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Abstract

Keloids are formed due to abnormal hyperplasia of the skin connective tissue.

We explored the relationship between N6-methyladenosine (m6A)-related

genes and keloids. The transcriptomic datasets (GSE44270 and GSE185309) of

keloid and normal skin tissues samples were obtained from the Gene Expres-

sion Omnibus database. We constructed the m6A landscape and verified the

corresponding genes using immunohistochemistry. We extracted hub genes for

unsupervised clustering analysis using protein–protein interaction (PPI) net-

work; gene ontology enrichment analysis was performed to determine the bio-

logical processes or functions affected by the differentially expressed genes

(DEGs). We performed immune infiltration analysis to determine the relation-

ship between keloids and the immune microenvironment using single-sample

gene set enrichment analysis and CIBERSORT. Differential expression of sev-

eral m6A genes was observed between the two groups; insulin-like growth fac-

tor 2 mRNA-binding protein 3 (IGF2BP3) was significantly upregulated in

keloid patients. PPI analysis elucidated six genes with significant differences

between the two keloid sample groups. Enrichment analysis revealed that the

DEGs were mainly enriched in cell division, proliferation, and metabolism.

Moreover, significant differences in immunity-related pathways were observed.

Therefore, the results of this study will provide a reference for the elucidation

of the pathogenesis and therapeutic targets of keloids.
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Key Messages
• this study aimed to link m6A modification with keloids
• the results revealed that IGF2BP3 expression in keloid group was signifi-

cantly higher than that in the control group
• bioinformatics analysis elucidated that IGF2BP3 is a potential biomarker

that can be investigated in future studies on keloids

1 | INTRODUCTION

Keloids are pathological scars caused by fibroproliferative
diseases. They often occur secondary to trauma, infec-
tions, burns, or postoperative wounds. Their growth usu-
ally exceeds the original injury limit and presents as
invasive growth. Most patients experience clinical symp-
toms such as itching and pain, which cause discomfort to
the patients, both physiologically and psychologically.1 In
China, high incidence body parts of keloid disease are
the earlobes, chest, shoulders, and the back.2 The com-
mon clinical treatment methods for keloids include surgi-
cal resection, physical therapy (such as radiotherapy,
laser therapy, stress therapy), and drug therapy (such as
glucocorticoid, botulinum toxin A), but these treatment
methods are ineffective, with a high recurrence rate.3-5

Moreover, because the specific pathogenesis of keloids is
not clear, their curative treatment is difficult. Therefore,
pathogenesis of keloids at the molecular level should be
investigated.6

Recent studies have shown that gene silencing at the
epigenetic level (such as DNA methylation and histone
modification) is a potential mechanism for keloid forma-
tion. However, due to the lack of sufficient in vivo ani-
mal research and multicellular culture data, this theory
has not been validated.7,8 Epigenetic modifications are
the focus of research on the occurrence and develop-
ment of different diseases. N6-methyladenosine (m6A)
methylation is one of the most extensively used epige-
netic methods for mRNA modification. It participates
in all RNA-related processes and regulates a series of cellu-
lar biological processes, such as growth and development,
inflammation, and cancer, by regulating the metabolism
and translation of mRNA.9,10 Moreover, m6A can regulate
gene expression, thus regulating cellular processes, such as
self-renewal, differentiation, invasion, and apoptosis.11

Few studies have also associated m6A-related genes with
keloids. Therefore, in this study, we performed bioinfor-
matic analysis to explore the relationship between m6A
and keloids to provide insights into the pathogenesis and
therapeutic targets of keloids.

Currently, bioinformatics analysis is an important
tool for analysing expression data and screening target
genes in many diseases. Therefore, a holistic approach in

using gene detection technology and bioinformatics will
enable effective exploration of the mechanisms underly-
ing the pathogenesis of various diseases, including
keloids.

In this study, two keloid mRNA microarray datasets
from the Gene Expression Omnibus (GEO) database were
integrated, m6A genes were divided into three categories
(writer, reader, and eraser), and the landscape of m6A
genes was constructed. The differentially expressed
genes (DEGs) in these three groups of m6A genes,
especially insulin-like growth factor 2 mRNA-binding
protein 3 (IGF2BP3) in the reader category, were signif-
icantly upregulated in patients with keloids. Next, we
performed immunohistochemical analysis of this gene
and reached the same conclusion, indicating that this
gene could be a potential diagnostic marker for keloids
with high diagnostic efficiency. We constructed a
protein–protein interaction (PPI) network and per-
formed gene enrichment analysis. Finally, we explored
immune cell infiltration into the keloid microenviron-
ment. This study lays the foundation for exploring the
molecular mechanisms underlying the pathogenesis of
keloids and will help identify potential diagnostic bio-
markers of keloids.

