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Abstract

Proton therapy requires accurate dose calculation for treatment planning to ensure the conformal 

doses are precisely delivered to the targets. The conversion of CT numbers to material properties 

is a significant source of uncertainty for dose calculation. The aim of this study is to develop a 

physics-informed deep learning (PIDL) framework to derive accurate mass density and relative 

stopping power (RSP) maps from dual-energy computed tomography (DECT) images. The PIDL 

framework allows deep learning (DL) models to be trained with a physics loss function, which 

includes a physics model to constrain DL models. Five DL models were implemented including 

a fully connected neural network (FCNN), dual-FCNN (DFCNN), and three variants of residual 

networks (ResNet): ResNet-v1 (RN-v1), ResNet-v2 (RN-v2), and dual-ResNet-v2 (DRN-v2). An 

artificial neural network (ANN) and the five DL models trained with and without physics loss 

were explored to evaluate the PIDL framework. Two empirical DECT models were implemented 

to compare with the PIDL method. DL training data were from CIRS electron density phantom 

062M (Computerized Imaging Reference Systems, Inc., Norfolk, VA). The performance of DL 

models was tested by CIRS adult male, adult female, and 5-year-old child anthropomorphic 

phantoms. For density map inference, the physics-informed RN-v2 was 3.3%, 2.9% and 1.9% 

more accurate than ANN for the adult male, adult female, and child phantoms. The physics-

informed DRN-v2 was 0.7%, 0.6%, and 0.8% more accurate than DRN-v2 without physics 

training for the three phantoms, respectfully. The results indicated that physics-informed training 

could reduce uncertainty when ANN/DL models without physics training were insufficient to 

capture data structures or derived significant errors. DL models could also achieve better image 

noise control compared to the empirical DECT parametric mapping methods. The proposed 

PIDL framework can potentially improve proton range uncertainty by offering accurate material 

properties conversion from DECT.
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1 Introduction

Proton therapy can deliver conformal doses to tumor targets and spare normal tissues 

with minimum irradiation to reduce patients’ short- or long-term side effects. Conventional 

proton treatment planning systems (TPS) utilize either analytical dose calculation (ADC) 

(Schuemann et al., 2015; Yepes et al., 2018; Liang et al., 2019) or Monte Carlo dose 

calculation (MCDC) algorithms (Paganetti et al., 2008; Saini et al., 2017; Chang et al., 

2020) to design treatment plans. These dose calculation algorithms require information on 

the relative stopping power (RSP) or mass density (MD) of patients. This information is 

typically acquired from single-energy computed tomography (SECT) applying CT-number-

to-RSP or CT-number-to-mass-density conversion curves, calibrated using the stoichiometric 

method (Schneider et al., 1996; Schneider et al., 2000). However, this method relies on 

linear fitting. The model performance can be compromised by the data quality (Dinh, 2013) 

such as data quantity and uncertainty of calibration materials. Besides, the linear model form 

limits the model performance even if extensive data are used (Ratner, 2011). Furthermore, 

materials with different compositions may have the same CT number from SECT, and the 

conventional calibration curves cannot settle this ambiguity problem. Hence, a margin of 

3.5% is typically reserved for proton range uncertainty (Paganetti, 2012).

Dual-energy computed tomography (DECT) has been deployed to characterize human 

tissues for diagnosis (McCollough et al., 2015), and DECT's virtual monochromatic images 

(VMI) can improve beam-hardening artifacts and increase image quality (Yu et al., 2012). 

DECT can be also used to estimate effective atomic number (Zeff) and relative electron 

density to that of water (ρe), and these parametric maps can be used to determine proton 

RSP (Bär et al., 2017) for ADC (Wohlfahrt et al., 2017). In general, DECT can be utilized 

to infer more exact proton RSP than SECT (Yang et al., 2012). However, the DECT-based 

stoichiometric method (Bourque et al., 2014) used a fixed form of the fitting model, and 

it is not trivial to simultaneously include additional DECT’s images such as VMI with 

multiple energies, Zeff, and ρe in an existed calibration model. To develop a new model to 

adapt additional DECT images, it generally requires extensive efforts to gain the insights and 

mechanistic understanding. As an alternative to mechanistic and semi-analytical models, it is 

viable to disclose the underlying correlations between DECT parametric maps and material 

mass density and RSP by modern machine learning (ML) methods.

Model inference of many traditional ML algorithms tend to follow Occam’s razor: the 

simplest model is preferable due to its interpretability and generalizability (Blumer et al., 

1987; Domingos, 1999). However, the approach is limited by data complexity (Champion et 

al., 2019). On the contrary, deep learning (DL) (LeCun et al., 2015) can deploy hierarchical 

model layers to uncover complex structures from data. Hornik et al. (Hornik et al., 1989) 

proved that neural networks with multilayer perceptrons are universal approximators that 

can capture the properties of any measurable information. Su et al. (Su et al., 2018) used 

electron density phantoms to demonstrate that ML models achieved DECT parametric 

mapping for RSP with the uncertainty of ~9% and ~3% for lung and bone.

Physics-informed machine learning (Chang and Dinh, 2019; Karniadakis et al., 2021) has 

exhibited the advantage of integrating noisy data, insufficient data, and physics models 
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during DL training. In the present work, we couple a physics model in the training of 

DL models and formulate a physics-informed DL framework to learn the human tissue 

surrogates from electron density phantoms and predict mass density and RSP maps for 

anthropomorphic phantoms with different body sizes and material compositions. The 

framework can adapt various DL models with different degrees of freedom. To evaluate 

the framework's performance for clinical applications, we investigate conditions by which 

DL models can benefit from the physics-informed training to work compatibly, stably, and 

effectively for DECT parametric mapping.

2 Materials and methods

2.1 Data acquisition and phantoms

The images of a CIRS electron density 062M phantom (Computerized Imaging Reference 

Systems, Inc., Norfolk, VA, USA) scanned with DECT was used to train DL models 

to establish correlations between DECT images and material properties. Table 1 gives 

the physical properties of CIRS 062M, which includes 17 inserts from 9 types of tissue 

surrogate. Each tissue surrogate has redundant inserts except for the bone 1250 mg/cc. A 

Siemens SOMATOM Definition Edge scanner was used to scan phantoms, and the CT 

acquisition and reconstruction parameters for all scans includes the tube voltage of 120 kVp, 

single collimation width of 0.6 mm, reconstruction method and kernel of sinogram-affirmed 

iterative reconstruction (SAFIRE) and Qr40 with iterative beam hardening correction using 

Siemens Syngo.CT VB20A. The phantom was scanned using TwinBeam dual-energy 

(TBDE) protocols with a CT dose index (CTDIvol, 32cm) of 11.57 mGy and effective 

milliampere-seconds (mAseff) of 541.

The RSP of each tissue surrogate is calculated by Eq. (1) (Bichsel, 1969) where ρe, me, c, β, 

and Im are the relative electron density, electron mass, speed of light, proton velocity relative 

to the speed of light, and mean ionization potential of phantom media. The β and Iwater in Eq. 

(1) are obtained using proton energy of 210 MeV and mean ionization potential of 78 eV 

(Seltzer S M, 2014).

RSP = ρe

ln 2mec2β2

lm 1 − β2 − β2

ln 2mec2β2

lwater 1 − β2 − β2
(1)

Two DECT scans were acquired with different insert arrangements, and each scan contained 

512   x   512   x 79 voxels. Figure 1 depicts the setup of DECT scans. During the scans, the 

electron density phantom was placed between solid water phantoms with a thickness of 10 

cm to avoid CT artifacts.

The CIRS ATOM M701 (adult male), M702 (adult female), and M705 (5-year-old child) 

anthropomorphic phantoms (Computerized Imaging Reference Systems, Inc., Norfolk, VA) 

were used to validate DL results. Separate CT scans were made for the head-and-neck 

Chang et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(HN), thorax, and pelvis regions of the phantoms, applying body-site specific TBDE CT 

protocols for each region. For a head-and-neck (HN) TBDE protocol, scans of M701, M702, 

and M705 contain 512 x 512 x 683, 512 x 512 x 605, and 512 x 512 x 1286 voxels. For M701 

and M702, thorax TBDE scans include 512 x 512 x 641 and 512 x 512 x 625 voxels while 

pelvis scans involve 512 x 512 x 415 and 512 x 512 x 517 voxels, respectively. Table 2 shows 

the CTDIvol, 32cm and effective milliampere-seconds for different TBDE protocols at each 

site. For the 5-year-old child phantom, only a TBDE HN protocol was used. The material 

properties of the anthropomorphic phantoms are provided in Table 1. The tissue-mimicking 

materials are almost the same for each phantom except for bone. All DECT images were 

reconstructed using the same reconstruction setting with a diameter of 500 mm and slice 

thickness of 0.5 mm. Siemens Syngo.Via was used to generate DECT parametric maps such 

as relative electron density (ρe), effective atomic number (Zeff), and VMI of 80, 135, and 

190 keV. Table 3 and Table 4 give the reference and Syngo.Via values of ρe and Zeff for the 

electron density and anthropomorphic phantoms.

2.1.1 RSP measurement for CIRS M701 adult male phantom using protons
—We used a 208 MeV proton spot and Zebra (IBA Dosimetry, Germany) to measure 

the RSP of lung, soft tissue, brain, and bone surrogates for the CIRS M701 adult male 

phantom since the material compositions of these tissue surrogate are identical for the CIRS 

anthropomorphic phantoms. The proton spot was delivered by Varian ProBeam System 

(Varian Medical Systems, Palo Alto) with a cyclotron current of 20 nA and the spot sigma 

of 3.79 mm at the ISO center. Figure 2 depicts the experiment setup. The beam ISO center 

was set at the phantom surface. The thickness of each phantom slab is 25 mm. The 80% 

distal range (R80) differences from the measurement with and without phantom slabs were 

used to compute the water equivalent thickness (WET). The Zebra measurement includes 

range uncertainty of ±0 .5 mm. The measured RSP can be obtained using WET divided by 

the thickness of phantom slabs. Then we derived the reference mass density using Eq. (1) 

by adjusting material mass densities to match the measured RSP. The measured RSP values 

for lung, soft tissue, brain, and bone surrogates are 0.201, 1.040, 1.050, and 1.410, and the 

reference mass densities are 0.202, 1.054, 1.070, and 1.517 g/cm3, respectively.

2.2 Physics-informed deep learning for DECT parametric mapping

Figure 3 portrays the physics-informed deep learning (PIDL) framework to achieve DECT 

parametric mapping and generate mass density and RSP maps. PyTorch (Paszke, 2019) 

was used for DL model implementation, and the model inputs include DECT parametric 

maps of Zeff, ρe, VMI of 80, 135, and 190 keV, and DECT images from high/low energy 

spectra. At the training phase, central 79 CT slices from the two scans (given in Figure 

1) of the electron density phantom were used, and we manually contoured circular regions 

of interest for each insert with a diameter of 24 pixels. Then each insert region from each 

DECT image was arranged to a 1-dimensional (1D) array such that the training input layer 

contains the size of 1242828 x 7 (total voxels x input images), and the output layer returns 

values of mass density and RSP simultaneously. Section 2.2.2. provides details about how 

the physics model tightly interacts with DL models utilizing physics quantities based on 

material compositions from a CIRS electron density phantom. This approach allows the 
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model response to be constrained by physics knowledge. The performance of the PIDL 

framework is assessed by three CIRS anthropomorphic phantoms that include different body 

sizes and bone material compositions.

