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A B S T R A C T   

Colorectal cancer (CRC) is prevalent worldwide. Dietary consumption of procyanidins has been linked to a 
reduced risk of developing CRC. The epidermal growth factor (EGF) receptor (EGFR) signaling pathway is 
frequently dysregulated in CRC. Our earlier research showed that the procyanidin dimers of epicatechin gallate 
(ECG) and epigallocatechin gallate (EGCG), through their interaction with lipid rafts, inhibit the EGFR signaling 
pathway and decrease CRC cell growth. The process of cancer cell invasion and metastasis involves matrix 
metalloproteinases (MMPs), which are partially EGFR-regulated. This study investigated whether ECG and EGCG 
dimers can inhibit EGF-induced CRC cell invasion by suppressing the redox-regulated activation of the EGFR/ 
MMPs pathway. Both dimers mitigated EGF-induced cell invasion and the associated increase of MMP-2/9 
expression and activity in different CRC cell lines. In Caco-2 cells, both dimers inhibited the activation of the 
EGFR and downstream of NF-κB, ERK1/2 and Akt, which was associated with decreased MMP-2/9 transcription. 
EGF induced a rapid NOX1-dependent oxidant increase, which was diminished by both ECG and EGCG dimers 
and NOX inhibitors (apocynin, Vas-2870, DPI). Both dimers inhibited NOX1 gene expression, as well as NOX1 
activity with evidence of direct binding to NOX1. Both dimers, all NOX chemical inhibitors and NOX1 silencing 
inhibited EGF-mediated activation of the EGFR signaling pathway and the increased MMP-2/9 mRNA levels and 
activity. Pointing to the relevance of NOX1 on ECG and EGCG dimer effects on CRC invasiveness, silencing of 
NOX1 also inhibited EGF-stimulated Caco-2 cell invasion. In summary, ECG and EGCG dimers can act inhibiting 
CRC cell invasion/metastasis both, by downregulating MMP-2 and MMP-9 expression via a NOX1/EGFR- 
dependent mechanism, and through a direct inhibitory effect on MMPs enzyme activity.   

1. Introduction 

In the United States, colorectal cancer (CRC) is the third most 
frequently diagnosed cancer and the second leading cause of cancer- 
associated deaths [1]. Globally, CRC constitutes 10% of the total can
cer cases and 9.4% of all cancer-associated deaths. Additionally, it is 
projected that in 2040 new cases of CRC will increase to 3.2 million 
worldwide [2]. Despite the effectiveness of surgery as a curative treat
ment for CRC, the risk of recurrence and metastasis remains still high. 
Although the incidence of CRC has been reduced and the prognosis 
improved through the development of new therapeutic approaches and 
early detection tests, around 50% of CRC cases become metastatic and 
40% of patients ultimately die due to CRC metastasis [3,4]. 

The critical event in the process of CRC invasion and metastasis is the 
degradation of the extracellular matrix (ECM) surrounding the tumor 

tissue. Matrix metalloproteases (MMPs), a family of zinc- and calcium- 
dependent proteolytic enzymes, facilitate cancer cell invasion and 
dissemination by degrading the basement membrane and ECM proteins 
[5–7]. Dysregulation of MMPs is now regarded as an early contributing 
mechanism for cancer initiation and progression. Among MMPs, MMP-2 
and MMP-9 are correlated with CRC disease stage and/or prognosis 
[8–10]. Thus, high expression of MMP-2/9 predicts a poor CRC survival 
outcome [11]. Furthermore, MMP-9 is regarded as a novel biomarker 
and potential therapeutic target in many human cancers [12–15]. 
Overall, the inhibition of MMP-2/9 expression and/or activity emerge as 
a potential strategy against CRC metastasis. 

NADPH oxidase (NOX) 1 (NOX1) is the main NOX isoform in intes
tinal epithelial cells. In the gastrointestinal (GI) tract, NOX1 participates 
in the regulation of the GI innate immune response [16], in stem and 
CRC cell proliferation [17,18] and CRC cell migration and metastasis 
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[19,20]. NOX1 is activated when the epidermal growth factor (EGF) 
binds to its receptor (EGFR) which causes transient O2

.-/H2O2 increases 
leading to events, i.e. oxidation of protein tyrosine phosphatase (PTP) 
and EGFR cysteine residues, which in turn prolong the EGFR signaling 
cascade [21,22]. Overactivation of the EGFR and downstream cascades, 
including MEK/ERK and PI3K/Akt, is frequent in cancer [23,24]. NOX1 
activation, increased oxidant production and EGFR activation can lead 
to the upregulation of MMPs which can then promote tumor metastasis 
[20,25,26]. Thus, dietary strategies that inhibit NOX1/EGFR-mediating 
signaling could play a key role in mitigating CRC metastasis. 

Diet has a major influence on CRC risk since intestinal epithelial cells 
are directly exposed to large amounts of dietary components [27,28], 
making the search for dietary bioactives that can mitigate CRC devel
opment and metastasis highly relevant [29]. Evidence from epidemio
logical and clinical studies suggest that diets rich in fruit and vegetables 
can reduce the risk of developing CRC [30–34]. Procyanidins (PCA), 
which are abundant in fruit and vegetables, have beneficial health ef
fects at the GI tract [35,36], and their consumption is related to a 
reduced risk of CRC in humans [37,38]. We previously observed that 
two dimeric PCA isolated from persimmon fruits, composed of 
epicatechin-3-gallate (ECG) and epigallocatechin-3-gallate (EGCG) 
subunits linked by 4β→8 and 2β→O→7 bonds (Fig. 1), inhibit in vitro 
CRC cell growth and promote apoptosis by regulating the EGFR pathway 
[39]. Considering, the NOX-dependent redox regulation of EGFR acti
vation in tumor progression [21,22,40], and previous evidence showing 
that PCA modulate oncogenic signals, i.e. ERK1/2, Akt, NF-κB, in part by 
mitigating NOX-mediated transient O2