2 | MATERIALS AND METHODS

2.1 | Data acquisition

We downloaded GSE4427012 and GSE185309 gene
expression datasets containing data for keloid patients
and control groups from the GEO database. The samples
for the data were obtained from Homo sapiens, and
the sequencing platforms used were GPL16699 and
GPL24676. Dataset GSE44270 contained 12 samples,
including 3 control samples and 9 keloid patient samples,
and dataset GSE185309 contained 17 samples, including
8 control samples and 9 keloid patient samples. We inte-
grated these two groups of data for downstream analysis,
using the SVA package13 to correct the batch effect
between different datasets and standardised the log2
values. The expression distribution after standardisation
and batch correction was visualised using a box plot.
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2.2 | Construction of a landscape based
on m6A genes

To analyse the expression of m6A genes in all samples,
data regarding m6A-related genes were obtained from
the literature,14-17 including 11 writer genes, 26 reader
genes, and 3 eraser genes, that is, a total of 40 genes,
which were overlapped with the existing expression pro-
file, leaving a total of 36 genes.

First, we used the “pheatmap” package to construct
the expression heatmap of these genes for all samples.
Next, we used the “ggpubr” package to construct the
grouping box diagram based on the normal and patient
samples. The Wilcoxon rank-sum test was used to
determine statistical significance between groups;
P > .05 was considered statistically significant. The
“RCircos” package was used to map the locations of
the 36 genes on the chromosomes. Chromosomal data
were provided by the R package, and the information
regarding the location of the genes on the chromo-
somes was downloaded from the Ensembl18 database.

2.3 | Correlation analysis between writer
and eraser genes

To further analyse the correlation between the expression
of the writer and eraser genes in all patients, the Pearson
correlation coefficient between the two groups of genes
was calculated. The absolute value of the correlation
coefficient was >0.7, and P-value was >.01, indicating a
correlation. We used the “ggplot2” package to construct a
correlation scatter diagram between the gene pairs that
met the requirements and fit the correlation curve; the
“ggExtra” package was used to construct a histogram and
a density curve of the graph edge.

2.4 | Construction of a diagnostic model
based on m6A genes

Because of the influence of the m6A modification pro-
cess, normal and patient samples may have different
m6A-modification states; therefore, we built a diagnostic
model for keloids based on m6A-related genes.

We used the ridge regression method and the
“glmnet” package to screen all m6A genes and to
implement this method, respectively. Next, we
selected the best lambda value and retained genes
with coefficients other than zero after the regression.
Further gene screening was performed using logistic
regression, and the genes used to build the model and
their corresponding coefficients were displayed in the

form of a forest map constructed using the “forestplot”
package.

To check the multifactor influence of high-weight
genes in the diagnostic model, a new logistic multivariate
regression model was constructed using the “rms” pack-
age for the first 15 genes with the largest absolute weight
in the previous model, and a nomogram was used for
visualisation. To verify the predictive efficiency of the
diagnostic model, the receiver operating characteristic
(ROC) curve of the model was constructed using the
“pROC” package, and the area under the curve (AUC)
was calculated. To illustrate the effectiveness of the
nomogram, internal datasets and decision curve analysis
(DCA) curves were used for verification. The DCA curve
was drawn using the “ggDCA” package.

2.5 | Construction of PPI network

Gene expression is generally interrelated, especially of
those genes that regulate the same biological processes.
Therefore, to reveal the relationship between m6A-
related genes, a PPI network was constructed based on
the expression of m6A-related genes.

We used data from the STRING19 database to con-
struct the PPI network, and the confidence threshold was
set at a default value of 0.4. Next, the PPI network was
exported and further analysed using the Cytoscape20 soft-
ware to calculate the network attributes of each node.
The plug-in cytoHubba21 was used to mine hub nodes
based on the degree of the node, and the top 10 nodes
with the degree of TOP10 were defined as hub nodes.
These nodes have a high level of connection with other
nodes; therefore, they may play an important role in the
regulation of the entire biological process.

Based on the MIRNet22 database, we predicted the
miRNAs and transcription factors of the 10 hub nodes.
After the predicted results were exported, Cytoscape was
used for processing and plotting.

2.6 | Unsupervised clustering of samples

We performed unsupervised clustering of samples based on
hub genes resolve heterogeneity among patients and reclas-
sify the samples. First, we used the “factoextra” package to
determine the best number of clusters. Next, we used the k-
means clustering method to cluster all patients according to
the best number of clusters and finally clustered the sam-
ples into two categories. Simultaneously, the “factoextra”
package was used to check the final clustering effect. The
expression of the 10 hub genes in the two groups of samples
is presented as a heatmap. The “ggpubr” package was used
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to construct a grouping violin diagram based on the sample
clustering labels. The Wilcoxon rank sum test was used to
test the statistical significance between groups, and P > .05
was considered statistically significant.