2.2.1 Deep learning models—The PIDL framework is not limited to DL models, 

and we implemented one traditional ML and five DL models in the framework to further 

explore relations of the predictive capability and model complexity. Figure 3(a)–(f) shows 

the six ML/DL models and the model complexity is increased from Figure3(a) to Figure 

3(f) due to the increase of trainable parameters and model layers. The ML model in this 

work was artificial neural networks (ANN) and we implemented ANN with 30 hidden 

units according to the previous work conducted by Su et al. (Su et al., 2018). Figure 

3(a) depicts the ANN structure applied in this study. The σ in Figure 3(a)–(c) denotes 

activation functions of ReLU (Nair and Hinton, 2010). Meanwhile, we implemented five 

DL models (Fukushima, 1980; He et al., 2016) to demonstrate the predictive capability 

of the proposed PIDL framework. Figure 3(b)–(f) show that the five DL models are a 

fully connected neural network (FCNN) (Bebis and Georgiopoulos, 1994), dual-FCNN 

(DFCNN) (Schmidhuber, 2015), and three variants of residual networks (ResNet) (Wang 

et al., 2018) including ResNet-v1 (RN-v1), ResNet-v2 (RN-v2), and dual-ResNet-v2 (DRN-

v2). For the DL models with fully connected (FC) layers in Figure 3(b)–(c), there are 200 

hidden units in each layer with layer normalization (LN) (Jimmy Lei Ba, 2016) to prevent 

gradient vanishing issues during training (Hochreiter et al., 2001). FCNN includes nine fully 

connected (FC) layers, while DFCNN has four FC and five dual-stream layers (Simonyan 

and Zisserman, 2014). The model complexity of DFCNN is increases compared to FCNN 

whereby DFCNN potentially can discover more structures from data (Naitzat et al., 2020). 

The detail structures of RN-v1 and RN-v2 are given in Appendix A. Figure 3(e) shows the 

structure of a ResNet (RN) block (marked with a green dashed line in Figure 3(e)). The 

utilization of RN blocks allows us to increase the model complexity compared to neural 

networks without residual implementation while preventing accuracy degradation issues (He 

et al., 2016). Figure 3(f) depicts the DRN-v2 architecture built based on two RN blocks. 

In Section 2.2.2, we described details about how to implement the physics model (given in 

Figure 3(g)) into a loss function for DL training.

2.2.2 Supervised loss function and physics loss—We use supervised DL models 

to establish correlations between DECT images and material mass densities and RSP. This 

inverse learning minimizes the loss function given by Eq. (2), which includes mean square 

error (MSE) loss and physics loss. The δ is equal to 1 for physics-informed training and the 

value is 0 for conventional training. The physics-informed deep learning (PIDL) and DL use 

identical ANN/DL model structures given in Figure 3(a)–(f) but with different loss functions 

during the model training. Therefore, ANN/DL models trained by physics-informed and 

conventional approaches will learn differently from data and result in distinct values of 

model parameters. For the conventional approach, DL models (given in Figure 3) are 

trained with only MSE loss, and we use abbreviations of ANN, FCNN, DFCNN, RN-v1, 

RN-v2, and DRN-v2 for the models trained with only MSE loss. For the physics-informed 

training, each model (given in Figure 3) is trained with both MSE and physics loss, and we 
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use abbreviations of PANN, PFCNN, PDFCNN, PRN-v1, PRN-v2, and PDRN-v2 for the 

models trained with MSE and physics losses.

Ltotal = LMSE + δ × Lpℎysics (2)

Eq. (3) defines the MSE loss which is based on mass density and RSP with reference values 

for the electron density phantom (upper part of Table 1). The ρmodel, ρref, RSP ref, RSPmodel, N, 

and i denote the mass density predicted by ANN/DL models, ground truth mass density, 

RSP predicted by ANN/DL models, ground truth RSP, total number of CT voxels, and ith 

voxel.

LMSE = 1
N ∑

i = 1

N
ρi,model − ρi,ref

2

2

+ 1
N ∑

i = 1

N
RSP i,model − RSP i,ref

2

2

(3)

Eq. (4) defines the physics loss where N, i, and yi,meas denote total number of CT 

voxels, ith voxel, and measured quantities of interest that is CT numbers in this work. 

The yi,pℎysics insigℎt represents physics insights that is empirical HU model in this work 

given by Eq. (5) (Rutherford et al., 1976; Jackson and Hawkes, 1981), assuming 

Hounsfield unit (HU) = 1000(μ/μw − 1) where µ is the linear attenuation coefficient.

Lpℎysics = 1
N ∑

i = 1

N
yi,pℎysics insigℎt − yi,meas

2

2

(4)

Eq. (5) is the physics model given in Figure 3(g), and the model is used to compute the 

physics loss given by Eq. (4). The kpℎ, kcoℎ, and kincoℎ are energy-dependent coefficients 

corresponding to the photoelectric effect, coherent scattering, and incoherent scatting. These 

coefficients can be obtained by a least-square fit with VMI of 80keV from the scan of the 

CIRS 062M electron density phantom. The estimated values for kpℎ, kcoℎ, and kincoℎ in Eq. (5) 

are 1.392 x 10−5, 1.629 x 10−3, and 9.166 x 10−1.

ypℎysics insigℎt = HU80keV = 1000 ρ (kpℎ z3.62 + kcoℎ z1.86 + kincoℎ) − 1 (5)

By defining z and z equal to z3.62 and z1.86, the values can be derived by Eq. (6) (Mayneord, 

1937; Spiers, 1946) where i, ω, Z, and A denote ith element, weight fraction, atomic number, 

and atomic mass.

zn = ∑
i

ωi
Zi
Ai

∑i ωi
Zi
Ai

Zi
n

1
n

(6)
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Eq. (7) defines the relative electron density (ρ) where ρe,w is the electron density for water and 

it is a constant value of 3.343 x 1023 e−/cm3. The ρm, DL is the predicted mass density from the 

output of DL models.

ρ ≡
ρm, DL∑

i
ωi

Zi
Ai

ρe,w

(7)

For the physics-informed training, the value of ρm, DL is queried during each training iteration, 

allowing the physics model given by Eq. (5) and in Figure 3(g) to be used to compute the 

physics loss defined by Eq. (4) to train a physics-informed DL model. The CT numbers in 

the physics loss (given by Eq. (4)) are acquired from the VMI with an energy of 80 keV 

from the scan of the CIRS 062M electron density phantom.

The 80-keV VMI is used because VMI with an energy around 80 keV can lead to the 

optimal image-noise ratio and beam-hardening ratio (Yu et al., 2012; Wohlfahrt et al., 2017; 

Wang et al., 2019) to reduce CT number variations between patients with different body 

sizes.

2.3 Empirical model for DECT parametric mapping

We implemented two empirical DECT models using MATLAB R2021a, and we compared 

the performance of DL models to the empirical models. Eq. (8) (Beaulieu et al., 2012) and 

Eq. (9) (Hünemohr et al., 2013; Kassaee et al., 2021) give empirical models to which can 

be used to estimate the material mass density and RSP maps from DECT where ρe and Zeff

are obtained from Siemens Syngo.Via. The linear mass density model involves considerable 

uncertainty for the inflated lung, and a constant value of 0.26 g/cm3 is assigned for it (Eq. 

(8)). The RSP model includes multiple correlations for different tissues, for example, soft 

tissues (Zeff < 8 .5) and bony tissues (Zeff < 10). Syngo.Via has a limitation that the Zeff is 

assigned to 0 for low-density tissues (HU < −500), and, therefore, Eq. (9) includes a region 

of Zeff values < 0.5 for lung tissues.

ρ g
cm3 =

−0.1746 + 1.176ρe ρe ≥ 0.37
0.26 ρe < 0.37 (8)

RSP =

ρe 0 ≤ Zeff < 0.5
1.1114 − 0.0148Zeff ρe 0.5 ≤ Zeff < 8.5

0.9905ρe 8.5 ≤ Zeff < 10
1.1117 − 0.0116Zeff ρe, Zeff ≥ 10

(9)

2.4 Evaluation

To prepare the reference images of CIRS anthropomorphic phantoms, we first generated 

contours for each tissue surrogate from phantom images. We used RayStation 10B model-
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based segmentation (RayPhysics, 2021) to obtain contours for the brain, spinal cord, and 

lung. The threshold CT number was 250 HU for bone. The breast contour was manually 

contoured from phantom images. The soft tissue was first contoured by using RayStation 10 

function to create external regions of interest (ROI). Then we subtracted the external ROI by 

each tissue contour to acquire the soft tissue contour. To avoid the partial volume and edge 

effects (Wohlfahrt et al., 2018; Polf et al., 2019), all contours were uniformly contracted by 

3 mm, and the tissue materials within the contours were uniform for CIRS anthropomorphic 

phantoms. Then the mass density and RSP from Table 1 were allocated to each contour as 

the reference.

Eq. (10)–(11) give the evaluation metrics using absolute percentage error (APE) and 

mean APE (MAPE) where i, x, and N represent the ith voxel, voxel quantity, and total 

voxels. For anthropomorphic phantoms, the APE is used to generate error maps for whole 

phantoms to visualize the error distribution, and the MAPE provides error estimation for 

each tissue contour. Both APE and MAPE were computed for each contour within CIRS 

anthropomorphic phantoms.

APEi = xi − xi, REF

xi, REF
× 100% (10)

MAPE = 1
N ∑

i = 1

N
APEi (11)

3 Results

We used MAPE to assess the performance of the PIDL framework regarding mass density 

and RSP map generation and compared the results to the conventional DL models (without 

the extra physics insight loss term, Eq. (4)) and the empirical models. In Section 3.1–3.3, 

the reference RSP and mass density for the CIRS anthropomorphic phantoms were from the 

vendor (lower part of Table 1). In Section 3.4, the reference RSP and mass density for the 

CIRS M701 adult male phantom were from the proton measurement as described in Section 

2.1.1.

3.1 Site-specific analysis using an HN TBDE protocol for CIRS M701, M702, and M705 
phantoms

Figure 4 depicts the quantitative evaluation results of the empirical and DL-based DECT 

parametric mapping for mass densities utilizing CIRS M701, M702, and M705 phantoms. 