.-/H2O2 increases [21,41,42], the 
present study investigated if ECG and EGCG dimers could inhibit CRC 
cell invasion through a EGFR/NOX1-dependent MMP-2/9 down
regulation. In CRC cell lines, we assessed the capacity of ECG and EGCG 
dimers to: i) inhibit EGF-stimulated MMP-2/9 expression/activity and 
cell invasion, ii) inhibit EGF-stimulated signaling cascades that promote 
MMP-2/9 transcription, i.e. NF-κB (IKKα, p65), ERK1/2 and Akt; iii) 
inhibit O2

.-/H2O2 production through NOX modulation (expressio
n/activity). The role of NOX1/EGFR in regulating Caco-2 cell invasion 
through MMP-2/9 upregulation was further assessed through NOX1 
silencing. Results show that ECG and EGCG dimers inhibition and sup
pression of NOX1 is the mechanism largely involved in their capacity to 
inhibit EGF-mediated cell invasion. 

2. Materials and methods 

2.1. Materials 

Human CRC cell lines HT29, SW480, HCT15, HCT116 and Caco-2 
were all purchased from the American Type Culture Collection 
(ATCC). Cell culture media McCoy’s 5A, RPMI, DMEM, MEM and Opti- 
MEM, fetal bovine serum (FBS) and antibiotics penicillin-streptomycin 
were from Gibco (Waltham, MA). EGF was obtained from PeproTech 
(Rocky Hill, NJ). Dihydroethidium (DHE) was from EMD Millipore 
(Hayward, CA), and 5-(and-6)-carboxy-2’,7’-dichlorodihydro
fluorescein diacetate (DHDCF) and Amplex Red Hydrogen Peroxide/ 
Peroxidase Assay Kit, RIPA buffer, TRIzol reagent, lipofectamine 
RNAiMAX reagent, scramble siRNA and NOX1 siRNA were from Invi
trogen/Life Technologies (Grand Island, NY). Apocynin (Apo), diphe
nyleneiodonium (DPI), VAS-2870 (Vas), sulphorhodamine B (SRB) and 
porcine gelatin were from Sigma-Aldrich (St. Louis, MO). PVDF mem
branes and ECL reagent for Western blot were from Bio-Rad (Hercules, 
CA). Reagents for the electrophoretic mobility shift assay (EMSA) were 
obtained from Santa Cruz Biotechnology (Santa Cruz, CA) and Promega 
(Madison, WI). Primary antibodies for p(Tyr1068)-EGFR (#3777), EGFR 
(#4267), p(Ser176/180)-IKKα/β (2697), IKKα (#2682), p(Ser536)-p65 
(#3033), p65 (#8242), p(Ser473)-Akt (#4060), Akt (#4691), p 
(Thr202, Tyr204)-ERK (#4370), ERK (#9102) and β-actin (#12620); 
secondary antibodies anti-rabbit HRP-conjugated (#7074), anti-rabbit 
biotinylated (#14708), streptavidin (#3999) and the biotinylated lad
der (#7727) were from Cell Signaling Technology, Inc. (Danvers, MA). 
The primary antibody for NOX1 (#ab78016) was from Abcam (Cam
bridge, England). 

2.2. Methods 

2.2.1. Isolation and purification of ECG and EGCG dimers 
ECG and EGCG dimers were obtained from persimmon fruits as 

described before with minor modifications [43]. After AB-8 resin puri
fication, a medium-pressure liquid chromatography was applied first to 
purify the extracts before being loaded to a preparative liquid chroma
tography for ECG and EGCG dimers purification and collection [39]. The 
purity was over 95% for both dimers using procyanidin A2 as a standard. 
The structures of ECG and EGCG dimers are shown in Fig. 1. 

2.2.2. Cell culture and treatments 
Caco-2 cells were cultured in MEM medium while HT29 and 

HCT116 cells were cultured in McCoy’s 5A medium. RMPI media was 

Fig. 1. Chemical structures of epicatechin-3-gallate (ECG) and epigallocatechin-3-gallate (EGCG) dimers. Dimers are linked by 4β→8 and 2β→O→7 bonds. g: 
galloyl moiety. 
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used for the culture of SW480 and HCT15 cells. All media were sup
plemented with 10% (v/v) FBS, 1% (v/v) NEAA, 1% (v/v) sodium py
ruvate and 0.5% (v/v) penicillin-streptomycin during cell growth. Cells 
were split when they reached 70–80% confluency. For the experiments, 
cells were seeded and allowed to grow for 36–48 h before being starved 
for 12 h in FBS-free MEM. Subsequently, cells were preincubated for 30 
min with or without ECG or EGCG dimers at the concentrations 
described for each experiment, followed by incubation without or with 
10 ng/ml EGF for 10 min-6 h. 

2.2.3. Western blot 
Following the corresponding treatments, total cell homogenates 

were prepared as previously described [41]. Protein concentration was 
measured using the Bradford assay [44] and an aliquot of protein 
(30–50 μg) was mixed with 4X sample buffer before being separated on a 
7% (w/v) SDS-PAGE gel and transferred onto PVDF membranes. Two 
different molecular weight standards (Colored and biotinylated) were 
loaded onto the gels simultaneously. Following transfer, membranes 
were blocked with 5% (w/v) non-fat milk for 1 h, followed by overnight 
incubation in the presence of the corresponding antibodies (1:1,000 
dilution) in 1% (w/v) bovine serum albumin in TBS buffer (50 mM Tris, 
150 mM NaCl, 0.1% (v/v) Tween-20, pH = 7.8). After 90 min incubation 
at room temperature in the presence of the HRP-conjugated secondary 
antibody (1:10,000), the bands were visualized by chemiluminescence 
detection in a ChemiDoc Imaging System (Bio-Rad, Hercules, CA) and 
quantified using Image lab (Bio-Rad Laboratories, Hercules, CA). 