2.7 | Gene set enrichment
analysis (GSEA)

To further reveal the biological differences between the
two sample groups, they were analysed for differential
gene expression. The results are displayed using a vol-
cano map and a heatmap. Genes with corrected P < .05
and log2jFCj >1 were considered significant DEGs, and
these genes were used for GSEA.

Gene ontology (GO) enrichment analysis is a common
method for large-scale functional enrichment of genes in
different dimensions and at different levels and is per-
formed at three levels: biological process (BP), molecular
function (MF), and cellular component (CC).23 We used the
“clusterProfiler” package24,25 to annotate the GO functions
of all significant DEGs to identify the significantly enriched
BPs. The enrichment results were visualised in the form of
bar and bubble charts. The significance threshold of the
enrichment analysis was set to a corrected P-value <.05.

GSEA is a calculation method used to determine
whether a group of predefined genes shows statistical

differences between two biological states. It is used to
estimate changes in pathways and biological process
activity in expression dataset samples.26

To investigate the differences in biological process
between the two groups of samples, based on the gene
expression profile dataset, the reference gene sets “c5.go.
v7.4. entrez.gmt” and “c2.cp.kegg.v7.4. entrez.gmt” were
downloaded from the MSigDB database,27 and the data-
set was enriched, analysed, and visualised using the
GSEA method of the “clusterProfiler” package. Differ-
ences were considered statistically significant at a cor-
rected P-value <.05.

2.8 | Immune infiltration analysis

The immune microenvironment is mainly composed of
immune cells, inflammatory cells, fibroblasts, interstitial
tissue, and various cytokines and chemokines. It is a
loaded, integrated system. Analysis of immune cell infil-
tration in tissues plays an important role in disease
research and prognosis prediction.

To explore the similarities and differences in immune
cell infiltration levels between the two groups of samples,
the “GSVA” package28 was used to perform single sample
GSEA (ssGSEA). The marker genes of 28 immune cells
were obtained from the literature29 and used as the

FIGURE 1 Design and workflow of

this study.
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background gene set to analyse each sample using
ssGSEA. The infiltration level of all immune cells is dis-
played using a heatmap and box diagram. Simulta-
neously, the “corrplot” package was used to construct a
correlation map between immune cells for the two
groups of samples to reveal the similarities and differ-
ences in the correlation degree of immune cells in differ-
ent disease states.

To maximise the accuracy of the results, we used
CIBERSORT30 to evaluate the infiltration level of
immune cells and calculated the proportion of 22 types of
immune cells in each sample based on the LM22 back-
ground gene set provided by CIBERSORT. The results
are presented as box diagrams. Moreover, to directly
check the correlation between hub genes and immune

cell infiltration levels, a correlation scatter diagram was
constructed for gene-immune cell pairs with significant
correlation, and the correlation curve was fitted. The his-
tograms and density curves of the graph edges were plot-
ted using the “ggExtra” package (Figure 1).

3 | RESULTS

3.1 | Landscape of m6A genes

We built a landscape of the m6A-related genes in all sam-
ples by integrating the expression profiles from the
GSE44270 and GSE185309 datasets. Because datasets
from different sources exhibit batch effects, we corrected

FIGURE 2 Data preprocessing and the landscape of m6A genes. (A) Expression of m6A genes after batch effect correction and log

standardisation. X-axis is the sample, and y-axis is the gene expression value. The center, upper-frame, and lower-frame lines of the box

chart are the median, upper-quartile, and lower-quartile values, respectively. Heatmap (B) represents the expression pattern of the

differentially expressed genes in the keloid patients versus that in the normal population group, and samples and different types of genes are

depicted by different coloured block markers. Red and blue represent high and low expression values, respectively. (C) Box diagram of m6A

genes. X-axis is the gene, and y-axis is the gene expression value. The sample groups are distinguished by different colours and drawn

according to the gene type. The middle, upper-frame, and lower-frame lines of the box chart are median, upper-quartile, and lower-quartile

values, respectively. (D) Ring diagram for chromosome location. The outer circle is the chromosome, and the inner circle is the location

mark of these genes on the chromosome.
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the batch effects and standardised the log value of the
original data (Figure 2A). After batch correction and log
standardisation, the expression distribution of all samples
was consistent, which is conducive for improving the
accuracy and robustness of downstream analysis.

Next, the differential expression of all m6A genes in
the normal and keloid samples was visualised via a heat-
map and a group box plot (Figure 2B,C). The results
revealed genes with different expression trends among the
three types of m6A genes. For example, methyltransferase-
like protein 3 (METTL3) and methyltransferase-like pro-
tein 14 (METTL14) genes were downregulated in keloid
patients, whereas IGF2BP3 from the reader group exhib-
ited upregulation in keloid patients. We performed prelim-
inary immunohistochemical verification of IGF2BP3,
which revealed that it was highly expressed in keloids and
weakly expressed in normal tissues (Figure 3A,B). More-
over, we constructed a landscape of the locations of these
genes on the chromosomes (Figure 2D). The results
revealed that the location of some genes was very similar
on the chromosomes; therefore, these genes were closely
related at the genomic level and may have similar expres-
sion characteristics at the transcriptome level.