For lung tissue surrogate, the empirical model results in significant uncertainty for low HU 

materials. Accordingly, the density of the inflated lung is set to be a constant value of 0.26 

g/cm3 (Beaulieu et al., 2012), and the error is about 26.8%. In contrast, the DL models 

can achieve an error of ~1% for lung. Meanwhiles, DL models achieved lower errors than 

the empirical model for soft tissue, spinal cord, and brain. For M701 bone, the errors are 

3.9% and 4.2% for the empirical model and RN-v2. However, the empirical model shows a 
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significant standard deviation (SD) of 5.3%, while the SD of RN-v2 is 0.9%. Compared to 

the empirical model, DL models usually have a smaller SD. In case where the conventional 

DL models results in a high MAPE, the physics-informed DL models generally improve 

the accuracy of density map generations. For instance, the soft tissue errors are 2.2% and 

2.4% for conventional ANN and DRN-v2, but the errors are reduced to 1.0% and 1.3% when 

training the DL models with physics constraints. The bone density generated by RN-v2 

shows good agreement to the reference, with a small MAPE (0.2%), while the empirical 

model results in a MAPE of 4.1% for M705 bone density prediction. For the bone surrogate 

in M705, the conventional DRN-v2 yields a MAPE of 4.8% but the physics-informed 

training can reduce the error to 1.5%. In this case, DRN-v2 comprises complicated model 

architectures and can lead to large MAPE. However, these errors generally can be improved 

with constraints from the physics model, as shown in Figure 4(c5). Appendix B gives MAPE 

values of mass density and RSP comparisons for each model.

Figure 5 shows the MAPE of RSP by the empirical and DL models. The empirical model 

can generate RSP maps using Eq. 8, and the MAPE is 8.1% for lung while the error 

is 1.1% by RN-v1. Compared to the empirical model, the DL models consistently yield 

smaller MAPE and SD for soft tissues for M701 and M702. The empirical model can 

achieve smaller MAPE of brain and bone tissues compared to DL models,but the SD for 

the empirical model is about four times greater than for the DL models as demonstrated 

by M701 and M702. For M705 bone, RN-v2 leads to an error of 1 .4%  ±  0 .8% but the 

empirical model results in an error of 4 .6%  ±  2 .0%. ANN gives optimal MAPE of RSP 

for soft tissue, spinal cord, and brain at the HN site.

3.2 Site-specific analysis using a thorax TBDE protocol for CIRS M701 and M702 
phantoms

Figure 6 shows MAPE values of mass densities and RSP for each tissue using the empirical 

models and ML/DL models with and without physics training including ANN, FCNN, 

DFCNN, RN-v1, RN-v2, and DRN-v2. The DL models show lower errors than the empirical 

models for most tissues. Meanwhiles, the physics-informed training can further reduce the 

errors for DL models without physics training. For instance, Figure 6(b1) and (b3) show that 

the errors of soft tissue and bone are 2.9% and 6.1% by DRN-v2 while the errors are 0.6% 

and 4.8% by physics-informed DRN-v2 (PDRN), respectfully. Appendix B gives MAPE 

values of mass density and RSP comparisons for each model.

3.3 Site-specific analysis using a pelvic TBDE protocol for CIRS M701 and M702 
phantoms

Figure 7 shows the MAPE values of mass densities and RSP for M701 and M702 from the 

empirical model and ML/DL models with and without physics training. For M701 soft tissue 

and spinal cord given in Figure 7(a1) and (a2), DRN-v2 results in errors of 1.7% and 2.5%, 

and the physics-informed training can further lower these errors to 0.9% and 1.0%. Figure 

7(c1)–(c2) and (d1)–(d2) depict that DL models can achieve smaller RSP MAPE than the 

empirical model for M701 soft tissue and spinal cord. Appendix B gives MAPE values of 

mass density and RSP comparisons for each model.
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3.4 Analysis of CIRS M701 phantom using measured tissue-surrogate data

We compared the empirical and DL results to the measured data (given in Section 2.1.1) 

for CIRS M701 adult male phantom. The results in this section were averaged from the 

three treatment sites using the CIRS adult male phantom (M701) images scanned by HN, 

thorax, and pelvic TBDE protocols. Figure 8(a1)–(a4) depicts the MAPE values of the 

phantom mass densities for each tissue. DL models achieved lower errors than the empirical 

model. The physics-informed training can generally improve the model errors compared 

to the models without physics training. For instance, Figure 8(a2) and (a4) show that the 

errors from physics-informed ANN (PANN) are 1.3% and 2.5% for soft tissue and bone 

while the errors from ANN without physics training are 2.5% and 3.8%, respectfully. The 

physics-informed RN-v2 (PRN-v2) achieved the optimal errors of 0.8%, 1.1%, 0.2%, and 

0.5% for lung, soft tissue, brain, and bone. Figure 8(b1)–(b4) show the MAPE values of RSP 

for each tissue from various models.

Figure 9 illustrates APE maps to evaluate error distributions of mass density for CIRS M701 

adult male phantom. The VMI shows the anatomy of the phantom at three sites, including 

HN, thorax, and pelvis. The empirical and ANN model results in considerable uncertainty 

at the peripheral of the body and bone. When training an ANN with physics constraints, 

physics-informed ANN (PANN) error maps show improvement compared to the map by 

ANN. There is no significant difference between RN-v2 and PRN-v2. Both models can 

better control the errors across all tissues and the regions of the body peripheral compared 

to the results by the empirical model. Figure 10 shows the APE maps of RSP. The empirical 

and ANN models still involve significant uncertainty for the bone and regions of the body 

peripheral. However, the ANN model reveals optimal results for the soft tissue and brain. 

RN-v2 and PRN-v2 can still achieve the optimal APE for bone and lung compared to ANN 

and the empirical models.

4 Discussions

Su et al. (Su et al., 2018) employed machine learning methods to establish the correlations 

between DECT images and parametric maps such as RSP. In this work, we proposed a 

physics-informed deep learning (PIDL) framework, for the first time, to tightly incorporate a 

physics model to constrain DL training for DECT parametric mapping. The framework can 

predict the parametric maps of mass density and RSP to support proton MCDC and ADC 

for treatment planning. With physics constraints, machine learning models with simplistic 

structures such as ANN can also reduce mass density errors by 1.2%, 1.3%, and 1.3% 

for soft tissue, brain, and bone compared to ANN without physics training, as shown in 

Figure 8(a2)–(a4). Figure 8 also implies that the model errors do not tightly depend on 

different DL models tested in this work; instead, physics-informed training can improve 

the model accuracy when conventional DL models lead to large uncertainty. Meanwhiles, 

Figure 4, Figure 6, and Figure 8–9 show that the empirical DECT model given by Eq. (8) 

results in large uncertainty for lung surrogates from CIRS anthropomorphic phantoms. Since 

the model use a constant value for inflated lung, we can match the constant value to the 

reference mass density of lung surrogates to have zero uncertainty. However, this approach 

cannot be applied to patient study, and this result shows the limitation of Eq. (8).
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The physics-based empirical models (Yang et al., 2010; Landry et al., 2013; Garcia et 

al., 2015; Zhu and Penfold, 2016) had demonstrated the capabilities of DECT parametric 

mapping. Nonetheless, the accuracy of those methods was impacted by CT noise and 

artifacts. Figure 9(c2) illustrates that the empirical model is affected by CT noise, and the 

phantom anatomy cannot be identified. In contrast, the DL models can suppress the noise, 

as shown in Figure 9(c2) and (c6) where the standard deviations of APE for whole bodies 

are 2.3% (empirical model) and 1.4% (PRN-v2), respectfully. Meanwhile, those methods 

generally involve different degrees of uncertainty due to model forms of regression methods 

such as linear fitting. The relations between CT numbers and quantities of interest may not 

always be described as a one-to-one function (Su et al., 2018). To prevent this ambiguity, 

DL with hierarchical structures has the potential to figure out the hidden correlations behind 

DECT data and achieve the accuracy and robustness of DL-based parametric mapping 

methods.

Hünemohr et al. (Hünemohr et al., 2014) concluded that the accuracy of mass density 

prediction dominates the uncertainty of RSP. Proton MCDC is accurate for particle transport 

in heterogeneous tissues (Schuemann et al., 2015; Huang et al., 2018; Lin et al., 2021) 

and can improve treatment planning quality. Accordingly, in the current work, we focus 

on using a physics model to constrain DL training based on the mass density, and Figure 

8(a1)–(a4) depicts that PRN-v2 can achieve MAPE within 1.1%. Besides, when comparing 

DECT mass density mapping results to bone measurement data, both empirical and PRN-v2 

reduce the errors by ~1.7% and ~4.2%. PRN-v2 performs adequately for both CIRS adult 

and child anthropomorphic phantoms. The model involves complicated convolutional layers 

to uncover structures of high-dimensional data and residual blocks to prevent accuracy 

degradation. We will incorporate PRN-v2 for future dosimetric study to further explore the 

impacts for treatment planning.

Figure 11 depicts density map prediction for two patients employing HN and pelvis TBDE 

scans with contrast. All density maps can qualitatively reflect the patients’ anatomy. Figure 

11(a1)–(a4) display that the internal jugular vein (IJV) can impact the CT numbers that 

cause the variation of density curves by RN-v2 and PRN-v2 as shown in Figure 11(a5) 

and (b5) (pointed by red and blue arrows). Figure 11(a5) demonstrates that the density line 

profiles by DL models agree with the trend of the HU line profile by VMI. The empirical 

model is not affected by the variation of CT numbers induced by the contrast injection. It is 

because iodine is a high Z material, and it enhances the photo electric effect that impacts CT 

number. However, the contrast injected in IJV was OMNIPAQUE™ with the specific gravity 

of 1.406, and 100 ml of the iodine contrast was injected into the patient. The injection of 

contrast may cause local density variation. Meanwhile, DL models were not trained with 

iodine that increases the uncertainty from DL models. The patients with contrast become 

the limitation of the current PIDL framework due to lack of training data. Including more 

training datasets with iodine contrast may address this issue. Figure 11(b6) exhibits a line 

profile across soft tissue and bone, and both empirical and DL models agree with the trend 

of the VMI HU profile. Nevertheless, DL line profiles are smooth that implies the ability to 

suppress CT noise.
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Although Figure 8 indicates that the uncertainty for RSP prediction is more significant than 

that of mass density prediction by DL models, Figure 8(b1)–(b4) still shows improvement 

achieved by DL models for lung, soft tissue, spinal cord, and bone compared to the 

empirical model. Meanwhile, the reference RSP values are calculated by Eq. (1), and 

the uncertainty of reference RSP comes from elemental compositions and I values. For 

instance, Table 1 demonstrates that the density discrepancy between CIRS 062M muscle and 

CIRS M701 soft tissue is less than 0.5%, but the RSP and I value differences are ~1.7%
and ~5.4% due to different material compositions. Additional human tissue surrogates are 

required to broaden the coverage of training data and to accurate DL models. MC simulation 

(Hünemohr et al., 2013) can also be an alternative to derive RSP. Correlating DECT data to 

the parametric maps requires models to capture features from high dimensional data in the 

domain of extrapolation (Balestriero et al., 2021).