2.2.4. Quantitative polymerase chain reaction (qPCR) 
For qPCR determinations, RNA was extracted from proliferating 

Caco-2 cells after treatments. Reverse transcription was done to generate 
cDNA using the high-capacity cDNA Reverse Transcriptase kit (Applied 
Biosystems, Grand Island, NY). mRNA levels of NOX1, MMP-2, MMP-9 
and β-actin were assessed by qPCR (iCycler, Bio-Rad, Hercules, CA). 
β-actin was used as the housekeeping gene. The relative fold change in 
mRNA levels of each gene was calculated using the 2− ΔΔCt method [45]. 
The primers used in present study were as follows: 

NOX1 forward: 5′-GTACAAATTCCAGTGTGCAGACCAC-3′ 
NOX1 reverse: 5’-CAGACTGGAATATCGGTGACAGCA-3’; 
MMP-2 forward: 5’-AGCGAGTGGATGCCGCCTTTAA-3’ 
MMP-2 reverse: 5’-CATTCCAGGCATCTGCGATGAG-3’ 
MMP-9 forward: 5’-GATGCGTGGAGAGTCGAAAT-3’ 
MMP-9 reverse: 5’-CACCAAACTGGATGACGATG-3’ 
β-actin forward: 5′-TCATGAAGTGTGACGTGGACATCCGC-3′ 
β-actin reverse: 5′-CCTAGAAGCATTTGCGGTGCACGATG-3′ 
For the evaluation of MMP-2, MMP-9 and NOX1 mRNA stability, 

gene transcription was inhibited with Actinomycin D [46]. 1 × 106 cells 
were seeded in 60 mm2 dishes and allowed to grow for 48 h. After 12 h 
starvation, cells were treated with/without EGF and dimers for 6 h. For 
the first-time point (t = 0), a subset of cells were collected with TRIzol. 
The rest of the dishes were added with Actinomycin D to a final con
centration of 10 μg/ml. Cells were collected at 0.5, 1, 2, 4 and 6 h 
following Actinomycin D addition. RNA isolation, reverse transcription 
to cDNA and qPCR were done as described above. The Ct average value 
at each time point was normalized to the Ct average value at t = 0 to 
calculate ΔCt values for the control and treatment groups (ΔCt =
(Average Ct of each time point - Average Ct of t = 0)). To calculate the 
relative abundance at each time point we used 2-ΔCT. 

2.2.5. Electrophoretic mobility shift assay (EMSA) 
EMSA is a highly sensitive approach for detecting protein-nucleic 

acid interactions. After the corresponding treatments, nuclear frac
tions were isolated as previously described with minor modifications 
[42]. The isolated nuclear fractions were incubated with the labeled 
oligonucleotide (20,000–30,000 cpm) in 1X binding buffer (10 mM 
Tris–HCl buffer, containing 4% (v/v) glycerol, 1 mM MgCl2, 0.5 mM 
EDTA, 0.5 mM dithiothreitol, 50 mM NaCl, and 0.05 mg/ml poly 

(dI–dC), pH = 7.5) for 20 min at room temperature. The products were 
then separated by electrophoresis in a 5% (w/v) nondenaturing poly
acrylamide gel with 0.5X TBE (45 mM Tris–borate, 1 mM EDTA). Gels 
were subsequently dried, and the level of radioactivity was measured 
using a Phosphoimager 840 (Amersham Pharmacia Biotech). 

2.2.6. Determination of cell oxidant levels 
Cell oxidant levels were assessed using the probes DCFDA, DHE and 

Amplex Red as previously described [21]. Caco-2 cells were seeded in 
96-well plates at a 5 × 104 cells/well density. After reaching 70–80% 
confluency, cells were starved in FBS-free MEM for 12 h. Cells were then 
preincubated with or without 1x IC50 ECG or EGCG dimer (IC50 values 
were from our previous report of the Caco-2 cancer cell variability in
hibition by the ECG and EGCG dimers [39]), or NOX inhibitors (1 μM 
Apo, 1 μM Vas or 1 μM DPI) for 30 min, and subsequently incubated for 
10 min with or without 10 ng/ml EGF. Then, the medium was removed, 
and cells added with 20 μM DHE or 25 μM DCF and incubated for 30 min 
at 37 ◦C. The medium was removed, cells washed with PBS twice and 
fluorescence was measured in 100 μl PBS in a microplate reader (Bio-
Tek, Winooski, VT) at λexc: 485 nm; λexc: 535 nm for oxidized DCFDA, 
and at λexc: 485 nm; λexc: 535 nm for oxidized DHE. H2O2 released to 
the medium was measured after 10 min EGF addition using the 
Hydrogen Peroxide/Peroxidase Assay Kit and following the manufac
turer’s protocol. The fluorescence for all probes was normalized to the 
protein content using SRB [47]. 