3.2 | Correlation between writer and
eraser genes

To further analyse the relationship between the writer
and eraser m6A genes, we calculated the correlation coeffi-
cient between these genes, constructed a correlation scatter
plot, and fitted the correlation curve. Six pairs of gene met
the statistical significance threshold, namely METTL3-
ALKBH5, WT1 associated protein (WTAP)-CBLL1, WTAP-
ALKBH3, ZC3H13-CBLL1, ZC3H13- methyltransferase-like

protein 16 (METTL16), and RBM15B-ALKBH3 (Figure 4).
They were all strongly positively correlated because their
absolute correlation coefficient was >0.7. Overall, most of
these gene pairs were pairs of writer and eraser genes.
Writer and eraser genes have similar functions, suggesting
a synergy in expression. Moreover, the positive correlation
between writer and eraser genes indicates a negative feed-
back regulation mechanism or an unknown key pathogene-
sis mechanism between them.

3.3 | Diagnostic model of m6A genes

Because the expression of m6A-regulated genes has
important biological significance, we constructed a diag-
nostic model for keloids based on all m6A genes. First,
the ridge regression method was used to screen all m6A
genes, the best lambda value was determined, and
36 genes were retained (Figure 5A,B). To further tighten
the screening process, secondary screening was per-
formed using logistic regression, and 27 genes were
retained. A forest map was constructed to visualise the
diagnostic model composed of the 27 m6A genes
(Figure 5C). The results revealed that the top five genes
with the largest absolute influence coefficients in this
model were Methyltransferase-like protein 16 (METTL16),
YTH N6-methyladenosine RNA-binding protein
3 (YTHDF3), YTH domain containing 2 (YTHDC2), WT1
Associated Protein (WTAP), and zinc finger CCHC-type
containing 4 (ZCCHC4), and their influence coefficients
were 168.75, �146.02, 140.65, 93.02, and �91.24 respec-
tively. To verify the accuracy of the model, we selected the
first 15 genes with the largest absolute coefficient values to
construct a logistic multivariate model and visualised it
using a nomogram (Figure 6A). These 15 genes had a high

FIGURE 3 Immunohistochemistry staining and histologic scoring. (A) Expression of IGF2BP3 in normal tissue. (B) Expression of

IGF2BP3 in normal tissue. (C) Results of histologic scoring and analysis.
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degree of common influence on the prediction model,
highlighting the accuracy of the model. The prediction
efficiency of the model was further verified using the
recall, ROC, and DCA curves (Figure 6B–D). The model

had superior prediction efficiency and robustness for all
three verification methods. The recall and ROC curves
revealed that the overall AUC of the model was 0.93, indi-
cating excellent diagnostic and predictive abilities.

FIGURE 4 Correlation analysis between writer and eraser m6A genes. Each point in the figure represents a patient sample; the straight

line is the correlation fitting curve; the shaded part is the confidence interval; and the area outside the figure are the histogram and density

curve. (A) Correlation between METTL3-ALKBH5. (B) Correlation between WTAP-CBLL1. (C) Correlation between WTAP-ALKBH3.

(D) Correlation between ZC3H13-CBLL1. (E) Correlation between ZC3H13-METTL16. (F) Correlation between RBM15B-ALKBH3.
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3.4 | Interaction network of m6A genes

The genes that regulate the same biological processes
have closer relationships because of the universal connec-
tions between genes; therefore, to analyse the interaction
between m6A-regulatory genes, a PPI network was con-
structed using the STRING database and visualised using
the Cytoscape software (Figure 7A).

In the PPI network, a few nodes have higher degrees;
that is, they are more closely connected to other nodes.
Genes in this part of the network are more significant in
the entire network. Therefore, we extracted 10 genes with
top10 in the network as hub genes for further analysis
(Figure 7B). The MIRNet database was used to predict
the miRNAs and transcription factors of these hub genes
to comprehensively analyse their genetic backgrounds
and regulatory networks (Figure 7C,D). The results

revealed that these genes shared exclusive miRNAs or
transcription factors; therefore, they might regulate the
same process to reflect similar biological functions.

3.5 | Unsupervised clustering based on
hub genes

Hub genes can be used to distinguish samples with differ-
ent disease states; therefore, we used the expression pro-
files of the 10 hub genes to perform unsupervised
clustering of all patient samples using the k-means clus-
tering method. First, the optimal number of clusters was
determined by calculating the contour values
(Figure 8A). The results showed that when the num-
ber of clusters was two, the contour value was the
highest and the clustering effect was the best.