The DL framework serves as a high-order approximation for a well-defined physics problem 

that can be solved if the exact relative electron density and effective atomic number are 

known for patients. Hence, the accuracy of image-based relative electron density and 

effective atomic number dominate the uncertainty of physics-based models for material mass 

density and RSP inferences. Unlike mechanistic models (empirical models), the robustness 

of DL can be compromised if the training datasets are not sufficiently covered the physics 

problem that we attack. In this work, we aim to demonstrate the feasibility of using physics-

informed training to enhance model accuracy for conventional ML and DL models. The 

evaluation of dosimetric impacts using the proposed PIDL framework with meat phantoms 

such as pig’s loin, belly, rib, and femur, is a crucial step for accessing the feasibility of 

clinical implementation.

Future work will incorporate additional physics models to regularize DL training to enhance 

accuracy and robustness (Chang and Dinh, 2019). The current model inputs include VMI of 

135 keV and 190 keV because of their potential to mitigate artifacts from surgical implants 

of various sizes (Wellenberg et al., 2018a; Wellenberg et al., 2018b). Future investigation 

will likewise integrate the proposed framework to regulate DL-based metal artifact reduction 

methods (Gjesteby et al., 2019; Liao et al., 2020; Yu et al., 2021a; Yu et al., 2021b) to 

improve proton range uncertainty (Paganetti, 2012; Chang et al., 2020).

5 Conclusions

A physics-informed deep learning (PIDL) framework was developed to assimilate rich 

information from DECT and to generate mass density and RSP maps that can be used 

to inform proton analytical dose calculation and Monte Carlo dose calculation. Physics-

informed deep learning models can enhance the accuracy of DECT parametric mapping for 

voxel-specific material mass densities, mainly when conventional DL models incorporate 

significant uncertainty. Machine learning models with basic structures can benefit the most 

from physics-informed training. DL models with complicated structures are not necessary 

to achieve the optimal DECT parametric mapping; alternatively, physics regularization 

can effectively improve the performance of DL models. The proposed framework also 

demonstrated the capability of suppressing CT noise, and the method has the potential to 

reduce proton range uncertainty to increase the quality of proton therapy.
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Appendix A. Structure of ResNet-v1 (RN-v1) and ResNet-v2 (RN-v2)

Table A1 gives the structure of RN-v1 and RN-v2 as given in Figure 3(d)–(e). Each residual 

block includes two convolutional layers and one residual connection.

Table A1.

Architecture of the 1D convolution components for ResNet (RN). ConvA and ConvB 

denotes convolutional layer A and B with different parameters.

Network Layer Number of channels Kernel size Stride Pad

ConvA 64 7 2 3

ConvB 64 3 1 0

Residual Block A1

Convolutional 64 3 2 1

Convolutional 64 3 1 1

Residual 64 1 2 0

Residual Block A2

Convolutional 128 3 2 1

Convolutional 128 3 1 1

Residual 128 1 2 0

Residual Block A3

Convolutional 256 3 2 1

Convolutional 256 3 1 1

Residual 256 1 2 0

Residual Block B1

Convolutional 64 2 2 1

Convolutional 64 2 1 1

Residual 64 1 2 0

Residual Block B2

Convolutional 128 2 2 1

Convolutional 128 2 1 1

Residual 128 1 2 0

Residual Block B3

Convolutional 256 2 2 1

Convolutional 256 2 1 1

Residual 256 1 2 0

Appendix B. MAPE comparisons of mass densities and RSP for CIRS 

anthropomorphic phantoms

Table B1–B2 give the MAPE comparisons of mass densities and RSP using an HN TBDE 

protocol for CIRS adult male, adult female, and child phantoms. Table B3–B4 show the 

MAPR comparisons of mass densities and RSP using a thorax TBDE protocol for CIRS 

Chang et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adult male and female phantoms. Table B5–B6 indicate the MAPE comparisons of mass 

densities and RSP using a pelvic TBDE protocol for CIRS adult male and female phantoms.

Table B1.

MAPE comparisons of mass densities between the reference and DECT parametric mapping 

models for an HN site with five tissue surrogates using a TBDE HN scan.

M701 Lung Soft Tissue Spinal Cord Brain Bone

Empirical Model 26.8 ± 0.0 2.3 ± 2.2 1.4 ± 1.3 1.0 ± 0.8 3.9 ± 5.3

Conventional

ANN 9.0 ± 7.3 2.2 ± 1.3 1.6 ± 1.3 1.8 ± 0.6 8.3 ± 1.2

FCNN 1.3 ± 3.3 1.2 ± 1.0 0.7 ± 1.0 0.2 ± 0.2 5.3 ± 0.8

DFCNN 2.0 ± 3.1 1.1 ± 0.8 0.8 ± 1.1 0.2 ± 0.2 5.6 ± 1.0

RN-v1 0.9 ± 3.4 1.7 ± 1.8 0.8 ± 1.4 0.2 ± 0.2 4.1 ± 0.9

RN-v2 1.1 ± 3.4 1.3 ± 1.2 0.7 ± 0.9 0.3 ± 0.2 4.2 ± 0.9

DRN-v2 1.8 ± 4.2 2.4 ± 2.1 1.1 ± 1.2 0.4 ± 0.5 5.1 ± 1.6

Physics-informed

ANN 8.4 ± 7.2 1.0 ± 0.9 1.0 ± 0.9 0.5 ± 0.5 7.1 ± 1.1

FCNN 1.7 ± 3.3 1.2 ± 0.7 0.7 ± 0.5 0.2 ± 0.2 4.9 ± 0.6

DFCNN 1.9 ± 3.3 1.1 ± 0.6 0.8 ± 0.5 0.3 ± 0.2 5.3 ± 0.7

RN-v1 1.4 ± 3.7 1.3 ± 0.7 0.7 ± 0.5 0.2 ± 0.2 4.5 ± 0.7

RN-v2 1.4 ± 3.6 1.2 ± 0.7 0.7 ± 0.5 0.2 ± 0.2 4.7 ± 0.9

DRN-v2 1.3 ± 4.2 1.3 ± 0.7 0.7 ± 0.5 0.2 ± 0.2 5.0 ± 1.1

M702 Lung Soft Tissue Spinal Cord Brain Bone

Empirical Model 26.8 ± 0.0 2.3 ± 2.2 1.2 ± 1.0 1.3 ± 0.9 3.5 ± 2.1

Conventional

ANN 10.0 ± 8.0 2.3 ± 1.4 1.7 ± 0.8 2.3 ± 0.6 8.4 ± 1.1

FCNN 1.5 ± 0.9 1.2 ± 1.0 0.4 ± 0.5 0.2 ± 0.3 5.4 ± 0.7

DFCNN 2.0 ± 0.5 1.1 ± 0.9 0.4 ± 0.5 0.3 ± 0.3 5.6 ± 0.8

RN-v1 0.9 ± 0.7 1.4 ± 1.5 0.4 ± 0.6 0.3 ± 0.3 4.1 ± 0.9

RN-v2 1.2 ± 0.8 1.4 ± 1.2 0.4 ± 0.5 0.2 ± 0.3 4.2 ± 0.8

DRN-v2 1.8 ± 0.9 2.2 ± 2.0 0.7 ± 0.7 0.5 ± 0.5 5.3 ± 1.6

Physics-informed

ANN 9.3 ± 8.4 1.0 ± 1.1 0.5 ± 0.6 0.6 ± 0.5 7.2 ± 1.2

FCNN 1.8 ± 0.6 1.2 ± 0.9 0.3 ± 0.5 0.3 ± 0.3 4.8 ± 0.6

DFCNN 1.9 ± 0.6 1.1 ± 1.0 0.4 ± 0.5 0.3 ± 0.3 5.3 ± 0.7

RN-v1 1.3 ± 0.8 1.3 ± 1.1 0.4 ± 0.4 0.2 ± 0.3 4.6 ± 0.8

RN-v2 1.3 ± 0.8 1.3 ± 1.1 0.4 ± 0.5 0.2 ± 0.3 4.6 ± 0.8

DRN-v2 1.1 ± 0.7 1.3 ± 1.1 0.4 ± 0.4 0.2 ± 0.3 4.8 ± 0.9

M705 Lung Soft Tissue Spinal Cord Brain Bone

Empirical Model 26.8 ± 0.0 2.2 ± 1.5 1.2 ± 1.2 1.3 ± 0.8 4.1 ± 2.0

Conventional

ANN 7.4 ± 5.3 2.9 ± 0.8 1.9 ± 1.0 2.4 ± 0.5 8.5 ± 0.9

FCNN 1.1 ± 1.7 0.7 ± 0.7 0.4 ± 0.7 0.3 ± 0.3 2.7 ± 0.9

DFCNN 1.8 ± 1.6 0.6 ± 0.6 0.3 ± 0.9 0.3 ± 0.2 3.2 ± 1.0
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M701 Lung Soft Tissue Spinal Cord Brain Bone

RN-v1 0.6 ± 1.7 0.8 ± 0.6 0.4 ± 0.6 0.3 ± 0.3 0.1 ± 0.9

RN-v2 0.9 ± 1.7 0.9 ± 0.6 0.4 ± 0.7 0.2 ± 0.2 0.2 ± 1.0

DRN-v2 1.4 ± 1.7 1.3 ± 1.4 0.5 ± 0.7 0.6 ± 0.5 4.8 ± 1.3

Physics-informed

ANN 6.7 ± 5.2 1.1 ± 0.7 0.5 ± 0.9 0.7 ± 0.5 7.7 ± 0.9

FCNN 1.6 ± 1.6 0.7 ± 0.6 0.3 ± 0.7 0.3 ± 0.2 1.5 ± 0.9

DFCNN 1.7 ± 1.7 0.6 ± 0.6 0.4 ± 0.8 0.3 ± 0.3 2.5 ± 1.1

RN-v1 1.0 ± 1.8 0.8 ± 0.5 0.4 ± 0.6 0.3 ± 0.2 1.1 ± 1.0

RN-v2 1.0 ± 1.7 0.8 ± 0.5 0.4 ± 0.7 0.2 ± 0.2 0.6 ± 0.9

DRN-v2 0.7 ± 2.0 0.8 ± 0.5 0.4 ± 0.6 0.2 ± 0.2 1.5 ± 1.1

Table B2.

MAPE comparisons of RSP between the reference and DECT parametric mapping models 

for an HN site with five tissue surrogates using a TBDE HN scan.

