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Significance

The mitochondria-associated 
endoplasmic reticulum 
membrane (MAM) is a highly 
dynamic structure that serves as 
a signaling platform for a variety 
of cellular activities, including 
Ca2+ homeostasis. Using a 
kinome-wide screening for MAM 
structural alterations, we identify 
casein kinase 2 alpha 1 (CK2A1), a 
catalytic subunit of casein kinase 
2, as a regulator of the MAM 
structure and MAM Ca2+ crosstalk 
via establishing the CK2A1–
PACS2–PKD2 complex. PACS2 
phosphorylation by CK2A1 
affects the distribution of this 
complex at MAMs and PKD2-
dependent Ca2+ homeostasis. 
Importantly, we demonstrate 
that PACS2 pathogenic mutations 
causing the developmental and 
epileptic encephalopathy-66 
(DEE66) disorder are associated 
with the disruption of PACS2 
phosphorylation by CK2A1 and 
dysregulation of MAM Ca2+ 
dynamics, suggesting a potential 
therapeutic route for DEE66-
associated clinical conditions.
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The endoplasmic reticulum (ER) and mitochondria form a unique subcellular com-
partment called mitochondria-associated ER membranes (MAMs). Disruption of 
MAMs impairs Ca2+ homeostasis, triggering pleiotropic effects in the neuronal system. 
Genome-wide kinase-MAM interactome screening identifies casein kinase 2 alpha 1 
(CK2A1) as a regulator of composition and Ca2+ transport of MAMs. CK2A1-mediated 
phosphorylation of PACS2 at Ser207/208/213 facilitates MAM localization of the 
CK2A1–PACS2–PKD2  complex, regulating PKD2-dependent mitochondrial Ca2+ 
influx. We further reveal that mutations of PACS2 (E209K and E211K) associated 
with developmental and epileptic encephalopathy-66 (DEE66) impair MAM integrity 
through the disturbance of PACS2 phosphorylation at Ser207/208/213. This, in turn, 
causes the reduction of mitochondrial Ca2+ uptake and the dramatic increase of the 
cytosolic Ca2+ level, thereby, inducing neurotransmitter release at the axon boutons of 
glutamatergic neurons. In conclusion, our findings suggest a molecular mechanism that 
MAM alterations induced by pathological PACS2 mutations modulate Ca2+-dependent 
neurotransmitter release.

mitochondria-associated ER membranes | casein kinase 2 | calcium |  
developmental and epileptic encephalopathy-66

The endoplasmic reticulum (ER) is often found in close proximity to mitochondria, forming 
a unique 10- to 30-nm-wide subcellular compartment called the mitochondria-associated 
ER membranes (MAMs) (1, 2). Increasing evidence has proposed that MAMs serve as an 
essential cellular signaling platform to regulate various critical cellular processes including 
Ca2+ homeostasis, lipid biosynthesis, mitochondrial biogenesis, ER stress response, inflam-
mation, and autophagy (2). Disruption of MAMs is thought to underlie the pathogenesis 
of numerous diseases such as cardiomyopathy, obesity, diabetes, and neurodegenerative 
disorders (3–5).

Phosphorylation events have been reported to regulate the MAM structure and func-
tions. For example, Akt/protein kinase B (6, 7), PTEN-induced kinase 1 (8, 9), Polo-like 
kinase 1 (10), and IRE1α (11) were individually determined to regulate MAM tethering 
and Ca2+ shuttling between the ER and mitochondria. Despite numerous studies exam-
ining the role of individual kinases in regulating MAMs, a comprehensive understanding 
of the regulatory pathways mediated by the human kinome is largely lacking. Using a 
bimolecular fluorescence complementation (BiFC)-based MAM-specific reporter gener-
ated for this study, we performed systematic, genome-wide kinase-MAM interactome 
screening to explore potential regulators for the structural and functional integrity of 
MAMs.

The screening also demonstrated that CK2A1 encoded by the CK2A1 gene is an essential 
regulator of MAMs. CK2A1 is a ubiquitous serine/threonine protein kinase that plays a 
crucial role in mitochondrial homeostasis, mitophagy (12, 13), and apoptosis (14). 
Additionally, CK2A1 affects intracellular Ca2+ homeostasis (15) and mitochondrial fusion 
(16) in a Wnt/β-catenin-dependent manner. Despite evidence that suggests the involve-
ment of CK2A1 in mitochondrial functions, the precise mechanism of how CK2A1 is 
associated with MAMs is unclear.

PACS2 is a multifunctional sorting protein that affects the enrichment of its cargo proteins 
(17, 18) on MAMs and modulates MAM functions. Specifically, PACS2 transports calnexin 
to MAMs to regulate Ca2+ oscillation at contact sites. Recently, several lines of evidence 
have shown that de novo PACS2 missense variants (c.625G > A and c.631G > A) are related 
to a neurological disorder characterized by early onset of seizures named developmental and 
epileptic encephalopathy-66 (DEE66) (19–21). Interestingly, these pathological mutations 
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of PACS2 located in CK2A1-phosphorylatable acidic clusters rec-
ognize interaction sequences for PACS family members such as 
PACS1 and PACS2 (22, 23). However, the relationship between 
CK2A1 and PACS2 at MAMs underlying the pathobiology of 
DEE66 requires further exploration.

Here, we identified the CK2A1–PACS2–PKD2 complex at 
MAMs, which plays a fundamental role in controlling MAM 
biology. This is achieved by phosphorylation of PACS2 at Ser 
207/208/213 by CK2A1, which facilitates noncanonical 
PKD2-dependent Ca2+ transfer from the ER to mitochondria. 
Finally, we revealed that DEE66-related mutations of PACS2 
impair the functional integrity of MAMs relevant to presynaptic 
neurotransmitter release in glutamatergic neurons.