FIGURE 5 Construction of m6A gene-based diagnosis model for keloids. (A) Ridge regression curve. This figure shows the convergence

screening process of ridge regression for 36 genes. X-axis is the log lambda value, y-axis is the regression coefficient, and different coloured

lines represent different features. (B) This figure is used to select the best lambda value of the regression model. Usually, the lowest point is

selected, that is, the dotted line in the figure is the best lambda value. (C) Forest map of diagnostic model. The first, second, third, and fourth

columns and corresponding graphs of the fourth column present the 27 genes that make up the model, number of samples, and average

expression value of these genes, and influence coefficients of these genes in the model, respectively.
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Therefore, we chose 2 (k-value) as the best clustering
number for the unsupervised clustering, and all sam-
ples were grouped into two categories. Next, we
reduced the dimensions to visualise the clustering
effect (Figure 8B), and the results revealed that the
two groups of samples were clearly divided and the
clustering effect was excellent.

The expression levels of all hub genes in the two types
of samples were visualised using the heat map, box plot,
and violin map (Figure 8C,D). Six of the 10 hub genes
exhibited significant differences in expression between
the two groups of samples (P < .05), indicating that these
six genes might be important distinguishing factors and
reflecting the effectiveness and accuracy of the clustering
results. Heterogeneous nuclear ribonucleoprotein A2/B1
(HNRNPA2B1) and METTL3 exhibited a high level of dif-
ference in expression (P < .001). This shows that the
genes of this family are significantly different in patients
with keloids, which warrants further investigation
(Table 1).

3.6 | Biological differences between
sample groups

To reveal the biological differences between the two
groups of samples, we performed differential gene expres-
sion analysis between the groups with sample grouping
as the label. After statistical significance threshold
screening, 196 genes were used; a volcano map and a
heat map were used to visualise the DEGs (Figure 9A,B).

To check the biological processes or functions affected
by these DEGs, GO enrichment analysis and GSEA
were performed for all genes (Figure 9C–F, Tables 2
and 3). A total of 365 GO terms were enriched by the
GO enrichment analysis, of which the first seven were
the most significant at the BP level, including organelle
fission, nuclear division, chromosomal aggregation,
mitotic nuclear division, mitotic sister chromosomal
aggregation, sister chromosomal aggregation, and
nuclear chromosomal aggregation; all processes were
related to cell division and proliferation. Therefore,

FIGURE 6 Verification of diagnosis model based on m6A genes. (A) Nomogram chart; the left and the right sides are the prediction

index and the ruler, respectively. (B) ROC curve of the model; x-axis is specificity, y-axis is sensitivity, and AUC is the area under the curve.

C (ROC) is the area under the ROC curve. (D) DCA curve; x-axis is the risk threshold, y-axis is the net benefit rate, green dotted line

represents 0 net benefit rate, blue dotted lines represent that all samples have been intervened, and model (red solid line) represents the

model curve.
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differences in the cell division activity are possible
between the two groups of patients during scar repair.

Next, we used 16 KEGG pathways for GSEA, of
which the first five most significant pathways were
phenylalanine metabolism, glycine, serine, and threo-
nine metabolism, steroid hormone biosynthesis, Staph-
ylococcus aureus infection, and grape simple virus
1 infection, which mainly involved biological processes
such as cell amino acid metabolism and synthesis,
which were consistent with the GO enrichment analy-
sis, as they are related to cell proliferation and
metabolism.

3.7 | Immune infiltration analysis

The enrichment analysis results revealed significant dif-
ferences in the immune process between the two groups
of samples. Therefore, to analyse the immune infiltration
level between the two groups of samples, the ssGSEA
method was used to calculate the scores of 28 immune
cells in all samples, and a heatmap and a box diagram
were constructed for visual analysis (Figure 10A,B). The
results revealed that among the 28 types of immune cells,
four exhibited significant differences in infiltration
between the two groups, namely activated CD4+ T cells,

FIGURE 7 PPI network. (A) PPI network of 36 m6A genes. Yellow, blue, and represent the reader, writer, and eraser genes,

respectively. The higher the degree of the node, the larger the graph. (B) Ten hub genes. For the sub networks of the 10 hub genes extracted

from PPI network, the redder the node colour, the larger the node in the original network. (C) miRNA prediction network of hub genes.

Dark blue represents miRNA, and other colours are the same as those for panel A. (D) TF prediction network of hub genes. Dark blue

represents transcription factors, and other colours are the same as those for panel A.
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type 2 helper T cells, activated dendritic cells, and
eosinophils.