2.2.7. Gelatin zymography 
The activity of MMP-2/9 was analyzed by gelatin zymography ac

cording to a previous report [48]. 1 × 106 cells proliferating Caco-2 cells 
were seeded in 60 mm2 dishes, grown to 70–80% confluency and starved 
in serum-free MEM for 12 h. Cells were then preincubated with or 
without 5–60 μM ECG or EGCG dimer, or NOX inhibitors (1 μM Apo, 1 
μM Vas or 1 μM DPI) for 30 min, and subsequently incubated for 6 h with 
or without 10 ng/ml EGF. All media were collected, centrifuged at 
800×g for 8 min to remove cell debris, and the supernatant was 
concentrated with a Vacufuge concentrator (Eppendorf, Germany). The 
concentrated samples were loaded on 7% gelatin-containing SDS-PAGE 
gels. Gels were washed 3 times and then subsequently pre-equilibrated 
with fresh incubation buffer (50 mM Tris-HCl, 5 mM CaCl2, 1 μM 
ZnCl2, 1% (v/v) Triton X-100, pH = 7.5) for 10 min at 37 ◦C. Gels were 
further incubated with fresh incubation buffer for 24 h at 37 ◦C. After 
being washed 3 times, gels were stained with Coomassie Brilliant Blue 
R-250 (Bio-Rad Laboratories, Hercules, CA) for 0.5–1 h, and rinsed 3 
times with a destaining solution containing 40% (v/v) methanol and 
10% (v/v) acetic acid, until clear white bands were seen due to gelati
nase activity. Bands were visualized in a ChemiDoc (Bio-Rad Labora
tories, Hercules, CA), and were quantified by densitometry using the 
Image Lab (Bio-Rad Laboratories, Hercules, CA). 

2.2.8. NOX1 silencing 
Transfections were carried out using lipofectamine following the 

manufacturer’s protocol. Caco-2 cells in log-phase were plated into 6- 
well plates (0.2 × 106 cells/well) in 2 ml growth medium and incu
bated for 24 h to reach 30–50% confluency at the time of transfection. 
Cells were transfected with 30 pmol NOX1 siRNA and incubated in 
complete media for 24, 48 or 72 h, respectively. Cells were collected and 
processed to evaluate NOX1 mRNA or protein levels as described above. 
For the treatments, cells were used after 48 h of initiating the silencing. 

2.2.9. Cell invasion assay 
The cell invasion assay was performed using Matrigel-coated trans

well cell culture chambers (Corning, MA). Normal or siRNA transfected 
proliferating Caco-2 cells were collected and resuspended at a density of 
1 × 105 cells/ml in FBS-free media. 250 μl of cell suspension were added 
to the upper chamber and 500 μl of 10% (v/v) FBS in MEM medium 
added to the lower chamber. Cells were incubated first with or without 
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ECG or EGCG dimers for 30 min, and subsequently with or without EGF 
(10 ng/ml) for 48 h. All additions were made to the upper chamber. 
Subsequently, the medium in the upper chamber was removed, trans
well inserts were washed twice with PBS, cells fixed with para
formaldehyde (3.7% (w/v) in PBS) for 2 min and permeabilized in 100% 
methanol for 20 min. Cells in the upper chamber were removed using a 
cotton swab and the transwell chambers air dried. Invasive cells 
migrating to the back of the membrane were stained with 0.1% (w/v in 
PBS) crystal violet. The invasiveness of Caco-2 cells was defined as the 
total number of cells in 3 randomly selected microscopic fields. 

2.2.10. Statistical analysis 
All experiments were performed at 3–7 independent experiments 

and results are shown as means ± SEM. Statistical analysis were per
formed using GraphPad Prism 8.0 software (IBM Inc., Armonk, NY). 
Data were tested for normal Gaussian curve (bell-shape) distribution 
using the Shapiro-Wilk test. In case of normal distribution, equal vari
ances were tested using Bartlett’s test and subsequently data were 
analyzed using one-way ANOVA followed by Fisher least significance 
difference test to evaluate significant differences among the groups’ 
treatments. Outliers were identified using the Inter Quartile Range (IQR) 
test. P < 0.05 was considered statistically significant. 

Fig. 2. ECG and EGCG dimers inhibited EGF-mediated cell invasion, MMP2/9 activation and MMP-2/9 increased mRNA levels in Caco-2 cells. Cells were 
pre-incubated with or without ECG and EGCG dimers for 30 min and then with or without EGF (10 ng/ml) for 24 h for the assessment of cell invasion or 6 h for the 
determination of MMP-2/9 activity and mRNA levels. The concentrations of ECG and EGCG dimers used corresponds to 0.5x, 1x and 2x IC50 previously reported for 
the effects of the dimers on Caco-2 cell viability [39]. A- Cell invasion (20X magnification), B- MMP-2/9 activity in the cell culture medium and C- MMP-2/9 mRNA 
levels were assessed as described in methods. MMP-2/9 mRNA levels measured by qPCR were referred to actin mRNA levels as housekeeping gene. Results are shown 
as means ± SEM of 3–5 independent experiments. Values having different superscripts are significantly different (p < 0.05, One-way ANOVA-test). 
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3. Results 

3.1. ECG and EGCG dimers inhibited EGF-mediated cell invasion, MMP- 
2/9 activation and MMP-2/9 increased mRNA levels in Caco-2 cells 

Based on the IC50 values that we previously reported for the inhibi
tory effects of the dimers on Caco-2 cell growth [39], we currently used 
0.5x, 1x and 2x IC50 concentrations (5, 10, 20 μM for ECG dimer and 15, 
30, 60 μM for EGCG dimer) to evaluate the effects of dimers on CRC cell 
invasion and the underlying mechanisms. We first examined the effects 
of ECG and EGCG dimers on EGF-induced cell invasion. The number of 
invading cells was markedly increased by EGF (approximately 2.5 folds 
compared to control, non-added cells) (Fig. 2A). Treatment with both 
dimers dose-dependently inhibited EGF-induced cell invasiveness. 

