) positive F-actin spreading area per MK; (iii) circularity; (E) (Left) Confocal images show

(green) in control, Itgb1–/– and Itgb3–/– MKs following 5 hours adhesion onto soft and stif

intensity; n = 30 to 46 MKs from 3 independent experiments; (right) quantification of the

experiments. Ordinary 1-way ANOVA with Šidák multiple comparisons test. (F) (Left) Repre

at the periphery of the control, Itgb1–/–, Itgb3–/–, and Itgb1b3–/– MKs adhered for 5 hours

presenting FN accumulation at anchorage points, peripheral accumulation and visible indiv
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proplatelets and the membrane of the future platelets
(supplemental Figure 8). In these MKs, the DMS leaflets were
abnormally stacked, sometimes forming circular stacks, or being
unevenly distributed in the cytoplasm, suggesting that signaling
through both integrins contributes to the normal DMS organization.
This abnormal DMS stacking possibly affects the availability of the
membrane reservoir and, ultimately, the total number of released
platelets per MK.

Discussion

MK normally reside in a very soft environment whose stiffness can
be modulated depending on pathological conditions, questioning
the extent to which they respond and adapt to stiffness modifica-
tions. We found that MKs sense the stiffness of FN-coated sub-
strates that influences their adhesion and spreading, the
organization of F-actin cytoskeleton, and capability to remodel FN
into fibrils and extend proplatelets. The marrow is a very soft tissue
embedded in the stiff bone having a stiffness in the Gpa range. We,
therefore, chose to evaluate the behavior of MKs using substrate
stiffnesses ranging from 1.5 kPa to 90 kPa and glass coverslips to
surround stiffness that can be perceived within the marrow. We
observed that the stiffness threshold detected by MKs depended
on the behavior examined, between 12 and 90 kPa for adhesion
and >90 kPa for spreading and proplatelet formation. One unex-
pected and counterintuitive finding in the mechanobiology field was
the adherence of MKs preferentially to softer matrixes, whereas
most cells usually adhere better on stiffer matrixes. This may reflect
the fact that their normal environment is naturally soft,6,7 and we
also found that soft matrix was preferred over stiffer ones (10, 30,
90 kPa, and glass) for the extension of proplatelets. Accordingly, it
has been shown notably with neuronal cells that matching the
substrate stiffness in vitro with that of target tissue stiffness in vivo
allows for a better approach toward understanding the character-
istics and phenotypes of native cells.12,37,38 It is also possible that
this property contributes to the normal hematopoietic development.
In the embryo, MKs first develop in the embryonic liver, a very soft
tissue39, and then as the fetal liver matures toward its definitive
hepatic function, its stiffness increases,40 which may contribute to
render the environment less hospitable for MK progenitors.

We showed that soft matrixes promoted lower MK intracellular
contractility compared with stiff matrixes, as observed with the
lower levels of RhoA activation and F-actin fibers formation, which
likely results in less force across the ECM-integrin-cytoskeleton
linkage. We may hypothesize that the higher intracellular
munolabeling of mouse BM sections showing co-localization between FN (green) and

ent sections. Bar is 10 μm. (B) Number of WT, Itgb1–/–, Itgb3–/–, and Itgb1b3–/– MK

using microcontact printing (circular patterns of 200 μm diameter); 3 independent

n of 5 replicates; ordinary 1-way ANOVA with Tukey multiple comparisons test.

microscopy. Ordinary 1-way ANOVA with Tukey multiple comparisons test; §P < .001

nd Itgb3–/– MK adhered on FN-coated glass coverslip for 5 hours. Scale bar, 10 μm;

ing immunofluorescence labeling (arbitrary units) of RhoA-GTP (yellow) and P-FAK

f FN substrate; (middle) quantification in arbitrary units of the RhoA-GTP labeling

number of P-FAK positive puncta per MK; n = 28 to 31 MKs from 3 independent

sentative 2 confocal images showing biotin-FN (revealed by FITC-streptavidin, green)

on 90 kPa substrate. Scale bar, 10 μm. (Right) Quantification of the proportion of MK

idual fibrils (n = 3 independent experiments; 60-63 MKs per genotype).
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contractility is detrimental for proplatelet extension. Accordingly,
decreasing the intracellular contractility by adding blebbistatin
when MKs were on stiff surface increased proplatelet formation.
This is also in accordance with previous studies showing that the
RhoA/Rhokinase/MyosinIIA axis is inhibitory for proplatelet
8 AUGUST 2023 • VOLUME 7, NUMBER 15
formation.15,41-44 Hence, substrates in the same range of stiffness
as that of the BM, by minimizing internal stress, are preferred for
optimal proplatelet formation. Interestingly, we observed that on
glass surface MKs that were well spread after 5 hours underwent
rounding by 24 hours, suggesting the presence of some internal
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clock dedicated at decreasing intracellular contractility to allow
proplatelet extension.