Result

MAM-BiFC-Based Kinome Library Screening for MAM-Regulating 
Kinases. We developed a MAM-reporter system using bimolecular 
fluorescence complementation (BiFC) for kinome library 
screening. Two fragments of GFP were targeted to the cytosolic 
face of the outer mitochondrial membrane (OMM-GFPVC) or ER 
membrane (ER-GFPVN) with linker repeats to ensure the typical 
distance between the two organelles. The correct localization and 
topology of the reporter on the OMM and ER membrane and 
the close apposition between the two organelles were confirmed 
(SI Appendix, Fig. S1A). Stable expression of the reporter itself 
did not significantly affect MAM formation (SI Appendix, Fig. S1 
B and C) and Ca2+ crosstalk between ER and mitochondria 
(SI Appendix, Fig. S1D). As previously reported, the reporter was 
enhanced by ER stress induced by tunicamycin treatment (24) and 
reduced by high glucose (25), indicating that the reporter reflected 
the MAM state in response to the dynamic cellular environment 
(SI Appendix, Fig. S1E). These findings confirmed that the MAM-
BiFC probe correctly localizes to MAMs and responds to MAM 
dynamics.

To identify potential MAM regulators in the human kinome 
library, we coexpressed 408 kinases and kinase-related proteins 
with the MAM-BiFC sensor in HeLa cells (Fig. 1A). MAM for-
mation was represented by the base two logarithms of the fold 
change (log2 FC) of the ratio of the MAM-BiFC intensity relative 
to the control (Fig. 1B). As a result, 90 kinase candidates, includ-
ing 11 down-regulated hits and 79 up-regulated hits, were found 
(SI Appendix, Table S1).

We curated a list of MAM-resident proteins from reported 
MAM proteomes (SI Appendix, Table S2). As described in the 
methods section, 390 tentative MAM-resident proteins in humans 
and 215 human homolog proteins in mice were included. Finally, 
we merged all lists of MAM proteomes that comprised 534 can-
didates. This collection of MAM proteins and 90 MAM-regulating 
kinase candidates were superimposed for functional enrichment 
analysis. The Gene Ontology (GO) biological processes and 
KEGG pathways shared by the two lists are shown in Fig. 1 C and 
D. Notably, the majority of candidate kinases and MAM-resident 
proteins were involved in MAM-related biological functions such 
as the generation of metabolites and energy, cellular responses to 
stress, glycerophospholipid metabolism, and autophagy (Fig. 1C), 
indicating the reliability of the screening. They were also related 
to pathways of FoxO signaling, neurotrophin signaling, patho-
genic infection, neurodegeneration, virus infection, and apoptosis 
(Fig. 1D). Among 90 kinases, 72 kinases had a direct interaction 
with MAM proteins in protein–protein interaction networks 
(Fig. 1E). In addition, the GO biological processes shared by 
MAM proteome and kinases that repressed MAM-BiFC signals 
were related to innate immune response and positive regulation 

of cell adhesion (SI Appendix, Fig. S2A). The GO biological pro-
cesses enriched by both MAM proteome and kinases that enhanced 
MAM-BiFC signals mainly involved endomembrane system 
organization, positive regulation of protein localization, organo-
phosphate biosynthetic process, glycerolipid metabolic process, 
and autophagy, among others (SI Appendix, Fig. S2B). Taken 
together, our genome-wide screening for MAM-regulating kinases 
and MAM interactome analyses provided a collection of candidate 
factors that likely regulate MAM formation and functions.

Functional Validation of Selected MAM-Associated Kinases. To 
validate our screening results, we verified three high-confidence 
candidates (CK2A1, CAMK2B, and PRKCA) as the MAM 
regulators, whose expression effectively enhanced MAM formation 
(SI Appendix, Table S3). Using the CRISPR-Cas9 system, knockout 
(KO) cell lines were generated using HEK293, MEF, and U2OS 
cells in which their expression was well detected, respectively 
(SI Appendix, Fig. S3 A–D). First, we verified the existence of these 
three kinases in MAM fractions from mouse livers using Percoll 
gradient-based fractionation (Fig. 2A). MAM contents measured by 
MAM-BiFC signals (Fig. 2 B–D) and quantitative colocalization of 
ER and mitochondrial markers (Sec61β and TOM20, respectively) 
(Fig. 2 E–G) were significantly reduced in KO cells and recovered 
by reexpression of the three kinases. To characterize the possible 
regulatory role of the kinases in MAM functions, we monitored 
mitochondrial Ca2+ uptake after inducing ER-release Ca2+ with 
IP3 treatment. Mitochondrial Ca2+ influx was reduced remarkably 
in KO cells of the three kinases, and the alterations were reversed 
by reexpression of the corresponding kinase (Fig.  2 H–J). We 
found that cytosolic calcium dynamics after IP3 stimulation were 
unaffected by CK2A1 and CAMK2B KO (SI Appendix, Fig. S3 E 
and F). However, PRKCA KO increased cytosolic calcium signals 
(SI Appendix, Fig. S3G). This was consistent with the ER-release 
Ca2+ measurements after IP3 treatment in PRKCA KO and rescued 
cells (SI  Appendix, Fig.  S3H). Furthermore, among the three 
kinases, only CAMK2B KO lowered mitochondrial membrane 
potential (SI  Appendix, Fig.  S3 I–K). Our data supported the 
functional relevance of the kinases from screening in regulating 
the MAM structure and functions.

CK2A1 Resides at MAMs and Regulates MAM Ca2+ Transport 
through the PKD2 Channel. We focused on CK2A1, the most 
robust hit in the screening, by scrutinizing its detailed regulatory 
action for MAM functionalities. Using a single-molecule 
colocalization assay of MAM-BiFC signals and CK2A1 molecules 
with a 10 nm diffraction limit, we confirmed that endogenous 
CK2A1 colocalized with MAM-BiFC signals (Fig.  3A). 
Additionally, transmission electron microscopy (TEM) analysis 
showed the reduction of MAM in CK2A1 KO cells compared 
to HEK293 wild type (WT) (Fig.  3B). In the same line, the 
PLA assay using IP3R1 and VDAC1 (Fig.  3C), two ER and 
mitochondrial markers, showed a decreased proximity between 
ER and mitochondria in CK2A1 KO cells.