MMP-2 and MMP-9 are the predominant enzymes found overex
pressed in metastatic cancers. They facilitate ECM degradation, being 
associated with primary tumor growth, invasion and metastasis [49]. 
Zymographic analysis, based on the capacity of MMP-2 and MMP-9 to 
degrade gelatin, showed that EGF caused an approximate 1.5-fold in
crease in MMP-2/9 activity, while ECG and EGCG dimers almost 
completely inhibited MMP-2/9 activity in the range of concentrations 
tested (Fig. 2B). The effect of EGF and the dimers on MMP-2 and MMP-9 
mRNA levels was next evaluated. MMP-2 and MMP-9 mRNA levels in 
Caco-2 cells were significantly increased (135–145%) after 6 h incuba
tion with EGF, which was inhibited, in a dose-dependent manner, by 
both dimers (Fig. 2C). The ECG dimer at 5 μM and the EGCG dimer of 15 
μM concentrations, fully suppressed EGF-mediated increased MMP-2/9 
mRNA levels. Suggesting an effect at the levels of transcription, in the 
presence of EGF, both dimers did not affect MMP-2 and MMP-9 mRNA 
stability (Supplemental Fig. 2, Fig. S2). 

We next investigated whether ECG and EGCG dimers could mitigate 
EGF-mediated increases in MMP-2 and MMP-9 mRNA levels in other 
CRC cell lines. Thus, SW480, HCT15, HCT116, HT29 cells were incu
bated for 6 h with 5 μM ECG dimer or 15 μM EGCG dimer and in the 

absence or the presence of EGF. Upon incubation with EGF, all cell lines 
tested showed an increase in mRNA levels of both MMPs, although at 
different extents (140–280% over control values) (Fig. 3A–D). Similar to 
the effects observed in Caco-2 cells, both ECG (5 μM) and EGCG (15 μM) 
dimers inhibited EGF-mediated increase in MMP-2 and MMP-9 mRNA 
levels in all the tested CRC cell lines. 

The above results suggest that ECG and EGCG dimers could inhibit 
EGF-induced CRC cell invasion by downregulating MMP-2 and MMP-9 
mRNA levels and inhibiting their activity. 

3.2. ECG and EGCG dimers inhibited EGF-mediated activation of the 
EGFR and downstream of NF-κB, Akt, and ERK1/2 pathways in Caco-2 
cells 

Binding of EGF to the membrane lipid rafts-located EGFR initiates 
the activation of the receptor and of downstream signals, i.e. Akt, ERK1/ 
2 and NF-κB [24,50,51]. We next investigated the effect of ECG and 
EGCG dimers on EGF-mediated activation of these signals. In Caco-2 
cells and after 10 min incubation, EGF (10 ng/ml) caused a significant 
increase in the phosphorylation levels of EGFR at Tyr1068, Akt at 
Ser473, ERK1/2 at Thr202/Tyr204, IKK at Ser176/180, and p65 at 
Ser536, being IKK and p65 components of the NF-κB pathway. Both ECG 
and EGCG dimers mitigated EGF-induced increase in the phosphoryla
tion levels of EGFR, IKK, p65, ERK1/2 and Akt in a dose-dependent 
manner (Fig. 4A, B, C, D, F, G, H). In agreement with the observed 
increased phosphorylation of IKK and p65, EGF caused a 1.6 folds in
crease in nuclear NF-κB-DNA binding, as evaluated by EMSA. This was 
dose-dependently inhibited by ECG and EGCG dimers (Fig. 4E). Given 
that transcription factor NF-κB binds to the promoter of MMP-2 and 
MMP-9 genes to regulate their expression [52], its inhibition by the 
dimers can in part explain their capacity to downregulate these 
enzymes. 

Fig. 3. ECG and EGCG dimers inhibited EGF-mediated MMP-2/9 increased mRNA levels in SW480, HCT15, HCT116 and HT29 cells. Cells were pre-incubated 
with or without 5 μM ECG and 15 μM EGCG dimers for 30 min and then with or without EGF (10 ng/ml) for subsequent 6 h. MMP-2/9 mRNA levels were measured 
by qPCR and referred to actin mRNA levels as housekeeping gene. Results are shown as means ± SEM of 3–5 independent experiments. Values having different 
superscripts are significantly different (p < 0.05, One-way ANOVA-test). 
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Fig. 4. ECG and EGCG dimers inhibited EGF-mediated activation of the EGFR and downstream of NF-κB, Akt, and ERK1/2 pathways. Caco-2 cells were pre- 
incubated with or without ECG and EGCG dimers for 30 min and then with or without EGF (10 ng/ml) for subsequent 10 min. Phosphorylation levels of B- EGFR 
(Tyr1068), C– IKK (Ser176/180), D- p65 (Ser536), G- Akt (Ser473), and H- ERK1/2 ((Thr202/Tyr204) were evaluated by Western blot. A, F- Representative Western 
blot images. Bands were quantified and values for phosphorylated proteins were referred to the respective total protein content. E− NF-κB activation was also 
evaluated by EMSA measuring NF-κB-DNA binding in nuclear fractions. Results are shown as means ± SEM of 3–5 independent experiments. Values having different 
superscripts are significantly different (p < 0.05, One-way ANOVA-test). 
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3.3. NADPH oxidase inhibitors and ECG and EGCG dimers inhibited 
EGF-mediated oxidant production and the EGFR signaling pathway in 
Caco-2 cells 

