
RESEARCH ARTICLE MEDICAL SCIENCES
SOCIAL SCIENCES OPEN ACCESS

Adaptive metrics for an evolving pandemic: A dynamic approach
to area-level COVID-19 risk designations
Alyssa M. Bilinskia,1 , Joshua A. Salomonb ID , and Laura A. Hatfieldc

Edited by Larry Wasserman, Carnegie Mellon University, Pittsburgh, PA; received February 13, 2023; accepted April 27, 2023

Throughout the COVID-19 pandemic, policymakers have proposed risk metrics, such
as the CDC Community Levels, to guide local and state decision-making. However, risk
metrics have not reliably predicted key outcomes and have often lacked transparency
in terms of prioritization of false-positive versus false-negative signals. They have
also struggled to maintain relevance over time due to slow and infrequent updates
addressing new variants and shifts in vaccine- and infection-induced immunity. We
make two contributions to address these weaknesses. We first present a framework
to evaluate predictive accuracy based on policy targets related to severe disease and
mortality, allowing for explicit preferences toward false-negative versus false-positive
signals. This approach allows policymakers to optimize metrics for specific preferences
and interventions. Second, we propose a method to update risk thresholds in real time.
We show that this adaptive approach to designating areas as “high risk” improves
performance over static metrics in predicting 3-wk-ahead mortality and intensive care
usage at both state and county levels. We also demonstrate that with our approach,
using only new hospital admissions to predict 3-wk-ahead mortality and intensive care
usage has performed consistently as well as metrics that also include cases and inpatient
bed usage. Our results highlight that a key challenge for COVID-19 risk prediction is
the changing relationship between indicators and outcomes of policy interest. Adaptive
metrics therefore have a unique advantage in a rapidly evolving pandemic context.

infectious disease dynamics | decision theory | risk prediction | COVID-19

Understanding the evolution of infectious disease risk is critical for individuals making
decisions about personal precautions, policymakers recommending mitigation measures,
and health care institutions planning for future surges. Throughout the COVID-19
pandemic, indicators such as reported cases and percent of PCR tests positive for SARS-
CoV-2 have been used to guide pandemic response (1–4). Currently, the Centers for
Disease Control and Prevention (CDC)’s Community Levels designate areas as low,
medium, or high risk based on reported cases, new COVID-19 hospital admissions, and
the percentage of inpatient beds occupied by COVID-19 patients (2).

However, COVID-19 risk metrics have several weaknesses. First, policymakers have
struggled to identify leading indicators of key health outcomes. For example, PCR test
positivity was abandoned as a trigger for school closures because it did not reliably predict
in-school transmission (5). Similarly, Community Transmission metrics developed by
the CDC based on cases and test positivity were deemphasized due to poor prediction of
future severe outcomes (2). Other community metrics have focused on predicting severe
disease and mortality (2, 6). For example, the indicators used in CDC Community Levels
were selected because they correlated with ICU rates and mortality 3 wk in the future
(2). However, the thresholds for low, medium, and high were not selected to correspond
to specific future mortality rates (7), thus complicating the understanding of a high-risk
designation.

Second, many metrics fail to distinguish different error types. Falsely classifying an
area as high risk may prompt unnecessary or harmful interventions, while a false negative
may fail to activate needed public health measures (8). Individuals and policymakers may
vary in their preferences for avoiding these two types of errors, but current methods fail
even to make these preferences explicit (9).

Finally, changes in available data, COVID-19 variants, and levels of immunity can
render metrics obsolete as the pandemic evolves (10). For instance, with the omicron
variant, cases and hospital admissions have corresponded to lower levels of mortality
than in earlier waves. Shifts from PCR to at-home testing and changes in case reporting
have also made case data less reliable and available over time (11, 12). Ad hoc updates to
risk designations are insufficient to ensure that the metrics remain relevant. Moreover,
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transparency in the process is key to alleviating concerns about
“moving the goalposts” (13).

This paper makes two contributions to address these weak-
nesses in the context of COVID-19 community risk metrics.
First, we propose a framework for predictive accuracy that
incorporates preferences over false negatives versus false positives,
using weights to optimize metrics for specific policy objectives.
Second, we present a method to update risk thresholds over time
and show that this adaptive approach outperforms static metrics.
With our approach, we demonstrate that metrics using only new
hospital admissions often perform as well in prediction as metrics
that also include cases and inpatient bed usage.

Materials and Methods

The CDC used indicators available nationwide (cases, hospital-
izations, and occupancy of staffed inpatient beds) to develop
Community Levels (2). In this research, we used the same
indicators to define alternative state and county metrics, then
compared metrics based on their ability to predict future health
outcomes.