To examine the role of CK2A1 in Ca2+ crosstalk between the 
ER and mitochondria, Ca2+ transients of mitochondria were mon-
itored following pharmacological activation of ER Ca2+ release 
channels. We used specific agonists, including triptolide (26), ATP 
(27), 4-chloro-orto-cresol (28) for polycystic kidney disease 2 
(PKD2), inositol 1,4,5‐trisphosphate receptors (IP3Rs), and ryan-
odine receptors, respectively. Interestingly, mitochondrial Ca2+ 
uptake was dramatically reduced in CK2A1 KO cells after PKD2 
or IP3R activation (SI Appendix, Fig. S4 A and B). We next 
assessed the contribution of PKD2 as the target of CK2A1 in the 
process of Ca2+ transport at MAMs by blocking IP3R-Ca2+ release 
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Fig. 1. Identification of MAM regulators by human kinase-MAM interactome screening. (A) Schematic of screening. HeLa cells were transiently transfected 
with ORFs of 408 human kinases and the MAM-BiFC sensor in 12-well plates. After transfection, cells were fixed and processed for image acquisition and 
further analysis. (B) Volcano plot showing log2 (fold change) of MAM-BiFC signals against −log10 (adjusted P-value) in kinase-expressing cells compared with the 
control. The dashed line indicates adjusted P-value = 0.0045. Red dots indicate kinases that enhanced MAM-BiFC intensity. Green dots represent kinases that 
reduced the MAM-BiFC intensity. Gray dots denote kinases that did not significantly change MAM-BiFC signals. (C and D) Metascape enrichment analysis of 
Gene Ontology Biological Process (GO-BP) and KEGG pathways, respectively, colored by the identities of the two lists (90 kinase candidates and putative MAM-
resident proteins). Nodes are displayed by pie charts whose size corresponds to the number of inputs belonging to each term. The black dotted line indicates 
common terms shared by the two lists. The gray dashed line indicates unique terms of the kinase candidate list. (C) Enrichment network visualization of GO-BP 
terms. (D) KEGG pathway terms of enriched clusters are displayed in network form. (E) Visualization of the protein–protein interaction network formed by the 
two lists using NetworkAnalyst. Subnetworks were extracted from the highlighted nodes that primarily connected to the candidate kinase of interest. Red dots 
denote kinases. Green dots denote MAM proteins.



4 of 11   https://doi.org/10.1073/pnas.2303402120� pnas.org

WT

CK2A
1 KO

CK2A
1 res

cu
e

0.0

0.2

0.4

0.6

0.8

M
an

de
rs

'c
oe

ffi
ci

en
t

*** ****
ns

E
WT CK2A1 KO

CK2A1
rescue

Sec61β-mEmeraldTOM20-mScarlet

****

WT

CAMK2B
KO

CAMK2B
res

cu
e

0.0

0.5

1.0

1.5

M
an

de
rs

'c
oe

ffi
ci

en
t

****
ns

WT CAMK2B KO
CAMK2B
rescue

F

Sec61β-mEmeraldTOM20-mScarlet

WT

PRKCA KO

PRKCA res
cu

e
0.6

0.8

1.0

1.2

M
an

de
rs

'c
oe

ffi
ci

en
t

***

ns

***

G
WT PRKCA KO

PRKCA
rescue

Sec61β-mEmeraldTOM20-mScarlet

A
WLL

Cyt ER pMito
MAM

CK2A1

CAMK2B

Calreticulin

VDAC1

TIM17

α-Tubulin

PRKCA

B

W
T

C
K2

A1
 K

O
C

K2
A1

 re
sc

ue

MAM-BiFC

********
****

WT

CK2A
1 KO

CK2A
1 res

cu
e

8

10

12

14

lo
g 2

(M
AM

-B
iF

C
in

te
ns

ity
)

C

W
T

C
AM

K2
B 

KO
C

AM
K2

B
re

sc
ue

MAM-BiFC

**** ****

WT

CAMK2B
KO

CAMK2B
res

cu
e

8

10

12

14

lo
g 2

(M
AM

-B
iF

C
in

te
ns

ity
)

ns

D

W
T

PR
KC

A 
KO

PR
KC

A
re

sc
ue

MAM-BiFC

****

WT

PRKCA KO

PRKCA res
cu

e
8

10

12

14

lo
g 2

(M
AM

-B
iF

C
in

te
ns

ity
)

****
****

H

0

1

2

3

G
C

aM
P6

m
t(
�

F/
F 0

)

IP3
30s

WT
CK2A1KO
CK2A1 rescue

WT

CK2A
1 KO

CK2A
1 res

cu
e

0

2

4

6

8

10

G
C

aM
P6

m
t(
�

F/
F 0

at
pe

ak
)

ns

**** ****

I

0

2

4

6

G
C

aM
P6

m
t(
�

F/
F 0

)

WT
CAMK2B KO
CAMK2B rescue

IP3
60s

***

WT

CAMK2B
KO

CAMK2B
res

cu
e

0

4

8

12

16

20

G
C

aM
P6

m
t(
�

F/
F 0

at
pe

ak
)

**
ns

J

0

1

2

3

G
C

aM
P6

m
t(
�

F/
F 0

)