The activation of the EGFR is associated with a rapid activation of 
cell membrane NOX, which in intestinal epithelial cells is the NOX1 
isoform [22]. NOX activation leads to a transient superoxide anion 
production, a consequent increase in hydrogen peroxide which further 
activates downstream pathways that cause MMPs upregulation [53]. 
Thus, we next investigated if ECG and EGCG dimers could modulate 
EGF-mediated oxidant increase, also characterizing the action of three 
NOX inhibitors, i.e. Apo, Vas and DPI. This was in part evaluated with 
the non-fluorescent probes DHE and DHDCF, which cross the cell 
membrane and fluorescence upon oxidation. After 10 min incubation 
with EGF, a 48% and 80% increase in DHE and DCF fluorescence was 
observed, which was fully prevented by preincubating cells with 1xIC50 
ECG dimer (10 μM) or EGCG dimer (30 μM) or 1 μM NOX inhibitors 
(Fig. 5A, B). H2O2 concentration in the cell culture medium was 
measured with the Amplex Red/Peroxidase assay. After 10 min incu
bation, EGF caused a 40% increase in H2O2 levels, which was prevented 
by ECG and EGCG dimers and the three NOX inhibitors (Fig. 5C). The 
inhibition of EGF-mediated oxidant production by Apo, Vas, and DPI 
supports that the increase in cell oxidants is dependent on NOX1 acti
vation. Additionally, the rapid oxidant decrease mediated by both di
mers suggests that they could directly inhibit NOX1 activity. Supporting 
such inhibitory action, molecular docking results (Supplemental Fig. 1, 
Fig. S1) support the potential capacity of the dimers to interact with 
NOX1. 

We next evaluated if NOX1 mRNA levels could be affected by the 
ECG and EGCG dimers. While incubation with EGF for 6 h did not affect 
NOX1 mRNA levels, both ECG and EGCG dimers decreased NOX1 mRNA 
levels in a dose-dependent manner (Fig. 5D). Findings that, in the 
presence of EGF, both dimers did not affect NOX1 mRNA stability 
(Supplemental Fig. 2, Fig. S2), suggesting that their capacity to decrease 
NOX1 mRNA levels occur at the level of transcription. The above results 
suggest that ECG and EGCG could act both inhibiting NOX1 activity and 
gene expression. 

We next investigated the effects of the three NOX inhibitors Apo, 
VAS-2870 and DPI on EGF-triggered EGFR, IKK, p65, Akt and ERK1/2 
activation. Like that observed for ECG and EGCG dimers, after 10 min 
incubation with EGF, pre-treatment with the NOX inhibitors for 30 min 
caused a partial inhibition of EGFR phosphorylation at Tyr1068 and a 
total or partial inhibition of IKK, p65, ERK1/2 and Akt phosphorylation 
(Fig. 5E–J). Overall, results support the concept that, the inhibition of 
NOX1 and consequent decreased O2

.-/H2O2 production, in part 
contribute to the inhibition by ECG and EGCG dimers of EGF-mediated 
EGFR signaling pathway activation. 

3.4. NADPH oxidase inhibitors mitigated EGF-mediated increase in 
MMP-2/9 mRNA levels in Caco-2 cells 

After 6 h incubation, and as observed for the ECG and EGCG dimers, 
the three NOX inhibitors Apo, VAS-2870 and DPI decreased EGF- 
mediated increase in MMP-2 and MMP-9 mRNA levels (Fig. 6A–B). 
Accordingly, both dimers and the NOX inhibitors prevented EGF- 
triggered MMP-2 and MMP-9 activation (Fig. 6C). Findings that ECG 
and EGCG inhibit MMP-2/9 activity at a larger extent than the NOX 
inhibitors, suggest that besides NOX1 downregulation, other mecha
nisms are involved in the capacity of the dimers to inhibit MMP-2/9 
gene expression and/or activity. 

3.5. NOX1 silencing prevents EGF-mediated increased MMP-2/9 mRNA 
levels, activation of the EGFR signaling pathways and cell invasion in 
Caco-2 cells 

We next assessed the role of NOX1 on EGF-triggered MMP-2/9 

upregulation and induction of cell invasion, using NOX1 silencing RNA 
to knock down NOX1 gene expression in Caco-2 cells, while a scramble 
silencing RNA was used as a negative control. After 24, 48 and 72 h 
silencing, NOX1 mRNA levels were decreased by about 20, 85 and 75%, 
respectively (data not shown). Thus, a 48-h silencing period was 
selected. Treating cells with EGF for 6 h did not affect NOX1 mRNA 
level, while NOX1 silencing for 48 h in the absence or the presence of 
EGF, caused an 85% decrease in mRNA levels and a 35% decrease in 
NOX1 protein levels compared to the control group (Fig. 7A and B). In 
cells incubated with EGF for 6 h, scramble silencing caused 10% 
decrease of MMP-2 and MMP-9 mRNA levels, while NOX1 silencing fully 
prevented EGF-mediated MMP-2 and MMP-9 mRNA levels increase 
(Fig. 7C–D). NOX1 silencing also affected cell signaling downstream the 
EGFR. After 10 min incubation with EGF, scramble silencing did not 
have a significant effect, but NOX1 silencing caused a total inhibition of 
EGFR, IKK, p65, ERK1/2 and Akt phosphorylation (Fig. 7E). After in
cubation with EGF for 24 h, knockdown of NOX1 significantly sup
pressed Caco-2 cell invasion capacity (Fig. 7F). These results support the 
involvement of NOX1 on EGF-dependent MMP-2/9 upregulation and 
Caco-2 cell invasiveness. 