M701 Lung Soft Tissue Spinal Cord Brain Bone

Empirical Model 8.1 ± 7.9 2.9 ± 2.6 2.7 ± 1.9 1.2 ± 0.9 4.2 ± 4.9

Conventional

ANN 9.6 ± 7.2 1.1 ± 1.0 1.7 ± 0.8 0.5 ± 0.4 8.0 ± 1.1

FCNN 1.5 ± 3.3 2.1 ± 0.8 3.0 ± 0.6 1.8 ± 0.2 5.7 ± 0.7

DFCNN 2.4 ± 3.2 2.2 ± 0.6 3.1 ± 0.5 1.8 ± 0.2 5.8 ± 0.9

RN-v1 1.1 ± 3.5 2.5 ± 1.1 3.0 ± 0.7 1.8 ± 0.3 4.6 ± 0.8

RN-v2 1.3 ± 3.4 2.4 ± 0.8 3.1 ± 0.5 1.9 ± 0.2 4.8 ± 0.8

DRN-v2 1.8 ± 3.8 3.0 ± 2.1 3.3 ± 1.3 1.8 ± 0.5 5.1 ± 1.3

Physics-informed

ANN 9.6 ± 7.2 1.4 ± 0.9 2.8 ± 0.9 1.5 ± 0.5 6.9 ± 1.2

FCNN 2.0 ± 3.3 2.2 ± 0.7 3.0 ± 0.5 1.7 ± 0.2 5.3 ± 0.7

DFCNN 2.1 ± 3.3 2.2 ± 0.6 3.0 ± 0.5 1.7 ± 0.2 5.7 ± 0.8

RN-v1 1.6 ± 4.0 2.4 ± 0.7 3.1 ± 0.5 1.9 ± 0.2 5.2 ± 0.8

RN-v2 1.6 ± 3.6 2.3 ± 0.7 3.1 ± 0.5 1.9 ± 0.2 5.2 ± 1.0

DRN-v2 1.3 ± 4.2 2.4 ± 0.7 3.1 ± 0.6 1.9 ± 0.2 5.1 ± 1.2

M702 Lung Soft Tissue Spinal Cord Brain Bone

Empirical Model 8.9 ± 11.0 2.6 ± 2.4 1.6 ± 1.4 0.9 ± 0.8 3.9 ± 2.2

Conventional

ANN 10.5 ± 7.8 1.2 ± 1.2 1.3 ± 0.7 0.4 ± 0.4 8.0 ± 1.0

FCNN 1.8 ± 0.9 2.1 ± 0.8 3.0 ± 0.5 1.6 ± 0.3 5.8 ± 0.6

DFCNN 2.3 ± 0.5 2.2 ± 0.6 3.0 ± 0.5 1.6 ± 0.2 5.8 ± 0.6

RN-v1 1.1 ± 0.7 2.4 ± 0.9 2.9 ± 0.5 1.7 ± 0.3 4.6 ± 0.8

RN-v2 1.5 ± 0.8 2.5 ± 0.7 3.0 ± 0.5 1.7 ± 0.3 4.8 ± 0.7

DRN-v2 1.8 ± 0.9 2.7 ± 1.9 3.1 ± 0.9 1.6 ± 0.5 5.3 ± 1.3

Physics-informed
ANN 10.3 ± 8.0 1.4 ± 1.0 2.6 ± 0.7 1.1 ± 0.5 7.0 ± 1.1

FCNN 2.1 ± 0.6 2.2 ± 0.7 3.0 ± 0.4 1.6 ± 0.2 5.3 ± 0.5
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M701 Lung Soft Tissue Spinal Cord Brain Bone

DFCNN 2.1 ± 0.6 2.2 ± 0.7 3.0 ± 0.4 1.6 ± 0.2 5.7 ± 0.6

RN-v1 1.5 ± 0.8 2.4 ± 0.7 3.1 ± 0.4 1.7 ± 0.3 5.1 ± 0.6

RN-v2 1.5 ± 0.8 2.4 ± 0.7 3.0 ± 0.5 1.7 ± 0.3 5.0 ± 0.7

DRN-v2 1.1 ± 0.7 2.5 ± 0.7 3.1 ± 0.4 1.7 ± 0.3 4.9 ± 0.8

M705 Lung Soft Tissue Spinal Cord Brain Bone

Empirical Model 6.4 ± 6.0 1.5 ± 1.4 1.5 ± 1.1 0.8 ± 0.7 4.6 ± 2.0

Conventional

ANN 8.4 ± 5.4 1.1 ± 0.8 1.2 ± 0.8 0.4 ± 0.4 8.4 ± 0.8

FCNN 1.3 ± 1.7 1.6 ± 0.6 3.0 ± 0.6 1.6 ± 0.2 3.6 ± 0.7

DFCNN 2.3 ± 1.6 1.8 ± 0.4 3.0 ± 0.6 1.5 ± 0.2 4.0 ± 0.9

RN-v1 0.8 ± 1.7 2.0 ± 0.4 3.0 ± 0.5 1.7 ± 0.3 1.3 ± 0.8

RN-v2 1.2 ± 1.7 2.0 ± 0.4 3.0 ± 0.6 1.7 ± 0.3 1.4 ± 0.8

DRN-v2 1.5 ± 2.0 1.6 ± 0.9 2.9 ± 0.6 1.6 ± 0.5 4.8 ± 1.1

Physics-informed

ANN 8.3 ± 5.4 0.7 ± 0.5 2.5 ± 0.7 1.0 ± 0.4 7.7 ± 0.8

FCNN 1.9 ± 1.6 1.8 ± 0.5 2.9 ± 0.5 1.6 ± 0.2 2.6 ± 0.7

DFCNN 1.9 ± 1.6 1.8 ± 0.5 3.0 ± 0.5 1.6 ± 0.2 3.4 ± 0.9

RN-v1 1.2 ± 1.8 1.9 ± 0.4 3.1 ± 0.4 1.7 ± 0.3 2.3 ± 0.8

RN-v2 1.1 ± 1.7 2.0 ± 0.4 3.0 ± 0.5 1.7 ± 0.3 1.8 ± 0.8

DRN-v2 0.7 ± 1.9 2.0 ± 0.4 3.0 ± 0.4 1.7 ± 0.2 2.5 ± 1.1

Table B3.

MAPE comparisons of mass densities between the reference and DECT parametric mapping 

models for a thoracic site with five tissue surrogates using a TBDE thorax scan.

M701 Lung Breast Soft Tissue Spinal Cord Bone

Empirical Model 26.8 ± 0.0 - 3.1 ± 2.5 3.4 ± 2.6 7.8 ± 3.9

Conventional

ANN 11.4 ± 7.2 - 2.6 ± 1.8 1.5 ± 1.3 8.5 ± 2.1

FCNN 1.1 ± 1.6 - 1.5 ± 1.7 0.8 ± 0.9 5.6 ± 1.3

DFCNN 1.9 ± 1.5 - 1.4 ± 1.6 1.0 ± 1.0 5.6 ± 1.6

RN-v1 0.7 ± 1.6 - 1.5 ± 1.9 1.7 ± 2.4 4.2 ± 1.2

RN-v2 0.9 ± 1.5 - 1.4 ± 1.8 0.7 ± 0.8 4.3 ± 1.3

DRN-v2 1.6 ± 1.8 - 2.5 ± 2.7 3.4 ± 2.4 6.3 ± 2.0

Physics-informed

ANN 10.6 ± 7.0 - 1.5 ± 1.5 1.4 ± 1.1 7.6 ± 2.1

FCNN 1.6 ± 1.5 - 1.4 ± 1.6 0.9 ± 0.8 4.9 ± 1.1

DFCNN 1.8 ± 1.6 - 1.4 ± 1.6 1.0 ± 1.0 5.4 ± 1.4

RN-v1 1.0 ± 1.7 - 1.4 ± 1.6 0.7 ± 0.8 4.7 ± 1.2

RN-v2 1.0 ± 1.6 - 1.3 ± 1.7 0.7 ± 0.9 4.6 ± 1.2

DRN-v2 0.8 ± 1.8 - 1.4 ± 1.6 0.7 ± 0.8 4.8 ± 1.3

M702 Lung Breast Soft Tissue Spinal Cord Bone
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M701 Lung Breast Soft Tissue Spinal Cord Bone

Empirical Model 26.8 ± 0.0 3.4 ± 2.2 2.7 ± 2.2 2.5 ± 1.9 7.1 ± 6.9

Conventional

ANN 10.6 ± 6.5 2.5 ± 1.3 2.5 ± 1.4 1.2 ± 0.9 8.3 ± 1.8

FCNN 1.2 ± 0.8 1.6 ± 0.8 1.2 ± 1.1 0.6 ± 0.6 5.6 ± 1.1

DFCNN 1.9 ± 0.5 1.4 ± 0.8 1.1 ± 1.0 0.8 ± 0.6 5.7 ± 1.3

RN-v1 0.7 ± 0.7 1.9 ± 1.1 1.3 ± 1.4 1.4 ± 2.2 4.2 ± 1.1

RN-v2 0.9 ± 0.7 1.8 ± 1.0 1.3 ± 1.2 0.6 ± 0.5 4.3 ± 1.1

DRN-v2 1.5 ± 0.8 2.5 ± 1.6 2.1 ± 2.2 2.9 ± 1.9 6.1 ± 1.9

Physics-informed

ANN 9.7 ± 6.2 1.2 ± 1.0 1.2 ± 1.0 1.1 ± 0.9 7.4 ± 1.8

FCNN 1.6 ± 0.5 1.5 ± 0.8 1.2 ± 1.0 0.7 ± 0.5 4.9 ± 0.9

DFCNN 1.7 ± 0.5 1.5 ± 0.8 1.2 ± 1.1 0.8 ± 0.7 5.4 ± 1.1

RN-v1 1.0 ± 0.8 1.8 ± 1.0 1.2 ± 1.1 0.6 ± 0.4 4.8 ± 1.0

RN-v2 1.0 ± 0.6 1.7 ± 0.9 1.2 ± 1.1 0.5 ± 0.5 4.6 ± 1.1

DRN-v2 0.8 ± 0.7 1.6 ± 0.9 1.2 ± 1.1 0.6 ± 0.4 4.8 ± 1.1

Table B4.

MAPE comparisons of RSP between the reference and DECT parametric mapping models 

for a thoracic site with five tissue surrogates using a TBDE thorax scan.