Upon adhesion to the FN, we discovered that MKs were able to
remodel the substrate-bound FN matrix into basal fibrillar structures
that surround the cells. Again, the extent of FN reorganization and
morphology of the fibrils depended on the stiffness of the substrate,
as also observed in other cells.45 A soft substrate led essentially to
FN accumulation around the MKs. Upon adhesion on a stiffer matrix,
a higher proportion of MKs exhibited longer and individualized FN
fibrils, potentially leading to different functional properties. This dif-
ference is in line with the fact that FN assembly into fibrils requires
application of cell-derived contractile forces to expose cryptic
binding sites.19,46 FN fibrils represent the bioactive form of FN that
induces mechanical and chemical signals and often precedes and
promotes assembly of other matrix proteins.16,17,20 Therefore, alter-
ation in BM environmental stiffness may create a feedback loop
through which MK-mediated FN fibrillogenesis promotes collagen
deposition and increases tissue stiffness, which, in turn, upregulates
FN matrix synthesis or assembly. Reciprocally, FN fibrillogenesis has
also been described after MK adhesion onto collagen I.24 Therefore,
such bidirectional pathological feedback loops could contribute to
the development of BM fibrosis, a pathological condition of
neoplastic or nonneoplastic origin, which is characterized by an
excess deposition of FN and collagens, associated with abnormal
MK number and function and, ultimately, marrow failure.9,22,47

Integrins are known to differentially contribute to FN signaling and
rigidity sensing through the cooperation between α5β1 and αvβ3.48

However, because each integrin type mediates distinct intracellular
signaling resulting from different binding partners, this translates
into differential cytoskeletal and force transmission.49-51 Therefore,
depending on the integrin subunit equipment of a cell, adhesion
structures may be functionally very dissimilar. Notably, it has been
proposed that after its interaction with FN, α5β1 would be rather
dedicated to force transmission, whereas αvβ3 would be the pre-
dominant mechanosensor.52-54 Here, we showed that MKs rely
mostly on β3 subunit for stiffness sensing and proplatelet formation
because β1 subunit inactivation does not affect adhesion,
spreading, or proplatelet formation.

We can speculate that the reason why β3 is prominent over β1
could be the unique integrin expression profile of MKs. Quantifi-
cations in platelets previously showed that β3 subunit is 4- to
6-times more expressed than β1,34,35 and αIIbβ3 is estimated to be
80-times more represented than α5β1.35 Among the 2 β3 based
integrins expressed by MKs, we showed that αIIbβ3 was the one
responsible for stiff substrate–mediated spreading and soft matrix–
mediated proplatelet formation. αvβ3 seems to be uninvolved here,
perhaps, because of its low expression, reported to be less than
0.5% of that of αIIbβ3 on platelets.35 The manner in which β3
integrins of MKs act as mechanosensor upon adhesion to FN
remains unclear and would be of interest for a more detailed
future study. Especially, whether β3 integrin acts as a direct
mechanosensor here, through protein binding to its tail that
Figure 7 (continued) Mouse platelet count. One-way ANOVA and Tukey multiple compar

mice immunolabeled for MKs von Willebrand Factor vWF, red and for vessels (FABP4, gre

mean ± SEM, n = 5 mice, 3 sections per marrow and 4 fields of observation per section; (i

per marrow and 3 to 4 fields of observation per marrow section. No significant difference

8 AUGUST 2023 • VOLUME 7, NUMBER 15
controls actomyosin contractility as shown in other cells,48,54,55 or
another mechanoreceptor acts upstream to promote β3 integrin
inside out is unclear. This indirect mechanism was shown for MK
adhesion onto collagen IV, in which Trpv4 activates Itgb1,14 or onto
erythroblasts, in which Piezo1 signals to activate α4β1 and α5β1.56

Interestingly, it was recently shown that expression of integrins α5,
αIIb, and β3 subunits was elevated in MK in JAK2V617F+ mice, a
model mimicking myelofibrosis, whereas β1 and α2 subunits
remained unchanged.57 This suggests that during the development
of myelofibrosis, the cards are completely reshuffled regarding the
relative expression of integrins. One can imagine that this is an
adaptation of MKs to a new, abnormally matrix-rich environment.