Moreover, to determine the correlation between
immune cells, the correlation coefficients between
immune cells were calculated in the two groups of sam-
ples (Figure 10C,D). The results revealed that some
immune cells had different correlations between the two
groups of samples. For example, three types of dendritic
cells and central memory CD8+ T cells exhibited a posi-
tive correlation in the first group of patients but a nega-
tive correlation in the second group of patients,
indicating that the two groups of samples had different
immune microenvironment.

We used another method, the CIBERSORT package,
to calculate the infiltration levels of the 22 immune cells

FIGURE 8 Unsupervised clustering of samples. (A) Selection of the best number of clusters. X-axis is the number of clusters, and y-axis

is the average contour value. Best number of clusters was selected by calculating the average contour value, and the best number is present

at the maximum contour value (dotted line). (B) Dimension reduction graph of K-means clustering results. X-axis and y-axis represent two

dimensions, and each point in the figure represents a patient sample. These patients are grouped into two groups, and each colour represents

a patient subgroup. (C) Heatmap. Grouping and gene type of the samples are marked with different coloured blocks. In the figure, blue

represents low expression value and red represents high expression value. (D) Combination of box diagram and violin diagram. X-axis is the

gene, y-axis is the gene expression value, and sample groups are distinguished by different colours. Middle, upper-frame, and lower-frame

lines of the box chart represent median, upper-quartile, and lower-quartile values, respectively. Wilcoxon rank sum test was used for

statistical analysis. Upper symbol represents the significance level of the difference, * represents P < .05, ** represents P < .01, *** represents

P < .001, **** represents P < .0001, and ns represents not significant.

TABLE 1 Summary of GEO datasets information.

GSE44270 GSE185309

Organism Homo sapiens Homo sapiens

Tissue Keratinocyte Keratinocyte

Experiment
type

Expression
profiling by array

Expression
profiling by high
throughput sequencing

Platforms GPL16699 GPL24676

Gene (number) 19 963 39 386

Sample (number)

Control 3 8

Keloid 9 9

Total 12 17
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FIGURE 9 Biological differences between sample groups. (A) Volcano map of differentially expressed genes. X-axis is log2 (foldchange),

and y-axis is -log10 (P-value). Each point represents a gene. Green, red, and grey represent downregulated genes, upregulated genes, and genes

without significant change in expression, respectively. (B) Heatmap of differentially expressed genes. Upper colour bar represents two groups of

samples; each colour represents a subgroup; blue represents low expression, and red represents high expression. (C) Bar graph of GO

enrichment results. X-axis represents -log10 (P-value), and y-axis represents enriched GO terms. Only top 20 GO terms from BP, CC, and MF

categories are shown here. (D) Bubble chart of GO enrichment results. X-axis is the gene proportion, that is, the total number of genes/

differentially expressed genes enriched for a term; y-axis is the name of the GO term, and the size of the point represents the number of genes

enriched for this term; and the colour represents the corrected P-value. The smaller the P-value, the closer it is to red, that is, the difference is

more significant. Only the top 20 GO terms are shown here. (E) GSEA analysis results (upregulated part). X-axis is the rank of genes in the list

of differentially expressed genes, with upregulation >0 and downregulation <0. Upper y-axis is the enrichment fraction, and the lower y-axis is

the log2jFCj value. Each colour represents a pathway. Only the first four pathways with the most significant upregulation are shown here.

(F) GSEA analysis results (downregulation part). Only the first four pathways with the most significant downregulation are shown here.
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in the two groups of samples (Figure 11A); the direct cor-
relation between all hub genes and immune cell infiltra-
tion levels was calculated, and the significantly related
gene-immune cell pairs (Figure 11B–F) were screened.
The results revealed that METTL3-Neutrophils,
HNRNPA2B1-Neutrophils, YTHDF1-follicular helper T
cells, YTHDC1-follicular helper T cells, and ALKBH5-
Neutrophils were significantly correlated. Among them,
YTHDF1-follicular helper T cells and THDC1- follicular
helper T cells were positively correlated, whereas the
other three pairs were negatively correlated, indicating
that some m6A genes directly affect the infiltration level
of certain immune cells in the body, which warrants fur-
ther investigation.