M701 Lung Breast Soft Tissue Spinal Cord Bone

Empirical Model 7.0 ± 5.8 - 3.2 ± 2.5 5.8 ± 3.8 8.7 ± 4.1

Conventional

ANN 12.3 ± 7.3 - 1.4 ± 1.4 2.7 ± 1.2 8.5 ± 1.8

FCNN 1.4 ± 1.7 - 2.0 ± 1.2 3.0 ± 0.8 5.9 ± 1.1

DFCNN 2.3 ± 1.5 - 2.2 ± 1.1 3.2 ± 0.7 5.9 ± 1.4

RN-v1 0.9 ± 1.6 - 2.3 ± 1.2 2.8 ± 1.3 4.8 ± 1.0

RN-v2 1.2 ± 1.5 - 2.3 ± 1.2 3.0 ± 0.7 4.8 ± 1.1

DRN-v2 1.6 ± 1.9 - 2.6 ± 2.0 6.0 ± 2.9 6.2 ± 1.8

Physics-informed

ANN 12.2 ± 7.3 - 1.4 ± 1.2 3.5 ± 1.3 7.7 ± 1.9

FCNN 1.9 ± 1.5 - 2.1 ± 1.1 3.3 ± 0.6 5.3 ± 1.0

DFCNN 1.9 ± 1.6 - 2.1 ± 1.1 3.1 ± 0.7 5.7 ± 1.2

RN-v1 1.2 ± 1.7 - 2.2 ± 1.1 3.1 ± 0.7 5.2 ± 1.0

RN-v2 1.2 ± 1.7 - 2.2 ± 1.1 2.9 ± 0.8 5.0 ± 1.0

DRN-v2 0.8 ± 1.7 - 2.3 ± 1.1 3.2 ± 0.8 4.9 ± 1.3

M702 Lung Breast Soft Tissue Spinal Cord Bone

Empirical Model 6.7 ± 5.5 2.7 ± 1.9 2.7 ± 2.2 5.3 ± 3.1 8.0 ± 6.4

Conventional

ANN 11.4 ± 6.6 1.1 ± 0.9 1.2 ± 1.1 2.5 ± 1.0 8.2 ± 1.5

FCNN 1.4 ± 0.8 0.8 ± 0.8 1.9 ± 0.9 3.2 ± 0.6 6.0 ± 0.9

DFCNN 2.3 ± 0.4 0.8 ± 0.7 2.1 ± 0.6 3.3 ± 0.5 6.0 ± 1.1

RN-v1 0.9 ± 0.7 1.0 ± 0.9 2.3 ± 0.8 3.0 ± 1.1 4.7 ± 1.0
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M701 Lung Breast Soft Tissue Spinal Cord Bone

RN-v2 1.2 ± 0.7 0.9 ± 0.8 2.3 ± 0.7 3.2 ± 0.5 4.8 ± 1.0

DRN-v2 1.5 ± 0.9 1.3 ± 1.2 2.3 ± 1.7 5.8 ± 2.3 6.0 ± 1.6

Physics-informed

ANN 11.2 ± 6.5 1.4 ± 1.0 1.2 ± 0.9 3.5 ± 1.0 7.5 ± 1.6

FCNN 1.9 ± 0.5 0.9 ± 0.8 2.1 ± 0.7 3.3 ± 0.4 5.4 ± 0.8

DFCNN 1.9 ± 0.5 0.8 ± 0.8 2.1 ± 0.7 3.2 ± 0.5 5.8 ± 0.9

RN-v1 1.2 ± 0.8 0.9 ± 0.8 2.2 ± 0.7 3.3 ± 0.4 5.2 ± 0.9

RN-v2 1.2 ± 0.7 0.9 ± 0.8 2.2 ± 0.7 3.1 ± 0.5 5.0 ± 0.9

DRN-v2 0.8 ± 0.7 0.9 ± 0.8 2.2 ± 0.7 3.4 ± 0.5 5.0 ± 1.1

Table B5.

MAPE comparisons of mass densities between the reference and DECT parametric mapping 

models for a pelvic site with three tissue surrogates using a TBDE pelvis scan.

M701 Soft Tissue Spinal Cord Bone

Empirical Model 2.5 ± 2.0 3.3 ± 2.7 3.3 ± 2.2

Conventional

ANN 2.6 ± 1.3 2.3 ± 1.5 7.2 ± 1.3

FCNN 1.0 ± 0.9 1.2 ± 1.4 4.7 ± 0.8

DFCNN 0.9 ± 0.9 1.0 ± 1.2 5.1 ± 1.0

RN-v1 1.0 ± 1.2 1.1 ± 1.8 4.2 ± 0.7

RN-v2 0.9 ± 0.9 1.1 ± 1.8 4.2 ± 0.6

DRN-v2 1.7 ± 1.8 2.5 ± 2.5 3.9 ± 1.4

Physics-informed

ANN 1.2 ± 1.0 1.4 ± 1.1 5.6 ± 1.4

FCNN 1.0 ± 0.9 0.9 ± 1.1 4.7 ± 0.8

DFCNN 0.9 ± 0.9 1.1 ± 1.2 4.9 ± 0.8

RN-v1 0.9 ± 0.8 0.9 ± 1.4 4.6 ± 0.8

RN-v2 0.9 ± 0.9 1.2 ± 1.8 4.7 ± 1.0

DRN-v2 0.9 ± 0.8 1.0 ± 1.6 4.9 ± 1.1

M702 Soft Tissue Spinal Cord Bone

Empirical Model 2.3 ± 1.9 2.1 ± 1.8 3.2 ± 2.0

Conventional

ANN 2.6 ± 1.2 1.6 ± 1.1 7.5 ± 1.2

FCNN 0.9 ± 0.9 0.7 ± 0.8 4.9 ± 0.8

DFCNN 0.8 ± 0.8 0.6 ± 0.8 5.3 ± 1.1

RN-v1 1.0 ± 1.1 0.7 ± 1.1 4.2 ± 0.8

RN-v2 0.9 ± 0.9 0.6 ± 0.9 4.2 ± 0.8

DRN-v2 1.6 ± 1.8 1.2 ± 1.4 4.2 ± 1.3

Physics-informed

ANN 1.1 ± 0.9 1.0 ± 0.8 6.0 ± 1.3

FCNN 0.9 ± 0.8 0.5 ± 0.7 4.9 ± 0.8

DFCNN 0.9 ± 0.9 0.7 ± 0.8 5.0 ± 0.9
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M701 Soft Tissue Spinal Cord Bone

RN-v1 0.9 ± 0.8 0.6 ± 0.7 4.6 ± 0.9

RN-v2 0.8 ± 0.8 0.6 ± 0.8 4.7 ± 1.0

DRN-v2 0.9 ± 0.8 0.6 ± 0.8 5.0 ± 1.2

Table B6.

MAPE comparisons of RSP between the reference and DECT parametric mapping models 

for a pelvic site with three tissue surrogates using a TBDE pelvis scan.

M701 Soft Tissue Spinal Cord Bone

Empirical Model 2.6 ± 2.1 2.8 ± 2.2 3.5 ± 2.3

Conventional

ANN 1.1 ± 0.9 1.3 ± 1.0 6.9 ± 1.1

FCNN 1.7 ± 0.7 2.6 ± 1.1 5.2 ± 0.7

DFCNN 1.9 ± 0.6 2.7 ± 0.8 5.4 ± 0.9

RN-v1 2.0 ± 0.6 2.4 ± 0.7 4.6 ± 0.6

RN-v2 1.9 ± 0.6 2.5 ± 0.8 4.8 ± 0.5

DRN-v2 2.1 ± 1.3 2.7 ± 1.7 4.1 ± 1.1

Physics-informed

ANN 1.0 ± 0.8 2.0 ± 1.2 5.7 ± 1.2

FCNN 1.8 ± 0.6 2.6 ± 0.8 5.2 ± 0.7

DFCNN 1.8 ± 0.6 2.8 ± 0.8 5.3 ± 0.7

RN-v1 1.9 ± 0.6 2.4 ± 0.8 5.1 ± 0.7

RN-v2 1.9 ± 0.6 2.5 ± 0.8 5.2 ± 0.9

DRN-v2 1.9 ± 0.6 2.7 ± 0.8 5.0 ± 1.1

M702 Soft Tissue Spinal Cord Bone

Empirical Model 2.4 ± 1.9 2.5 ± 1.9 3.4 ± 2.1

Conventional

ANN 1.0 ± 0.9 1.5 ± 0.8 7.2 ± 1.1

FCNN 1.7 ± 0.7 2.9 ± 0.7 5.4 ± 0.7

DFCNN 1.9 ± 0.5 2.9 ± 0.5 5.5 ± 0.9

RN-v1 2.0 ± 0.6 2.7 ± 0.6 4.6 ± 0.7

RN-v2 2.0 ± 0.6 2.8 ± 0.6 4.8 ± 0.7

DRN-v2 2.1 ± 1.3 2.7 ± 1.2 4.3 ± 1.1

Physics-informed

ANN 1.0 ± 0.7 2.6 ± 1.0 6.0 ± 1.2

FCNN 1.8 ± 0.6 2.9 ± 0.5 5.3 ± 0.7

DFCNN 1.8 ± 0.6 3.0 ± 0.6 5.4 ± 0.7

RN-v1 1.9 ± 0.6 2.8 ± 0.6 5.1 ± 0.8

RN-v2 1.9 ± 0.6 2.8 ± 0.6 5.3 ± 0.9

DRN-v2 2.0 ± 0.6 3.0 ± 0.6 5.1 ± 1.2

Chang et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Balestriero R, Pesenti J and LeCun Y 2021 Learning in High Dimension Always Amounts to 
Extrapolation arXiv preprint arXiv:2110.09485

Bär E, Lalonde A, Royle G, Lu H-M and Bouchard H 2017 The potential of dual-energy CT to reduce 
proton beam range uncertainties Medical Physics 44 2332–44 [PubMed: 28295434] 

Beaulieu L, Carlsson Tedgren Å, Carrier J-F, Davis SD, Mourtada F, Rivard MJ, Thomson RM, 
Verhaegen F, Wareing TA and Williamson JF 2012 Report of the Task Group 186 on model-based 
dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and 
recommendations for clinical implementation Medical Physics 39 6208–36 [PubMed: 23039658] 

Bebis G and Georgiopoulos M 1994 Feed-forward neural networks IEEE Potentials 13 27–31

Bichsel H 1969 Passage of charged particles through matter. California Univ., Berkeley (USA). Dept. 
of Physics)

Blumer A, Ehrenfeucht A, Haussler D and Warmuth MK 1987 Occam's Razor Information Processing 
Letters 24 377–80

Bourque AE, Carrier J-F and Bouchard H 2014 A stoichiometric calibration method for dual energy 
computed tomography Physics in Medicine and Biology 59 2059–88 [PubMed: 24694786] 

Champion K, Lusch B, Kutz JN and Brunton SL 2019 Data-driven discovery of coordinates and 
governing equations Proceedings of the National Academy of Sciences 116 22445

Chang C-W and Dinh NT 2019 Classification of machine learning frameworks for data-driven thermal 
fluid models International Journal of Thermal Sciences 135 559–79

Chang C-W, Huang S, Harms J, Zhou J, Zhang R, Dhabaan A, Slopsema R, Kang M, Liu T, 
McDonald M, Langen K and Lin L 2020 A standardized commissioning framework of Monte 
Carlo dose calculation algorithms for proton pencil beam scanning treatment planning systems 
Medical Physics 47 1545–57 [PubMed: 31945191] 

Dinh N 2013 Validation data to support advanced code development NURETH-15, American Nuclear 
Society, Pisa, Italy

Domingos P 1999 The Role of Occam's Razor in Knowledge Discovery Data Mining and Knowledge 
Discovery 3 409–25

Fukushima K 1980 Neocognitron: A self-organizing neural network model for a mechanism of pattern 
recognition unaffected by shift in position Biological Cybernetics 36 193–202 [PubMed: 7370364] 