PRKCA rescue

WT
PRKCA KO

IP3
60s

**** ****

WT

PRKCA KO

PRKCA res
cu

e
0

2

4

6

8

10

G
C

aM
P6

m
t(
�

F/
F 0

at
pe

ak
)

ns

Fig. 2. Validation of CK2A1, CAMK2B, and PRKCA kinases as MAM regulators. (A) Subcellular fractionation of mouse livers followed by immunoblotting analysis 
to detect CK2A1, CAMK2B, and PRKCA kinases at MAM fraction. WLL, whole liver lysate; Cyt, cytosol; ER, endoplasmic reticulum; pMito, pure mitochondria; 
MAM: mitochondria-associated membranes. (B) WT and HEK293 CK2A1 KO cells were transiently transfected with either the BFP vector or CK2A1-BFP and the 
MAM-BiFC sensor to visualize the MAM area (Left). Scale bar, 10 µm. Right, quantification plot of the MAM-BiFC intensity as the log2 mean intensity per cell (total 
cell number: WT = 198 cells; CK2A1 KO = 262 cells; CK2A1 rescue = 223 cells). (C) Representative images and quantification data of MAM-BiFC fluorescence in 
MEF WT, CAMK2B KO, and CAMK2B rescue cells. Total cells analyzed: WT = 246, CAMK2B KO = 240, CAMK2B rescue = 243. Scale bars, 10 µm. (D) The MAM-
BiFC probe was transfected into U2OS WT, PRKCA KO, and PRKCA rescue cells, and GFP intensity was measured. Total cell number of each group: WT = 239, 
PRKCA KO = 237, PRKCA rescue = 231. Scale bars, 10 µm. (E) HEK293 WT and CK2A1 KO cells were transfected with the BFP vector, CK2A1-BFP or CK2B-BFP, in 
combination with Sec61β-mEmerald (ER marker) and TOM20-mScarlet (mitochondrial marker) (Left). Scale bars, 10 µm and 1 µm. Right, colocalization of the ER 
and mitochondria was quantified by Manders’ coefficient (total cell number: WT = 130 cells; CK2A1 KO = 146 cells; CK2A1 rescue = 125 cells). (F) Representative 
images and Manders’ coefficient value of ER and mitochondrial markers (Sec61β and TOM20, respectively) in cells are described in panel C. Total cell number of 
each group: WT = 131, CAMK2B KO= 97, CAMK2B rescue = 117. Scale bars, 7 µm, and 1 µm. (G) Colocalization assay of ER and mitochondrial markers (Sec61β and 
TOM20, respectively) in the indicated cells in panel F. Total cell number of each group: WT = 113, PRKCA KO = 112, PRKCA rescue = 100. Scale bars, 10 µm, and 1 
µm. (H) Plasmids encoding mitochondrion-targeted GCaMP6s (GCaMP6mt) and either the BFP vector or CK2A1-BFP were transfected into HEK293 WT and CK2A1 
KO cells. Treatment with 30 µM IP3 triggered IP3Rs-induced Ca2+ release from the ER, and changes in mitochondrial Ca2+ uptake were measured by GCaMP6mt 
fluorescence. Right, quantification plot of the maximum intensity of GCaMP6mt in each group after IP3 stimulation (total cell number: WT = 186 cells; CK2A1 KO 
= 176 cells; CK2A1 rescue = 187). (I) Mitochondrial Ca2+ uptake was monitored in MEF WT, CAMK2B KO, and CAMK2B rescue cells before and after IP3 treatment. 
Total cells analyzed: WT = 246, CAMK2B KO = 266, CAMK2B rescue = 263. (J) Mitochondrial Ca2+ entry was traced in U2OS WT, PRKCA KO, and reexpressed PRKCA 
cells. Total cells analyzed: WT = 262, PRKCA KO = 276, PRKCA rescue = 265. Scatter plots of panels H–J show the max peak of mitochondrial GCaMP6mt (ΔF/F0). 
Line graphs represent mean ± SEM. Data of scatter plots are presented as mean ± SD. Statistical differences were determined by one-way ANOVA and Tukey’s 
post hoc test for multiple comparisons. **P < 0.01, ***P < 0.001, ****P < 0.0001, ns; P > 0.05. All experiments were independently repeated at least three times.
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using 2-aminoethoxydiphenyl borate (2-APB). Under this condi-
tion, 2-APB did not affect the reduction of mitochondrial Ca2+ 
uptake in CK2A1 KO cells compared with WT cells upon trip-
tolide stimulation (SI Appendix, Fig. S4C). This result indicated 
that a majority of MAM Ca2+ transfer regulated by CK2A1 is 
mediated by the PKD2 channel.

To gain insights into the role of CK2A1 in Ca2+ crosstalk 
between the ER and mitochondria related to PKD2, we monitored 
Ca2+ transients of ER, cytosol, and mitochondria upon triptolide 
treatment in HEK293 WT and CK2A1 KO cell lines. Intriguingly, 
the depletion of CK2A1 diminished the ER and cytosolic Ca2+ 
response to triptolide (Fig. 3 D and E). Consistently, mitochon-
drial Ca2+ import was reduced significantly in CK2A1 KO cells 
(Fig. 3F). Additionally, when contact between the ER and mito-
chondria was artificially induced using the rapamycin-inducible 
bridge-forming module (RiBFM) in CK2A1 KO cells, the defec-
tive mitochondrial Ca2+ uptake was effectively restored (Fig. 3F), 
whereas no considerable changes were observed in cytosolic Ca2+ 
or PKD2-mediated ER Ca2+ release (Fig. 3 D and E). We observed 
similar results in the SY5Y cell line, a human neuroblastoma cell 
line (SI Appendix, Fig. S5 A–D). These results suggested that 

CK2A1 modulates mitochondrial Ca2+ import by regulating 
MAM structure and the PKD2 channel activity.