4 | DISCUSSION

Enhanced collagen synthesis occurs when the regulation
of collagen metabolism is impaired, which is likely to
form pathological scars.31 Keloids and hypertrophic scars

are clinically similar and are easily confused during diag-
nosis. Although both are pathological scars, they exhibit
unique growth characteristics. The most important fea-
ture of keloids is their continuous growth, which often
goes beyond the boundary of the original wound, exhibit-
ing invasive growth.32,33 A hypertrophic scar grows rap-
idly within 3–6 months after wound healing, but after
months or years of degradation, the scar eventually
matures and clinical symptoms (such as itching and pain)
decline or disappear.34,35 Owing to the complexity of
keloid pathogenesis, the current common prevention and
treatment methods are not effective. Therefore, it is nec-
essary to identify new targets related to keloids at the
molecular level and potential biomarkers in the early
stages to inhibit keloid growth and provide clinical refer-
ences for the diagnosis and treatment of keloids. There-
fore, with a focus on m6A-related genes, we downloaded
the GSE44270 and GSE185309 datasets from the GEO
database, integrated the expression profiles of these two
datasets, and conducted a comprehensive bioinformatic
analysis of expression data from 18 keloid and 11 normal
skin tissue samples. We screened m6A-related genes from
the literature, overlapped them with the existing expres-
sion profiles, and screened 36 m6A-related genes
(10 writer genes, 23 reader genes, and 3 eraser genes). We
observed differences in the expression of these 36 m6A-
related genes between the keloid and normal tissues.
We found that these three types of m6A genes had

TABLE 2 Go enrichment analysis results.

Description ONTOLOGY Padj

Organelle fission BP 3.33 E-52

Nuclear division BP 1.80 E-51

Chromosome segregation BP 1.34 E-48

Mitotic nuclear division BP 1.47 E-47

Mitotic sister chromatid
segregation

BP 5.31 E-42

Sister chromatid segregation BP 1.93 E-41

Nuclear chromosome segregation BP 5.67 E-41

Chromosome, centromeric region CC 1.56 E-34

Chromosomal region CC 4.22 E-34

Condensed chromosome CC 6.86 E-32

Kinetochore CC 7.86 E-32

Condensed chromosome,
centromeric region

CC 4.62 E-31

Condensed chromosome
kinetochore

CC 2.75 E-29

Spindle CC 5.69 E-28

Cell cycle checkpoint BP 9.17 E-24

Mitotic cell cycle checkpoint BP 2.69 E-23

Regulation of mitotic cell cycle
phase transition

BP 1.62 E-22

Regulation of cell cycle phase
transition

BP 2.92 E-22

Microtubule cytoskeleton
organisation involved in mitosis

BP 6.54 E-22

TABLE 3 GSEA enrichment analysis results.

Description NES Padj

DNA replication �2.3750851 1.09 E-08

Cell cycle �2.1726079 1.09 E-08

Olfactory transduction �2.2790885 1.09 E-08

MicroRNAs in cancer �1.6518353 1.25 E-05

Fanconi anaemia pathway �2.090306 1.72 E-05

Homologous recombination �2.0734393 0.00010828

Oocyte meiosis �1.7769339 0.00018851

Mismatch repair �1.9540856 0.00200251

Herpes simplex virus 1 infection �1.402872 0.00200251

Spliceosome �1.6360944 0.00200554

Progesterone-mediated oocyte
maturation

�1.7256371 0.00248844

Phenylalanine metabolism 2.16784468 0.01019695

Glycine, serine and threonine
metabolism

1.9370048 0.01270892

Staphylococcus aureus infection 1.69202206 0.01616912

Influenza A �1.4999934 0.01616912

Steroid hormone biosynthesis 1.69603814 0.03131591
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different expression trends; in particular, IGF2BP3,
from the reader category, exhibited an obvious upregu-
lation in keloid patients. Next, we performed immuno-
histochemical analysis of this gene, which revealed its
high expression in keloids compared with that in nor-
mal tissues. Similarly, we inferred that IGF2BP3 is a
target gene and could be considered a potential diag-
nostic biomarker of keloids. IGF2BP3 is a newly identi-
fied member of the m6A reader family. It binds to the
target mRNA in an m6A-dependent manner, recog-
nises m6A modification sites, enhances mRNA stability
by binding to the target mRNA, and protects m6A-
modified mRNA from degradation.15,36 IGF2BP3 is
mainly expressed in human tumours, such as liver and
bladder cancers.37,38 Keloids are benign skin tumours.
However, the role of IGF2BP3 in keloids has not been
elucidated; therefore, it should be explored in future
studies.

We constructed a keloid diagnosis model for all m6A
genes and screened 27 genes using ridge and logistic
regression methods. Five genes with the highest influ-
ence coefficients were METTL16, YTHDF3, YTHDC2,
WTAP, and ZCCHC4. METTL16 has recently been identi-
fied as an RNA methyltransferase responsible for deposit-
ing N-methyladenosine (MA) in a few transcripts, and it
acts as both an activity-dependent and an activity-
independent methyltransferase in gene regulation.
METTL16 plays an important role in liver cancer. How-
ever, the relationship between METTL16 and keloids has
not been studied.39 It has been previously reported that
YTHDF3 relies on m6A methylation to effectively
improve the translation of its target, but its overexpres-
sion promotes the occurrence and development of breast
cancer.40,41 However, the role of YTHDF3 in keloids has
not been studied. As an m6A reader protein, YTHDC2
has been reported to play an important role in several