Garcia LIR, Azorin JFP and Almansa JF 2015 A new method to measure electron density and 
effective atomic number using dual-energy CT images Physics in Medicine and Biology 61 265–
79 [PubMed: 26649484] 

Gjesteby L, Shan H, Yang Q, Xi Y, Jin Y, Giantsoudi D, Paganetti H, De Man B and Wang G 2019 A 
dual-stream deep convolutional network for reducing metal streak artifacts in CT images Physics 
in Medicine & Biology 64 235003 [PubMed: 31618724] 

He K, Zhang X, Ren S and Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR),27–30 June 2016 2016), vol. Series) pp 770–8

Hochreiter S, Bengio Y, Frasconi P and Schmidhuber J 2001 Gradient flow in recurrent nets: the 
difficulty of learning long-term dependencies A Field Guide to Dynamical Recurrent Neural 
Networks, IEEE Press

Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal 
approximators Neural Networks 2 359–66

Huang S, Souris K, Li S, Kang M, Barragan Montero AM, Janssens G, Lin A, Garver E, Ainsley 
C, Taylor P, Xiao Y and Lin L 2018 Validation and application of a fast Monte Carlo algorithm 
for assessing the clinical impact of approximations in analytical dose calculations for pencil beam 
scanning proton therapy Medical Physics 45 5631–42 [PubMed: 30295950] 

Hünemohr N, Krauss B, Tremmel C, Ackermann B, Jäkel O and Greilich S 2013 Experimental 
verification of ion stopping power prediction from dual energy CT data in tissue surrogates 
Physics in Medicine and Biology 59 83–96 [PubMed: 24334601] 

Chang et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hünemohr N, Paganetti H, Greilich S, Jäkel O and Seco J 2014 Tissue decomposition from dual 
energy CT data for MC based dose calculation in particle therapy Medical Physics 41 061714 
[PubMed: 24877809] 

Jackson DF and Hawkes DJ 1981 X-ray attenuation coefficients of elements and mixtures Physics 
Reports 70 169–233

Jimmy Lei Ba JRK, Hinton Geoffrey E. 2016 Layer Normalization arXiv:1607.06450

Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S and Yang L 2021 Physics-informed 
machine learning Nature Reviews Physics 3 422–40

Kassaee A, Cheng C, Yin L, Zou W, Li T, Lin A, Swisher-McClure S, Lukens JN, Lustig RA, 
O'Reilly S, Dong L, Ms RH and Teo B-KK 2021 Dual-Energy Computed Tomography Proton-
Dose Calculation with Scripting and Modified Hounsfield Units International Journal of Particle 
Therapy 8 62–72 [PubMed: 34285936] 

Landry G, Seco J, Gaudreault M and Verhaegen F 2013 Deriving effective atomic numbers from 
DECT based on a parameterization of the ratio of high and low linear attenuation coefficients 
Physics in Medicine and Biology 58 6851–66 [PubMed: 24025623] 

LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436–44

Liang X, Li Z, Zheng D, Bradley JA, Rutenberg M and Mendenhall N 2019 A comprehensive 
dosimetric study of Monte Carlo and pencil-beam algorithms on intensity-modulated proton 
therapy for breast cancer Journal of Applied Clinical Medical Physics 20 128–36

Liao H, Lin WA, Zhou SK and Luo J 2020 ADN: Artifact Disentanglement Network for Unsupervised 
Metal Artifact Reduction IEEE Transactions on Medical Imaging 39 634–43

Lin L, Taylor PA, Shen J, Saini J, Kang M, Simone CB II, Bradley JD, Li Z and Xiao Y 2021 
NRG Oncology Survey of Monte Carlo Dose Calculation Use in US Proton Therapy Centers 
International Journal of Particle Therapy 8 73–81 [PubMed: 34722813] 

Mayneord W 1937 The significance of the roentgen Acta Int Union Against Cancer 2 271

McCollough CH, Leng S, Yu L and Fletcher JG 2015 Dual- and Multi-Energy CT: Principles, 
Technical Approaches, and Clinical Applications Radiology 276 637–53 [PubMed: 26302388] 

Nair V and Hinton GE 2010 Rectified linear units improve restricted boltzmann machines. In: 
Proceedings of the 27th International Conference on International Conference on Machine 
Learning, (Haifa, Israel: Omnipress) pp 807–14

Naitzat G, Zhitnikov A and Lim L-H 2020 Topology of Deep Neural Networks Journal of Machine 
Learning Research 21 1–40

Paganetti H 2012 Range uncertainties in proton therapy and the role of Monte Carlo simulations 
Physics in Medicine and Biology 57 R99–R117 [PubMed: 22571913] 

Paganetti H, Jiang H, Parodi K, Slopsema R and Engelsman M 2008 Clinical implementation of 
full Monte Carlo dose calculation in proton beam therapy Physics in Medicine and Biology 53 
4825–53 [PubMed: 18701772] 

Paszke A a G, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan, Gregory 
and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison, 
Alban and Kopf, Andreas and Yang, Edward and DeVito, Zachary and Raison, Martin and Tejani, 
Alykhan and Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, 
Soumith 2019 PyTorch: An Imperative Style, High-Performance Deep Learning Library: Curran 
Associates, Inc.

Polf JC, Mille MM, Mossahebi S, Chen H, Maggi P and Chen-Mayer H 2019 Determination of proton 
stopping power ratio with dual-energy CT in 3D-printed tissue/air cavity surrogates Medical 
Physics 46 3245–53 [PubMed: 31081542] 

Ratner B 2011 Statistical and Machine-Learning Data Mining: Techniques for Better Predictive 
Modeling and Analysis of Big Data: CRC Press, p. 388

RayPhysics 2021 RayStation 10B Reference Manual RaySearch Laboratories AB)

Rutherford RA, Pullan BR and Isherwood I 1976 Measurement of effective atomic number and 
electron density using an EMI scanner Neuroradiology 11 15–21 [PubMed: 934468] 

Saini J, Maes D, Egan A, Bowen SR, St James S, Janson M, Wong T and Bloch C 2017 Dosimetric 
evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons 

Chang et al. Page 21

Phys Med Biol. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



against measurements and simulations Physics in Medicine & Biology 62 7659–81 [PubMed: 
28749373] 

Schmidhuber J 2015 Deep learning in neural networks: An overview Neural Networks 61 85–117 
[PubMed: 25462637] 

Schneider U, Pedroni E and Lomax A 1996 The calibration of CT Hounsfield units for radiotherapy 
treatment planning Physics in Medicine and Biology 41 111–24 [PubMed: 8685250] 

Schneider W, Bortfeld T and Schlegel W 2000 Correlation between CT numbers and tissue parameters 
needed for Monte Carlo simulations of clinical dose distributions Physics in Medicine and Biology 
45 459–78 [PubMed: 10701515] 

Schuemann J, Giantsoudi D, Grassberger C, Moteabbed M, Min CH and Paganetti H 2015 Assessing 
the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy Int J 
Radiat Oncol Biol Phys 92 1157–64 [PubMed: 26025779] 

Seltzer SMF-VJM, Andreo P, Bergstrom PM Jr Burns DT, Krajcar Bronic I, Ross CK, Salvat F 
2014 key data for ionizing-radiation dosimetry: measurement standards and applications ICRU 
Publication 90

Simonyan K and Zisserman A 2014 Two-stream convolutional networks for action recognition in 
videos. In: Proceedings of the 27th International Conference on Neural Information Processing 
Systems - Volume 1, (Montreal, Canada: MIT Press) pp 568–76

Spiers FW 1946 Effective Atomic Number and Energy Absorption in Tissues The British Journal of 
Radiology 19 52–63 [PubMed: 21015391] 

Su K-H, Kuo J-W, Jordan DW, Van Hedent S, Klahr P, Wei Z, Al Helo R, Liang F, Qian P, Pereira 
GC, Rassouli N, Gilkeson RC, Traughber BJ, Cheng C-W and Muzic RF 2018 Machine learning-
based dual-energy CT parametric mapping Physics in Medicine & Biology 63 125001 [PubMed: 
29787382] 

Wang F, Han J, Zhang S, He X and Huang D 2018 CSI-Net: Unified human body characterization and 
pose recognition arXiv preprint arXiv:1810.03064

Wang T, Ghavidel BB, Beitler JJ, Tang X, Lei Y, Curran WJ, Liu T and Yang X 2019 Optimal 
virtual monoenergetic image in “TwinBeam” dual-energy CT for organs-at-risk delineation based 
on contrast-noise-ratio in head-and-neck radiotherapy Journal of Applied Clinical Medical Physics 
20 121–8

Wellenberg RHH, Donders JCE, Kloen P, Beenen LFM, Kleipool RP, Maas M and Streekstra GJ 
2018a Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal 
implant cadaver comparison: are implant specific protocols needed? Skeletal Radiology 47 839–45 
[PubMed: 28842739] 

Wellenberg RHH, Hakvoort ET, Slump CH, Boomsma MF, Maas M and Streekstra GJ 2018b Metal 
artifact reduction techniques in musculoskeletal CT-imaging European Journal of Radiology 107 
60–9 [PubMed: 30292274] 

Wohlfahrt P, Möhler C, Hietschold V, Menkel S, Greilich S, Krause M, Baumann M, Enghardt W 
and Richter C 2017 Clinical Implementation of Dual-energy CT for Proton Treatment Planning on 
Pseudo-monoenergetic CT scans International Journal of Radiation Oncology*Biology*Physics 97 
427–34 [PubMed: 28068248] 

Wohlfahrt P, Möhler C, Richter C and Greilich S 2018 Evaluation of Stopping-Power Prediction by 
Dual- and Single-Energy Computed Tomography in an Anthropomorphic Ground-Truth Phantom 
Int J Radiat Oncol Biol Phys 100 244–53 [PubMed: 29079119] 

Yang M, Virshup G, Clayton J, Zhu XR, Mohan R and Dong L 2010 Theoretical variance analysis 
of single- and dual-energy computed tomography methods for calculating proton stopping power 
ratios of biological tissues Physics in Medicine and Biology 55 1343–62 [PubMed: 20145291] 

Yang M, Zhu XR, Park PC, Titt U, Mohan R, Virshup G, Clayton JE and Dong L 2012 Comprehensive 
analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the 
stoichiometric calibration Physics in Medicine and Biology 57 4095–115 [PubMed: 22678123] 

Yepes P, Adair A, Grosshans D, Mirkovic D, Poenisch F, Titt U, Wang Q and Mohan R 2018 
Comparison of Monte Carlo and analytical dose computations for intensity modulated proton 
therapy Physics in Medicine & Biology 63 045003 [PubMed: 29339570] 

Chang et al. Page 22

Phys Med Biol. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yu L, Leng S and McCollough CH 2012 Dual-Energy CT–Based Monochromatic Imaging American 
Journal of Roentgenology 199 S9–S15 [PubMed: 23097173] 