4. Discussion 

We previously described that ECG and EGCG dimers inhibit CRC cell 
growth and induce apoptosis by inhibiting the EGFR pathway in part 
through their actions at lipid rafts [39]. The present study investigated 
the role of NOX1 in CRC cell invasiveness and its involvement in the 
capacity of ECG and EGCG dimers to inhibit EGF-induced CRC cell in
vasion. Results show that NOX1 is central to CRC cell invasiveness by 
amplifying signaling cascades downstream the EGFR, which result in the 
upregulation of MMP-2 and MMP-9. ECG and EGCG dimers acted 
inhibiting NOX1 activity and decreasing NOX1 mRNA levels and 
downstream, EGFR-mediated MMPs expression and cell invasiveness. 
ECG and EGCG dimers also directly inhibit MMP-2 and MMP-9 activ
ities. Results provide supporting evidence to the potential capacity of 
dietary procyanidins to mitigate CRC progression. 

The EGFR, a member of the RTKs family of receptors, is overex
pressed and overactivated in CRC cells. In fact, therapeutic strategies are 
being developed targeting EGFR for the treatment of metastatic CRC 
[54]. Through the remodeling of the extracellular matrix, MMP-2 and 
MMP-9 are involved in tumor invasion and metastasis [5]. Thus, MMP-2 
and MMP-9 are overexpressed in metastatic CRC, being considered of 
prognostic value for poor survival outcome [11]. We observed that 
several CRC cell lines show an increase in MMP-2 and MMP-9 mRNA 
levels in response to EGF, being this response of different magnitude in 
the different cell lines. Both ECG and EGCG dimers inhibited 
EGF-induced increase in MMP-2 and MMP-9 mRNA levels, not affecting 
mRNA stability. This inhibition is consistent with the capacity of the 
dimers to inhibit signaling pathways downstream the EGFR, i.e. NF-κB, 
ERK1/2 and Akt, that regulate the expression of MMP-2 and MMP-9. In 
this regard, NF-κB (κB) binding sites are present in the MMP-9 gene 
promoter [52]. Akt also modulates MMP-9 expression either through the 
recruitment of p300 to κB sites [55] or by activating NF-κB through IKK 
phosphorylation [56]. Besides MMPs expression, other site of potential 
regulation is a direct inhibition of enzyme activity or of the proteolytic 
cleavage of proenzymes to the active MMP forms. At the lowest con
centration tested, both dimers had limited or no effect on MMP-2 and 
MMP-9 mRNA levels, but fully inhibited MMP-2/9 activity. Polyphenols 
are capable of binding to proteins/MMPs via their hydroxyl groups 
(-OH) and galloyl moieties [57,58]. Thus, the interaction of the abun
dant –OH and galloyl moieties of the dimers with MMP-2/9 proteins 
released to the cell culture medium, could explain a direct inhibitory 
action of the dimers on MMP2/9 proteinase activity. Overall, both ECG 
and EGCG dimers have a dual effect downregulating MMP-2 and 
MMP-9, one at the transcriptional level, and the other inhibiting MMPs 
activity and/or processing. 
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Fig. 5. NADPH oxidase inhibitors and ECG and EGCG dimers inhibited EGF-mediated oxidant production and the EGFR signaling pathway in Caco-2 cells. 
Caco-2 cells were pre-incubated with or without 10 μM ECG, 30 μM EGCG, 1 μM apocynin, 1 μM Vas or 1 μM DPI dimers for 30 min and then with or without EGF (10 
ng/ml) for subsequent 10 min or 6 h. A-C- Oxidant levels were measured using the probes A- DHE, B- DCF and C- Amplex Red as described in methods. D- NOX1 
mRNA levels were measured by qPCR and referred to actin mRNA levels as housekeeping gene. E-J Phosphorylation levels of F- EGFR (Tyr1068), G- IKK (Ser176/ 
180), H-p65 (Ser536), J- Akt (Ser473), and ERK1/2 (Thr202/Tyr204) were evaluated by Western blot. E, I- Representative Western blot images. Bands were 
quantified and values for phosphorylated proteins were referred to the respective total protein content. Results are shown as means ± SEM of 3–5 independent 
experiments. Values having different superscripts are significantly different (p < 0.05, One-way ANOVA-test). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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Lipid rafts are sphingolipid and cholesterol-enriched membrane 
microdomains that provide a platform for the recruitment of receptors 
and the assembly/activation of NADPH oxidases that act potentiating 
receptor-mediated cell signaling. NOX1 is the main cell membrane iso
form present in enterocytes [59]. Binding of EGF to lipid raft-located 
EGFR leads to NOX1 activation and to a transient increase in O2

.- [21, 
60]. H2O2 generated from O2

.- in the extracellular space, crosses the cell 
membrane and can potentiate EGFR activation through the oxidation of 
cysteine residues within protein tyrosine phosphatases (PTPs) leading to 
enzyme inactivation. This decreases PTP-mediated removal of phosphor 
tyrosine groups prolonging the EGFR cascade [40,61]. Additionally, 
NOX1-mediated increase of H2O2 causes oxidation of a Cys797 residue 
in the EGFR, increasing the receptor’s tyrosine kinase activity leading to 
EGFR activation [61]. We currently observed that EGF-mediated tran
sient increase in oxidants was prevented by ECG and EGCG dimers and 
by three different NOX inhibitors. Pointing to the critical role of NOX1 in 
enhancing the EGFR pathway, dimers and NOX inhibitors also inhibited 
EGFR Tyr1068 phosphorylation and downstream Akt and ERK1/2 
activation. The absence of any detected impact of Vas-2870 on the 
phosphorylation of ERK1/2 may be attributable to effects of Vas-2870 
that are unrelated to the activation of ERK1/2 through the EGFR. 
Taken together, the above findings suggest that the suppression of NOX1 
and the resultant reduction in O2

.-/H2O2 production represent a key 
mechanism associated with the inhibition of the EGFR signaling cas
cades activation by ECG and EGCG dimers. In agreement with previous 
findings [19,62], this mechanism explains the capacity of ECG and 
EGCG dimers to mitigate EGF-mediated MMP-2 and MMP-9 increased 
mRNA levels, and to decrease CRC cell migration and metastasis. 