FIGURE 10 ssGSEA immune infiltration assessment. (A) Heatmap of immune scores. Red represents high infiltration level, and blue

represents low infiltration level. (B) Box chart of immune scores. X-axis represents 28 kinds of immune cells, y-axis represents the level of

immune infiltration, and each colour represents sample grouping. Wilcoxon rank sum test was used for statistical analysis. The above

symbol represents the significance level of difference, * represents P < .05, ** represents P < .01, *** represents P < .001, **** represents

P < .0001, and ns represents not significant. (C) Relevant bubble diagram of 28 immune cells in group 1 samples. (D) Relevant bubble

diagram of 28 immune cells in group 2 samples.
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types of tumours,42,43 but its role in keloid pathogenesis
is not reported. WTAP is an important component of the
m6A methyltransferase complex. It interacts with the

METTL3-METTL14 heterodimer and jointly participates
in the regulation of m6A modifications; however, its role
in keloid development is not clear.44 ZCCHC4 is a

FIGURE 11 Immune infiltration assessment using CIBERSORT. (A) Immune scoring box chart. X-axis represents 22 kinds of immune

cells, y-axis represents the level of immune infiltration, and each colour represents sample grouping. Wilcoxon rank sum test was used for

statistical analysis. The above symbol represents the significance level of difference, * represents P < .05, ** represents P < .01, *** represents

P < .001, **** represents P < .0001, and ns represents not significant. (B-F) Correlation scatter. Each point in the figure represents a sample,

the straight line is the correlation fitting curve, the shaded part is the confidence interval, and the outside of the figure is the histogram and

density curve.
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member of the zinc-finger protein family and is an
RNA-binding protein.45 A few previous studies have
reported its role in keloids. In the present study, analysis,
we found that these five m6A-related genes were closely
related to keloids using bioinformatics analyses; however,
only a few studies have investigated keloids. Therefore,
we believe that the role of these five genes in the patho-
genesis of keloids should be explored.46

To further analyse the interaction between m6A
genes, we used the STRING database to construct a PPI net-
work and extracted the first 10 genes for further analysis.
We found that the regulation process of these genes
was the same, suggesting that they had similar biologi-
cal functions. We also used the K-means clustering
method to cluster these 10 hub genes in all keloid tis-
sues. When the number of clusters was two, the con-
tour value was the largest and the clustering effect was
the best. Visual analysis of these genes revealed that six
genes had significant differences between the two
groups (P < .05), especially Heterogeneous Nuclear
Ribonucleoprotein A2/B1 (HNRNPA2B1) and
Methyltransferase-like protein 14 (METTL14) exhibited
high levels of difference (P < .001). HNRNPA2B1
belongs to a group of multifunctional RNA-binding
proteins that play an important role in the transcrip-
tion process and are related to several key cellular
functions.47 Similarly, METTL14 is a major RNA N6
adenosine methyltransferase that participates in
tumour progression by regulating RNA function; how-
ever, the role of these two genes has not been reported
in the pathogenesis of keloids.48 Therefore, these
potential biomarkers warrant further investigation.

Furthermore, GO enrichment analysis and GSEA of
all genes elucidated that these genes were related to cell
proliferation and metabolism during scar repair. Finally,
we used ssGSEA and CIBERSORT to explore the correla-
tion between keloids and various immune cell types and
found that the type of infiltrating immune cells signifi-
cantly changed during keloid repair, especially activated
CD4+ T cells, type 2 helper T cells, activated dendritic
cells, and eosinophil cells. The immune system plays an
indispensable role during keloid formation. Therefore,
recognising changes in immune cells is important for
understanding the mechanisms underlying keloid forma-
tion and development. Previous studies have reported that
the degree of CD3+ cell infiltration in keloid tissues is
higher and the number of T cells in the keloid tissues is sig-
nificantly higher than those in the peripheral blood, which
is related to the size of keloids, suggesting that the occur-
rence of keloids is closely related to the role of T cells.49

To the best of our knowledge, this is the first
study to explore the relationship between keloids and

m6A-related genes using bioinformatic analysis.
However, the study has a few limitations. First, we ana-
lysed two datasets; however, the sample size was limited.
Therefore, a larger dataset is required to verify our
results. Second, this study lacked clinical information;
therefore, we could not analyse patients according to rel-
evant clinical characteristics. Future studies should focus
on in vivo and in vitro experiments to clarify the role of
m6A-related genes in the pathogenesis of keloids and
their potential mechanisms.

5 | CONCLUSIONS

We analysed the relationship between m6A-related genes
and keloids using bioinformatics tools, which revealed
that some genes could be used as potential diagnostic bio-
markers for keloids. Therefore, the results of this study
provide a reference for the treatment of this challenging
disease and for the development of new therapeutic
targets.
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