Yu L, zhang Z, Li X, Ren H, Zhao W and Xing L 2021a Metal artifact reduction in 2D CT images with 
self-supervised cross-domain learning Physics in Medicine & Biology

Yu L, Zhang Z, Li X and Xing L 2021b Deep Sinogram Completion With Image Prior for Metal 
Artifact Reduction in CT Images IEEE Transactions on Medical Imaging 40 228–38 [PubMed: 
32956044] 

Zhu J and Penfold SN 2016 Dosimetric comparison of stopping power calibration with dual-energy CT 
and single-energy CT in proton therapy treatment planning Medical Physics 43 2845–54 [PubMed: 
27277033] 

Chang et al. Page 23

Phys Med Biol. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Transversal representation of CIRS 062M electron density phantom configuration for (a1) 

the first DECT scan and (a2) corresponding VMI of 80 keV and (b1) the second DECT scan 

and (b2) corresponding VMI of 80 keV.
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Figure 2. 
(a) Proton RSP measurement setup for CIRS M701 adult male phantom using Zebra with a 

208 MeV proton beam. (b) ISO center of the proton beam for lung RSP measurement.
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Figure 3. 
Physics-informed deep learning framework for DECT parametric mapping where the orange 

and blue arrows denote training and application workflows. The orange arrows represent the 

training workflow that starts from using DECT images of the electron density phantom as 

inputs for ML/DL models. The physics model in (g) is only for physics-informed training 

instead of conventional training. The blue arrows denote the application workflow that starts 

from using DECT images of CIRS anthropomorphic phantoms as testing data for ML/DL 

models. The application workflow outputs RSP and mass density (ρm) maps. The σ and 

LN denote activation functions of ReLU (Nair and Hinton, 2010) and layer normalization 

(Jimmy Lei Ba, 2016). ConvA and ConB are two different convolutional layers defined in 

Table A1 (Appendix A). The RN block is described in Table A1.
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Figure 4. 
MAPE comparisons of mass densities between the reference and DECT parametric mapping 

models for an HN site from (a1)-(a5) CIRS M701 adult male, (b1)-(b5) CIRS M702 adult 

female, and (c1)-(c5) CIRS M705 child phantoms with five tissue surrogates using an HN 

TBDE scan.

Chang et al. Page 27

Phys Med Biol. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
MAPE comparisons of RSP between the reference and DECT parametric mapping models 

for an HN site from (a1)-(a5) CIRS M701 adult male, (b1)-(b5) CIRS M702 adult female, 

and (c1)-(c5) CIRS M705 child phantoms with five tissue surrogates using an HN TBDE 

scan.
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Figure 6. 
MAPE comparisons of mass densities between the reference and DECT parametric mapping 

models for a thoracic site from (a1)-(a4) CIRS M701 adult male and (b1)-(b5) CIRS M702 

adult female phantoms. MAPE comparisons of RSP between the reference and DECT 

parametric mapping models for a thoracic site from (c1)-(c4) CIRS M701 adult male 

phantom with four tissue surrogates and (d1)-(d5) CIRS M702 adult female phantom with 

five tissue surrogates using a thorax TBDE scan.
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Figure 7. 
MAPE comparisons of mass densities between the reference and DECT parametric mapping 

models for a pelvic site from (a1)-(a3) CIRS M701 adult male and (b1)-(b3) CIRS M702 

adult female phantoms. MAPE comparisons of RSP between the reference and DECT 

parametric mapping models for a pelvic site from (c1)-(c3) CIRS M701 adult male and 

(d1)-(d3) CIRS M702 adult female phantoms with three tissue surrogates using a pelvic 

TBDE scan.
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Figure 8. 
MAPE of (a1-a4) mass density and (b1-b4) RSP between the reference and DECT 

parametric mapping models for five tissue surrogates from the CIRS adult male 

anthropomorphic phantom (M701).
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Figure 9. 
(a1), (b1), and (c1) VMI of 80 keV by different TB protocols. APE maps of mass densities 

between the reference and DECT parametric models at (a2-a6) HN, (b2-b6) thoracic, and 

(c2-c6) pelvic sites using CIRS M701 adult male phantom.
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Figure 10. 
(a1), (b1), and (c1) VMI of 80 keV by different TB protocols. APE maps of RSP between 

the reference and DECT parametric models at (a2-a6) HN, (b2-b6) thoracic, and (c2-c6) 

pelvic sites using CIRS M701 adult male phantom.
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Figure 11. 
(a1) and (b1) VMI of 80 keV from two different patients. Mass density maps of two patients 

generated by different DECT parametric mapping models at (a2-a4) HN and (b2-b4) pelvic 

sites. (a5) the line profile of the red line from (a1). (b5-b6) the line profiles of the blue and 

red lines from (b1). The red and blue arrows indicate the vascular system contains DECT 

contrast.
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Table 1.

Ground truth mass densities and RSPs (based on Eq. (1)), as well as mean excitation energies and elemental 

compositions for the CIRS 062M and CIRS Atom M701, M702, and M705 phantoms.

Tissue 
surrogate ρ g/cm3 RSP I eV H C N O Mg P S Cl Ca Ba

CIRS062M

Lung (Inhale) 0.203 0.202 67.8 8.59 65.92 3.52 19.27 1.69 1.01

Lung 
(Exhale) 0.494 0.492 67.3 8.87 66.00 2.38 20.41 0.61 1.73

Adipose 0.965 0.977 64.2 9.97 71.36 1.79 16.37 0.19 0.32

BreastTissue 0.996 1.003 65.2 9.60 70.33 1.92 17.02 0.19 0.94

Muscle 1.059 1.059 66.6 9.07 69.78 2.07 16.80 0.12 2.16

Liver 1.072 1.070 66.8 8.97 69.45 2.12 17.14 0.13 2.19

Bone 200 
mg/cc 1.157 1.116 76.2 7.00 56.30 2.00 22.70 3.30 0.20 8.50

Bone 800 
mg/cc 1.520 1.404 90.4 4.45 39.11 0.87 33.72 0.05 21.77 0.03

Bone 1250 
mg/cc 1.830 1.647 101. 5 3.60 28.82 1.09 31.99 10.79 0.08 0.04 23.27 0.32

CIRS Atom

Lung 0.205 0.204 67.8 8.59 65.89 3.52 19.29 1.69 1.01

Breast 0.991 0.982 70.4 9.60 70.26 1.93 17.00 0.20 9.40

Soft Tissue 1.055 1.041 70.4 8.47 57.44 1.65 24.59 7.62 0.19

Spinal Cord 1.065 1.035 73.4 7.36 54.27 2.17 26.59 9.37 0.22

Brain 1.069 1.049 72.2 8.16 53.60 1.53 26.49 9.98 0.19

(M701/M702) 1.586 1.410 88.3 4.83 37.03 0.97 35.66 6.19 0.05 15.24

Bone (M705) 1.518 1.422 85.5 5.23 41.63 1.11 33.31 3.54 0.05 15.09
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Table 2.

CTDIvol, 32cm and effective milliampere-seconds for DECT scans of the CIRS anthropomorphic phantoms 

using different TBDE protocols at each body site.

CTDIvol, 32cm (mGy) / effective milliampere-seconds (mAseff)

HN Thorax Pelvis

M701 15.63 / 729 6.99 / 327 9.63 / 450

M702 15.70 / 732 3.97 / 186 6.09 / 284

M705 11.51 / 537 - -
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Table 3.

Values of relative electron densities (ρe) and effective atomic numbers (Zeff) from reference and Syngo.Via for 

the CIRS 062M electron density phantom.

Reference Syngo.Via

ρe Zeff ρe Zeff

Lung (Inhale) 0.190 7.332 0.227 ± 0.021 -

Lung (Exhale) 0.488 7.382 0.504 ± 0.021 -

Adipose 0.949 6.370 0.965 ± 0.019 6.420 ± 0.972

BreastTissue 0.976 6.766 0.992 ± 0.020 6.656 ± 0.815

Muscle 1.042 7.383 1.035 ± 0.020 7.514 ± 0.626

Liver 1.052 7.409 1.054 ± 0.021 7.459 ± 0.655

Bone 200 mg/cc 1.116 10.055 1.107 ± 0.025 9.804 ± 0.442

Bone 800 mg/cc 1.454 12.566 1.391 ± 0.029 12.802 ± 0.277

Bone 1250 mg/cc 1.694 13.456 1.621 ± 0.036 13.652 ± 0.285
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Table 4.

Values of relative electron densities (ρe) and effective atomic numbers (Zeff) from reference and Syngo.Via for 

the CIRS adult male (M701), adult female (M702), and 5-year-old child (M705) phantoms.

Reference Syngo.Via

ρe Zeff
ρe Zeff

M701 M702 M705 M701 M702 M705

Lung 0.200 7.332 0.207 ± 0.019 0.208 ± 0.018 0.216 ± 0.015 - - -

Breast 0.976 6.769 - 0.965 ± 0.022 - - 7.282 ± 0.687 -

Soft Tissue 1.028 7.187 1.031 ± 0.029 1.031 ± 0.025 1.025 ± 0.014 7.110 ± 1.044 7.165 ± 0.859 7.342 ± 0.360

Spinal Cord 1.027 7.426 1.062 ± 0.031 1.060 ± 0.023 1.046 ± 0.013 6.691 ± 1.590 6.921 ± 1.139 7.537 ± 0.428

Brain 1.039 7.438 1.053 ± 0.011 1.047 ± 0.010 1.046 ± 0.008 7.408 ± 0.315 7.420 ± 0.303 7.433 ± 0.219

Bone (M701/
M702) 1.495 11.634 1.437 ± 0.050 1.443 ± 0.042 - 11.741 ± 0.742 11.651 ± 0.654 -

Bone (M705) 1.436 11.481 - - 1.387 ± 0.028 - - 11.475 ± 0.284

Phys Med Biol. Author manuscript; available in PMC 2023 August 09.


	Abstract
	Introduction
	Materials and methods
	Data acquisition and phantoms
	RSP measurement for CIRS M701 adult male phantom using protons

	Physics-informed deep learning for DECT parametric mapping
	Deep learning models
	Supervised loss function and physics loss

	Empirical model for DECT parametric mapping
	Evaluation

	Results
	Site-specific analysis using an HN TBDE protocol for CIRS M701, M702, and M705 phantoms
	Site-specific analysis using a thorax TBDE protocol for CIRS M701 and M702 phantoms
	Site-specific analysis using a pelvic TBDE protocol for CIRS M701 and M702 phantoms
	Analysis of CIRS M701 phantom using measured tissue-surrogate data

	Discussions
	Conclusions
	Appendix A. Structure of ResNet-v1 RN-v1 and ResNet-v2 RN-v2
	Table A1.
	Appendix B. MAPE comparisons of mass densities and RSP for CIRS anthropomorphic phantoms
	Table B1.
	Table B2.
	Table B3.
	Table B4.
	Table B5.
	Table B6.
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