Considering FN assembly, we showed here that MKs rely on both
β1 and β3 integrins, whereas the absence of both integrin subunits
accordingly abrogates fibril formation. Fibrillogenesis mediated by
fibroblasts or mesenchymal cells has been essentially ascribed to
integrins bearing the β1 subunits, notably the typical α5β1 integ-
rin.58 However, in a number of β1-null cells, αvβ3 can partly
contribute to FN assembly.59 In Chinese hamster ovary cells
expressing αvβ3 and αIIbβ3, stimulation of the integrins promotes
FN matrix assembly.60,61 Recently platelets were found to favor FN
fibrillogenesis through αIIbβ3,62 and a recent study identified ICAP-
1 as a candidate directly controlling Itgb3-mediated mechano-
sensitive responses including fibrillogenesis in osteoclasts,55

leading to the assumption that the type of integrin mediating FN
fibrillogenesis depends on the relative expression level of the
integrin and their associated proteins. Our study also points to the
fact that it is the interaction between FN and β3 integrin on the soft
substrate, but not on stiffer ones, that promotes proplatelet for-
mation. Indeed, no defect was observed in liquid culture in which
integrin is presumably not engaged with the matrix protein. In the
explant model, the glass coverslip is not coated with matrix protein
but importantly, MKs have grown in their native matrix-rich envi-
ronment, including FN, likely explaining why proplatelet formation is
affected by the absence of Itgb3. Soft FN substrate initiates a
weaker integrin-mediated intracellular signaling compared with
stiffer matrixes, as analyzed with FAK phosphorylation, RhoA acti-
vation, and F-actin organization. We may, thus, hypothesize that
this weak signaling is more beneficial for normal proplatelet
extension by MKs than stronger signaling.

Finally, the role of β3 integrin in proplatelet formation can be in fine
translated to the production of platelets. This occurs in mice in
which the number of circulating platelets in Itgb3-deficient mice is
decreased, as previously reported by others.63 In human, a number
of mutations in integrin αIIbβ3 that lead to a decrease in its
expression level, are responsible for a rare autosomal recessive
bleeding disorder named Glanzmann thrombasthenia. Although
having no overt thrombocytopenia, platelet count of patient with
Glanzmann thrombasthenia is at the lower end of the normal
range.64 More importantly, autosomal dominant αIIbβ3 mutations
lead to macrothrombocytopenia. This phenotype has been
assigned to impaired cytoskeletal remodeling because of the
isons, mean ± SEM, n = 10 to 20 mice. (E) (i), BM sections of control and Itgb1b3–/–

en); representative of at least 3 marrow sections. (ii) quantification of MKs per mm2;

ii), distance between MKs and sinusoid vessels; mean ± SEM; n = 5 mice; 3 sections

(t test).
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constitutive integrin signaling,65-68 in line with our observation of
low proplatelet formation on stiff surface that promotes higher
signaling and intracellular contractility.

The lower platelet number observed in the double knockout
compared to Itgb3–/– alone was unexpected in view of the absence
of additive effect on the proportion of MKs extending proplatelets
in vitro or ex vivo. The observation of abnormal DMS organization in
Itgb1b3–/– (supplemental Figure 7) could alter the normal process
of membrane fueling upon proplatelet extension and this way
contribute to decrease further the platelet yield. Whether this
abnormal organization is directly linked to the absence of integrin,
impairing matrix signaling toward DMS organization, or indirectly
through disorganization of the cytoskeleton secondary to integrin
deficiency, is still unclear.

In conclusion, we present evidence that MKs, though being
anchorage-independent cells, are able to sense stiffness of a
FN-coated substrate. We found, here, that although stiff
matrixes promoted higher intracellular signaling and F-actin
organization leading to increased spreading and FN fibril for-
mation, soft substrates that mirror the physiological BM softness
favor MK adhesion and proplatelet formation through interaction
with β3 integrin, contributing in this manner to platelet biogen-
esis. This study was performed with mouse MKs, and similar
studies should be conducted with human MK progenitors to
confirm that these observations also apply to human cells. In that
case, these data may be of particular relevance for pathologies
associated with increased or decreased modifications in marrow
tissue stiffness.
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