CK2A1 Controls Mitochondrial Bioenergetics and Lipid 
Components Associated with the ER and Mitochondria. We 
additionally investigated the impacts of CK2A1 on mitochondria-
associated processes. The effects of CK2A1 depletion on ATP 
production were examined using a fluorescence resonance energy 
transfer (FRET)-based ATP sensor targeted to the mitochondrial 
matrix (mito-AT1.03) (29). The mitochondrial ATP level was 
significantly lower in CK2A1 KO cells than in WT cells (Fig. 4A). 
However, confocal microscopy revealed no significant changes in 
mitochondrial volume and a slight increase in mitochondrial 
sphericity in the CK2A1 KO condition (Fig.  4B). CK2A1 
KO cells had increased autophagy under basal, starvation, 
and bafilomycin A1 (30) treatment conditions, as shown by 
western blotting (Fig. 4C). The fusion of autophagosomes to 
lysosomes was measured using a tandem mRFP-GFP-LC3B 
probe (31, 32). Under basal and starvation conditions, both 
immature autophagosomes (yellow puncta, RFP+GFP+) and 
acidified autolysosomes (red puncta, RFP+GFP−) were significantly 
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Fig. 3. CK2A1 resides at MAMs and induces PKD2-dependent Ca2+ transfer between ER and mitochondria. (A) Representative images (TIRF panel) of a single-
molecule colocalization assay of endogenous CK2A1 and the MAM-BiFC marker in HEK293 cells. Individual molecules of MAM-BiFC (green dots) and CK2A1 
(red dots) were objectively detected and reconstructed using the particle detection algorithm (reconstructed panel). Lower panel, quantitative analysis of the 
colocalization ratio of MAM-BiFC to CK2A1. Thirty cells in each group were analyzed. Scale bar, 10 µm. (B) Representative TEM images of HEK293 WT and CK2A1 
KO cells. The endoplasmic reticulum and mitochondria are green and brown, respectively. White arrowheads indicate MAM regions. Scatter plots show the 
percentage of MAM length relative to the total mitochondrial perimeter and ER-mitochondria distance, respectively (total cell number of each group = 21). Scale 
bars, 1 µm. Statistical significance in panels A and B was determined by a two-tailed unpaired Student’s t-test. ****P < 0.0001. (C) The PLA assay was performed 
using anti-VDAC1 and anti-IP3R1 antibodies in HEK293 WT and CK2A1 KO cells. Scale bars, 10 µm. The scatter plot showed the quantification of PLA-positive 
dots/cell. Total cell number of each group: WT = 178; CK2A1 KO = 421. (D–F) HEK293 WT and CK2A1 KO cells expressing the vector control, CK2A1, or RiBFM 
were used to measure calcium dynamics in mitochondria (D), cytosol (E), and ER (F) stimulated by triptolide using GCaMP6mt, GCaMP6cyto, and RCEPIA1-er, 
respectively. A total of more than 300 cells were collected and analyzed in each group. Statistical significance: **P < 0.01; ****P < 0.0001 by one-way ANOVA and 
Tukey’s post hoc test for multiple comparisons. Bar and line graph data represent mean ± SEM. Scatter plots show mean ± SD. Each experiment was conducted 
at least three times.
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increased in CK2A1 KO cells (Fig.  4D). Collectively, our data 
indicated that CK2A1 deficiency disrupts mitochondrial Ca2+ 
entry, causing perturbations in mitochondrial bioenergetics and 
induction of autophagosome formation.

We further performed high-throughput lipid profiling to exam-
ine the role of CK2A1 in lipid metabolism known to be associated 
with the biological functions of MAMs (33). We purified the 
MAM fraction and conducted the untargeted lipidomics analysis 
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Fig. 4. CK2A1 depletion impairs mitochondrial bioenergetics and lipid components related to the ER and mitochondria. (A) Mitochondrial ATP levels were 
evaluated as indicated by the AT01 mitochondrial FRET probe in SY5Y WT and CK2A1 KO cells. FRET imaging refers to YFP channel excitation emitted at 440 
nm (Left). Right, quantification of the FRET ratio (YFP/CFP) (WT cells = 312 cells, CK2A1 KO cells = 304 cells). Scale bars, 20 µm. (B) The indicated cells in panel A 
were labeled for TOM20 by indirect immunofluorescence (Left) followed by mitochondrial morphology quantification (Right). The analysis included over 100 
cells from each group. (C) SY5Y WT and CK2A1 KO cells were cultured in nutrient-rich or starvation for 2 h or bafilomycin 100 nM for 6 h and subjected to 
immunoblotting with antibodies against LC3 and β-actin. The scatter plot showed the quantification of LC3-II intensity relative to β-actin (n = 4). (D) SY5Y WT 
and CK2A1 KO cells expressing mRFP-GFP-LC3B were subjected to feed or starvation for 2 h and imaged using confocal microscopy. The number of RFP+GFP+ 
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(E and F) Relative lipid class concentration of the purified MAM fraction from SY5Y WT and CK2A1 KO cells in positive ion mode (panel E) and negative ion mode 
(panel F). CAR: acylcarnitine, CL: cardiolipin, Cer: ceramide, CQ: coenzyme Q, FA: free fatty acid, DG: diacylglycerol, DG O-: ether-linked diacylglycerol, HexCer: 
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phosphatidylethanol, PE: phosphatidylethanolamine, PE P-: ether-linked phosphatidylethanolamine (plasmalogen), PE O-: ether-linked phosphatidylethanolamine, 
PMeOH: phosphatidylmethanol, PG: phosphatidylglycerol, PI: phosphatidylinositol, PS: phosphatidylserine, TG: triacylglycerol. Scatter plots show mean ± SD. 
Each experiment was repeated at least three times. Two-tailed unpaired Student’s t-test was used to determine statistical significance. ns, not significant; *P < 
0.05; ****P < 0.0001.
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(Fig. 4 E and F). CK2A1 KO cells showed a significantly different 
lipid profile than WT cells. The levels of glycerophospholipids 
(e.g., phosphatidylcholine, phosphatidylethanolamine, phos-
phatidylglycerol, phosphatidylserine, and cardiolipin), ceramide, 
and triacylglycerol were primarily decreased in CK2A1 KO cells. 
On the contrary, the levels of lysoglycerophospholipids (e.g., lys-
ophosphatidylcholine and lysophosphatidylethanolamine) and 
free fatty acids were significantly increased in the CK2A1 KO 
cells. The expression levels of individual lipid species with respect 
to the sum of acyl-chains and lipid subclasses are shown in 
SI Appendix, Fig. S6 and Table S4. Collectively, significant alter-
ations of MAM lipid components are related to CK2A1 defi-
ciency, further suggesting the essential roles of CK2A1 in 
regulating MAM functions.