NOX1 is proposed to be involved in the GI tract innate immune re
sponses and in GI carcinogenesis [16], being overexpressed in cancers 
affecting the large and small intestine [59]. NOX1 promotes prolifera
tion of CRC cells in part by modulating redox-regulated signal trans
duction [17]. Inhibition of NOX activity with pharmacological pan-NOX 
inhibitors decreases CRC cancer cell proliferation [63]. In vivo, inhibi
tion of host NOX1 blocks CRC tumor growth [64], and small hairpin 
RNA-mediated NOX1 silencing suppresses tumor growth in mouse 
models of colon cancer [65]. In support of the central role of NOX1 in 
CRC invasion and metastasis, upon NOX1 silencing we observed in 
Caco-2 cells that NOX1 is required for EGF-mediated: i) EGFR pathway 
activation, ii) upregulation of MMP-2 and MMP-9, and iii) cell invading 
activity. The ECG and EGCG dimers seem to have a dual effect on NOX1. 
The observed prevention of the rapid EGF-mediated oxidant increase 
can be due to a direct inhibition of the enzyme or to changes in lipid raft 
environment leading to decreased NOX1 activity [66,67]. Our findings 
through molecular modeling of the interactions between the dimers and 
NOX1 strongly support a direct inhibitory action of the dimers on NOX1 
activity. The C-terminal domain of β-subunits on the membrane of NOX 
provides the binding site for NADH and FAD. Electrons from NADPH are 
first transferred to co-enzyme FAD and later to the heme group of the 
catalytic core, which oxidized O2 to O2

− [68]. ECG and EGCG dimers 
both could competitively interact with the “FAD binding pocket” of NOX 
by hydrogen bonds and various hydrophobic interactions. Additionally, 
both dimers also inhibited NOX1 gene transcription, not affecting NOX1 
mRNA stability. This can constitute a longer-term mechanism of 
downregulation of NOX1 activity. The capacity of the dimers to suppress 
NOX1 transcription can be due to their actions inhibiting the NF-κB and 

Fig. 6. NADPH oxidase inhibitors mitigated EGF-mediated MMP-2/9 activation and increased MMP-2/9 mRNA levels in Caco-2 cells. Caco-2 cells were pre- 
incubated with or without 10 μM ECG, 30 μM EGCG, 1 μM apocynin, 1 μM Vas or 1 μM DPI for 30 min and then with or without EGF (10 ng/ml) for subsequent 6 h. 
A- MMP-2, B- MMP-9 mRNA levels were measured by qPCR and referred to actin mRNA levels as housekeeping gene. C- MMP-2 and MMP-9 activity was measured by 
zymography in the cell culture medium. Results are shown as means ± SEM of 3–5 independent experiments. Values having different superscripts are significantly 
different (p < 0.05, One-way ANOVA-test). 
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ERK1/2 pathways, which are both involved in the regulation of NOX1 
transcription [69,70]. Overall, while other steps in the EGFR pathway 
and downstream signals can be regulated by procyanidins [21,39], 
NOX1 emerges as a central target in ECG and EGCG dimer anti-CRC 
actions [39]. 

In summary, the present study provides evidence that ECG and EGCG 

dimers can inhibit CRC cell invasion by downregulating MMP-2 and 
MMP-9 both, via NOX1/EGFR-dependent decreased MMPs gene tran
scription and through a direct effect of the procyanidins on MMPs 
enzyme activity. We observed that NOX1 plays a central role in 
enhancing the activation of the EGFR, downstream signaling pathways 
and MMP-2 and MMP-9 mRNA levels. Thus, the capacity of ECG and 

Fig. 7. Silencing of NOX1 inhibited EGF-induced cell invasion, MMP-2 and MMP-9 overexpression, signaling pathways downstream the EGFR in Caco-2 
cells, and cell invasion. Caco-2 cells were transfected with or without scramble (si-scramble) or NOX1 (si-NOX1) silence RNAs, for 48 h, and subsequently 
incubated with or without EGF (10 ng/ml) for A-D, 6 h, E− 10 min and F-24 h. A- NOX1 mRNA levels and B- NOX1 protein levels were evaluated by PCR and Western 
blot, respectively. C- MMP-2 and D- MMP-9 mRNA levels were measured by qPCR and referred to actin mRNA levels as housekeeping gene. E− Phosphorylation 
levels of EGFR (Tyr1068), IKK (Ser176/180), p65 (Ser536), Akt (Ser473) and ERK1/2 (Thr202/Tyr204) were evaluated by Western blot. Bands were quantified and 
values for phosphorylated proteins were referred to the respective total protein content. (F) Caco-2 cells were transfected with si-scramble or si-NOX1 RNAs, and 48 h 
later replated into Matrigel chambers. Cells were then stimulated with EGF (10 ng/ml) for 24 h, and cell invasiveness was evaluated (20X magnification). Results are 
shown as means ± SEM of 3–5 independent experiments. Values having different superscripts are significantly different (p < 0.05, One-way ANOVA-test). 
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EGCG dimers to inhibit NOX1 activity and expression emerge as a cen
tral mechanism in their capacity to inhibit CRC cell invasiveness. 
Considering that the over-activation or over-expression of the EGFR, 
MMPs and NOX1 are implicated in CRC development and metastasis, the 
identification of dietary compounds that inactivate them, would help 
design dietary strategies to mitigate CRC development and progression. 
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