CK2A1 Catalytic Activity Is Crucial to Modulate Mitochondrial 
Ca2+ Influx in a PACS2–PKD2-Dependent Manner. CK2A1 
is a catalytic subunit of CK2 kinase, and therefore, we closely 
examined whether CK2A1 enzymatic activities are involved in 
MAM regulation. We reexpressed the WT or kinase-inactive 
form of CK2A1 (K68M) (34) in SY5Y CK2A1 KO cells. In 
contrast to WT CK2A1, the CK2A1 K68M mutation did not 
significantly enhance MAM-BiFC signals (SI Appendix, Fig. S7A) 
or colocalization of ER and mitochondrial markers (Sec61β and 
TOM20, respectively) (SI Appendix, Fig. S7B). Next, we explored 
CK2A1 enzymatic activities in PKD2-dependent Ca2+ crosstalk 
at MAMs. Strikingly, the inactive form of CK2A1 did not exert 
an apparent effect on mitochondrial Ca2+ transients or cytosolic 
and ER-released Ca2+ in a PKD2-dependent manner (SI Appendix, 
Fig. S7 C and D). Similarly, the inhibition of CK2A1 activity 
using CX-4945, a selective inhibitor of CK2A1 (35), blocked 
ER-release Ca2+ as well as cytosolic and mitochondrial calcium 
transient in PKD2-dependent manner (SI Appendix, Fig. S7 F–H).  
These results collectively highlighted the significant roles of 
enzymatically active CK2A1 in regulating the structure and Ca2+ 
transport of MAMs.

Our protein–protein interaction networks suggested potential 
physical interactions among CK2A1, PKD2, and PACS2 at 
MAMs (Fig. 1E). PACS2 is an essential MAM regulator that 
recruits its interactors residing at MAMs (17, 36). Therefore, we 
assessed the role of PACS2 in linking PKD2 and CK2A1 in mito-
chondrial Ca2+ import. Using shRNA constructs validated in 
SY5Y cells (SI Appendix, Fig. S8 A–C), we measured mitochon-
drial Ca2+ uptake under PKD2, PACS2, or CK2A1 deficiency. 
Knockdown of any of these proteins reduced mitochondrial Ca2+ 
entry to a similar extent (SI Appendix, Fig. S8D). Combined 
knockdown of PKD2 with CK2A1 or PACS2 or both did not 
cause further reduction (SI Appendix, Fig. S8E). Co-overexpression 
of CK2A1 and PACS2 increased mitochondrial Ca2+ influx, which 
was abolished by PKD2 knockdown (SI Appendix, Fig. S8F). This 
phenomenon was not due to changes in the expression of 
calcium-handling proteins at MAMs, such as IP3R1, VDAC1, 
MCU, MICU1, and MICU2 (SI Appendix, Fig. S8 G–H). These 
results suggested that CK2A1 regulates Ca2+ exchange at MAMs 
through PACS2 and PKD2.

CK2A1 Forms a Physical Complex with PACS2 and PKD2 at MAMs. 
We further examined the mechanism by which CK2A1 modulates 
MAM integrity and Ca2+ homeostasis through PACS2 and PKD2. 
Colocalization of either PACS2 or PKD2 with mitochondrial 
outer membrane marker TOM20 was considerably reduced 
in cells expressing the CK2A1-inactive form (Fig. 5 A and B). 
Comparably, MAM fractions collected from CK2A1-null cells 

showed reductions of both PKD2 and PACS2 (Fig. 5C). However, 
no remarkable changes were found in the expression of ER- and 
mitochondria-resident proteins, such as calreticulin and VDAC1, 
in MAM fractions. Similarly, the overall expressions of PACS2 
and PKD2 were not altered in WT and SY5Y CK2A1 KO cells 
(SI Appendix, Fig. S8G). These results specified that the kinase 
activity of CK2A1 affects the MAM distribution of PACS2 and 
PKD2 proteins.

Next, we examined whether CK2A1 forms a complex with 
PACS2 and PKD2 at MAMs. Coimmunoprecipitation of CK2A1, 
PACS2, and PKD2 in HEK293 indicated physical interactions 
among these proteins (SI Appendix, Fig. S9 A and B). Importantly, 
we also found the formation of an endogenous protein complex 
by CK2A1, PACS2, and PKD2 in ER-cytosol and MAM fractions 
collected from SY5Y cells (Fig. 5D).

The middle region (MR) of PACS2 protein, as also seen in 
PACS1, consists of an acidic amino acid residue cluster (19), 
which is a favorable region for CK2A1 phosphorylation and highly 
conserved among species (Fig. 5E). Therefore, we hypothesized 
that regulation of the MAM structure and Ca2+ homeostasis by 
the catalytic activity of CK2A1 may be achieved by phosphoryl-
ation of PACS2 through this kinase. Various phospho-dead muta-
tions of PACS2 (S199A, S205A, S207/208A, and S213A) were 
generated and used to clarify our hypothesis. Of note, alanine 
mutation at Ser207/208 or Ser213 reduced mitochondrial Ca2+ 
import via triptolide stimulation in primary cortical neurons 
(Fig. 5F). Additionally, simultaneous alanine mutation of 
Ser207/208 and Ser213 residues (3A) drastically decreased mito-
chondrial Ca2+ entry comparable with 4A (S205, 207/208, and 
213A) and 5A mutations (S199, 205, 207/208, and 213A) 
(Fig. 5G). Next, we confirmed the phosphorylation residues of 
PACS2 by CK2A1 using an in vitro kinase assay. Notably, phos-
phorylation signals of S207/208A, S213A, 3A, 4A, and 5A were 
significantly reduced compared with those of the WT and S205A. 
Interestingly, the DEE66-related mutation, which changes an 
acidic, negatively charged residue to a basic, positively charged 
residue (E211K), located in the acidic cluster region of PACS2 
MR eliminated this protein phosphorylation status by CK2A1 
(Fig. 5 H and I). These findings collectively suggest a potential 
link between phosphorylation at Ser207/208/213 of PACS2 by 
CK2A1 and the pathobiology of DEE66 via regulation of the 
MAM structure and Ca2+ homeostasis.

DEE66-Related PACS2 Mutations Alter Ca2+ Dynamics and 
Presynaptic Neurotransmitter Release. Next, we determined 
whether phosphorylation of PACS2 at Ser207/208/213 by 
CK2A1 and DEE66-associated pathological mutations of PACS2 
(E209K and E211K) modulate the MAM composition and 
PKD2-dependent mitochondrial Ca2+ uptake. Expression of the 
phospho-dead mutations of PACS2 (3A) and E209K or E211K 
reduced MAM formation in the quantification data of both 
MAM-BiFC signals and colocalization of ER and mitochondrial 
markers in primary cortical neurons and SY5Y cells (Fig.  6 A 
and B and SI Appendix, Fig. S10 A–C). Furthermore, in SY5Y 
cells, PACS2 3A, E209, and E211K mutations showed lower 
mitochondrial Ca2+ import and significantly higher cytosolic 
Ca2+ upon PKD2 activation, suggesting significant leakage of Ca2+ 
ions from MAMs under this condition (SI Appendix, Fig. S10 
D and E). Consistently, we observed the elimination of PKD2-
dependent mitochondrial Ca2+ uptake in axons of PACS2 3A and 
DEE66-related mutant-expressing neurons (Fig. 6C). PACS2 3A 
and DEE66-related mutants (E209K and E211K) significantly 
exaggerated the cytosolic calcium response measured by cytosolic 
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to determine statistical significance. ns, not significant; *P < 0.05; **P < 0.01; ****P < 0.0001; #P < 0.05. Each experiment was conducted at least three times.
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GCaMP6s (Fig. 6D). Taken together, these data suggested that 
phosphorylation of PACS2 by CK2A1 and DEE66-related 
mutants alter MAM contents and diminish PKD2-dependent 
mitochondrial Ca2+ uptake, triggering an exaggerated cytosolic 
Ca2+ accumulation in cortical neurons.

The local surge of cytosolic Ca2+ from the ER Ca2+ store 
that promoted the release of neurotransmitters in glutamater-
gic neurons is related to epilepsy (37). Therefore, we further 
examined whether the alteration of Ca2+ homeostasis at pre-
synapses by the PACS2 phosphorylation state impaired the 
neurotransmitter release of glutamatergic neurons. To monitor 
neurotransmitter vesicle release of axonal boutons, we coex-
pressed synaptophysin-pHluorin (sypHluorin) and PACS2 
phospho-dead mutation (3A) or DEE66-associated PACS2 
mutations (E209K and E211K) in primary glutamatergic neu-
rons at DIV 15-16. Remarkably, PACS2 3A as well as E209K 
and E211K mutations induced a significantly higher syp
Hluorin intensity than PACS2 WT (Fig. 6 E and F). These data 
revealed the effect of PACS2 pathological mutations (E209K 
and E211K) and the phosphorylation state of this protein at 
Ser207/208/213 in presynaptic neurotransmitter release of glu-
tamatergic neurons (Fig. 7).

Discussion

In this study, we explored bona fide kinases that regulate contacts 
between the ER and mitochondria using the MAM-BiFC sensor. 
We found 79 human kinases that enhanced MAM integrity. Our 
screening results are in agreement with many previous reports, 
indicating several human kinases, such as Polo-like kinase 1 (10), 
AKT (6), PTEN-induced kinase 1 (8), and AMPK (38), which 
promote MAM structural organization. Only 11 negative regula-
tors were identified, potentially reflecting the intrinsic limitation 
of the BiFC system. We additionally integrated the kinase collec-
tion with various MAM proteome datasets to explore potential 
regulatory pathways of the MAM structure and functions. The 
majority of these kinase candidates have not been previously stud-
ied in MAM biology or linked to MAM components. Therefore, 
our screening provides a potentially important resource of regula-
tory signaling components that control various aspects of MAM 
functions. The critical role of CK2A1 in MAM functions and its 
link to DEE66-associated mutations of PACS2 support this notion.

We found that PACS2, a major regulatory protein of MAM 
tethering (39), which is also known as a PKD2 cargo protein (40), 
is phosphorylated at Ser207/208/213 by CK2A1 to recruit the 
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functional CK2A1–PACS2–PKD2 complex to MAMs. Our data 
further indicated CK2A1 activity acts as the channel activator of 
PKD2, which is also supported by previous observations (41), in 
conjunction with the recruitment of their complex at MAMs. 
Indeed, PKD2 has been characterized as a channel that directly 
interacts with VDAC and IP3R-mediated mitochondrial Ca2+ entry. 
However, an important phenomenon of how the subcellular distri-
bution and open-channel probability of PKD2 support MAM Ca2+ 
homeostasis regarding conventional IP3R-evoked Ca2+ signaling 
has not been addressed. Further studies will be required to clarify 
the binding partners of the CK2A1–PACS2–PKD2 complex to 
establish the calcium nanodomain at MAMs. Additionally, it will 
be interesting to explore the effect of CK2A1 activity in the PKD2 
open-gate probability under PKD2-related clinical conditions such 
as autosomal dominant polycystic kidney disease (42, 43).

Here, we observed a reduction of mitochondrial Ca2+ uptake in 
CK2A1 KO cells without a detectable alteration of the mitochon-
drial membrane potential. This finding implies that the low Ca2+ 
import into mitochondria is not driven by changes in the mito-
chondrial membrane potential. Moreover, mitochondrial ATP pro-
duction is boosted by the Ca2+ level of the mitochondrial matrix as 
Ca2+ is a cofactor of several dehydrogenase enzymes of the TCA 
cycle (44). Indeed, impairment of mitochondrial Ca2+ influx upon 
loss of CK2A1 leads to a shortage of mitochondrial energy gener-
ation, inducing activation of catabolic processes such as autophagy. 
Collectively, these findings indicate that CK2A1 fine-tunes mito-
chondrial physiology by mediating the structural organization and 
Ca2+ exchange at contact sites of the ER and mitochondria.

Recent studies have shown that missense mutations in the mid-
dle region of the PACS2 gene are related to a genetic disease named 
developmental and epileptic encephalopathy-66 (DEE66) char-
acterized by epilepsy, global developmental delay (with or without 
autism), common cerebellar dysgenesis, and facial dysmorphism 
(19, 20, 45). This neurodevelopmental disease is closely related to 
the PACS2 mutations that change acidic residues, located in the 
CK2A1-phosphorylated cluster, to basic residues (E209K and 
E211K). Remarkably, DEE66-related mutations of PACS2 not 
only perturb the phosphorylation state of PACS2 at Ser207/208/213 

by CK2A1 but also reduce the MAM content and mitochondrial 
Ca2+ influx. The impairment of mitochondrial Ca2+ entry induces 
an overload of cytosolic Ca2+ in the presynaptic nerve termini. 
Exaggerated glutamate release at the synapse is the main patho-
logical event of epileptic symptoms (46). In support of these find-
ings, neurons expressing pathological mutations of PACS2 (E209K 
and E211K) increase neurotransmitter release at presynapses. 
Therefore, inhibition of CK2A1 activity or diminishing the PKD2 
opening gate may be a potential therapeutic approach for 
DEE66-associated clinical conditions.

In conclusion, our study provides a resource for subsequent 
biological investigations to reveal high-confidence MAM modu-
lators and related signaling pathways. Moreover, we demonstrate 
that the molecular intersection underlies the contribution of 
CK2A1 kinase to the regulation of the MAM structure and 
PKD2-evoked calcium transfer at MAMs. These mechanisms 
imply the potential linkage between epileptic symptoms of 
DEE66-related PACS2 mutations with disruption of MAM teth-
ering and Ca2+ homeostasis at presynapses.

Materials and Methods

Detailed information regarding antibodies, chemicals, and plasmid construction 
is provided in SI Appendix, Materials and Methods.

Human Kinase-MAM Interactome Screening. HeLa cells were plated and 
transfected with a 408 kinase ORF library alongside the MAM-BiFC sensor. 
Samples were fixed, mounted, and imaged using a confocal microscope. Images 
were processed with background subtraction and Otsu thresholding and ana-
lyzed for MAM-BiFC intensity. Data analysis involved log2 fold change (log2 FC), 
modified Dunnett’s test for many-to-one comparisons, and adjustment with 
Bonferroni correction. Putative MAM-resident proteins’ list was collected through 
a PubMed search, filtering by species, biospecimens, and proteomics platform. 
Further details of screening procedures can be found in SI Appendix, Materials 
and Methods.

Protein Purification and In Vitro Kinase Assay. The PACS2 middle region 
(MR) fragments were produced and purified from the Escherichia coli BL21 strain 
using glutathione–Sepharose affinity chromatography. Purified proteins were 
incubated with recombinant CK2 from NEB (Cat#P6010S) in a 1X NEBuffer™ 
containing [γ-32P] ATP at 37 °C for 1 h. Reactions were terminated using 5× SDS 
sample buffer and boiling. Samples underwent SDS-PAGE, Coomassie Blue stain-
ing, drying, and autoradiography for phosphorylated PACS2 fragment detection.

Calcium Imaging. Cells expressing calcium sensors (GCaMP6mt, GCaMP6-cyto, 
or RCEPIA1-er) and other plasmids were imaged using an inverted confocal micro-
scope with a UPLSAPO 20×/0.75 NA objective. The medium was replaced with 
extracellular buffer and stimulated with various reagents (250 μM histamine, 250 
μM ATP, or 200 nM triptolide). For experiments involving permeabilized cells, cells 
were monitored in HBSS supplemented with HEPES (pH 7.4; 2.5 mM) and treated 
with 6 µM ionomycin and 30 μM IP3. Images were analyzed using Cellsense soft-
ware. The experiment details are available in SI Appendix, Materials and Methods.

Proximity Ligation Assay. DuolinkTM in situ proximity ligation assay (PLA) deter-
mined VDAC1 and IP3R1 interactions at MAMs. Cells were treated, blocked, and 
exposed to VDAC1 and IP3R1 antibodies. Following PLA probe addition, ligation 
and amplification occurred for 30 min at 37 °C. Images were captured using a 
confocal microscope with a 100× objective lens, and Imaris software quantified 
the number of red dots as PLA plots per cell.

Other methods are detailed in SI Appendix, Materials and Methods section. 
These methods include cell culture, primary neuron culture, transfection, CRISPR-
Cas9 knockout cell lines, MAM fractionation, immunoprecipitation, immunob-
lotting, time-lapse imaging with confocal microscopy to monitor mitochondrial 
membrane potential, mitochondrial ATP, sypHluorin-based presynaptic vesicle 
release, immunocytochemistry and colocalization assay, single molecule colocal-
ization, electron microscopy, MAM untargeted lipidomics analysis, and statistical 
analysis.
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Fig. 7. Mechanistic model for the role of the CK2A1–PACS2–PKD2 complex 
in the regulation of MAMs related to DEE66 pathobiology.
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Data, Materials, and Software Availability. Dataset S1 includes a list of raw 
lipid species from MAM lipidomics profiling in both WT and CK2A1 KO cells. All 
study data are included in the article and/or SI Appendix.
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