Outcomes. The primary evaluation criterion was predictive
power for high mortality. We defined “high mortality” as >1
death per 100,000 per week and “very high mortality” as >2
deaths per 100,000 per week. The lower threshold was defined in
reference to peak mortality of other respiratory viruses (influenza
and respiratory syncytial virus) during a severe season (7, 14). Let
T ∈ 1, 2 denote these mortality thresholds. The true outcome
was a binary variable equal to 1 if mortality three weeks from
the current week (i.e., at time w + 3) in location i exceeded the
threshold; formally, Yi,w+3 = I(mortality at w+3 > T ) ∈ 0, 1.
In secondary analyses of health care strain, we evaluated predictive
power for 3-wk-ahead ICU admissions, defining “high” as >2
ICU hospitalizations per 100,000 population per week, and as
>10% for 3-wk-ahead COVID-19 inpatient bed occupancy
(the lowest threshold meeting the CDC classification of “high
inpatient bed usage”) (2).

We used a 3-wk prediction window because previous CDC
analyses indicated that this maximized the correlation between
indicators and severe outcomes (2). This also reflects the necessary
lead-time for interventions to begin to have an impact on severe
outcomes; a metric that predicts severe mortality tomorrow will
come too late for effective action. We used discrete outcomes to
mirror CDC risk categories and to reflect the common practice
of adopting pandemic interventions in response to threshold
crossing.

Indicators. Indicators are the observed quantities that enter our
prediction models. We used the same three indicators as the
CDC’s Community Levels: new COVID-19 cases per 100,000
(weekly total), new COVID-19 hospital admissions per 100,000
(weekly total), and the occupancy of staffed inpatient hospital
beds by COVID-19 patients (7-d average). Let XC,i,w, XH,i,w,
and XO,i,w denote the levels of these three indicators respectively,
in location i during week w.

Data. We obtained data on indicators and outcomes at both
state and county levels and conducted separate analyses for
each geographic level. For cases and deaths, we used aggregated
counts compiled by state and local health agencies (15). For
new COVID-19 admissions and bed occupancy, we used data
reported to the US Department of Health and Human Services

Unified Hospital Data Surveillance System (16, 17). Consistent
with CDC Community Level calculations, we calculated county-
level hospitalizations at the Health Service Area (HSA)-level
to account for care-seeking across counties and computed
measures at the midpoint of each week (2). HSAs are defined
by the National Center for Health Statistics to be one or more
contiguous counties with self-contained hospital care (18). In
sensitivity analyses, we also present analyses with all inputs and
outcomes calculated at the HSA-level.

Metrics. Metrics take indicators as inputs and produce a binary
risk classification for a geographic area as output. Our metrics
used data available at week w to predict outcomes above the
prespecified threshold, T , 3 wk in the future, classifying a locality
as high risk, Ŷw+3 = 1, or not high-risk, Ŷw+3 = 0. (For
readability, we omit location subscripts i when referring to a
single observation in this section.)
Objective. We used weighted classification accuracy to compare
metrics on their ability to predict future outcomes, where weights
reflected preferences for avoiding different types of errors.

We assumed a simple underlying decision-analytic framework:
a decision maker receives a prediction of, for example, mortality 3
wk hence, Ŷw+3, and takes action in response to that prediction. If
the metric predicts high mortality (Ŷw+3 = 1), she will take one
action; if the model does not predict high mortality (Ŷw+3 = 0),
she will take a different action. Each action has benefits and
costs that depend on the true outcome. For example, avoiding
unnecessary interventions under a true negative conserves public
health resources, while inaction due to a false negative may lead
hospitals to become overburdened. By contrast, a false positive
may have costs such as wasted resources and harming public trust
due to unnecessary interventions.

We consider costs in terms of disease burden and public health
resources. We anchor costs at 0 in the scenario in which the model
correctly predicts low mortality (Ŷw+3 = Yw+3 = 0). If the
model incorrectly predicts high mortality (Ŷw+3 = 1, Yw+3 =
0), we denote public health resources spent and social costs as
S0. By contrast, if a model incorrectly predicts low mortality
(Ŷw+3 = 0, Yw+3 = 1), policymakers incur disease costs of
D. Last, if a model correctly predicts high mortality (Ŷw+3 =
Yw+3 = 1), we assume policymakers implement an intervention
that reduces disease by a factor of α, but pay resource costs, for a
total cost of (1− α)D + S1.

The total cost associated with a particular metric, M (omitting
subscripts for parsimony) is:

C(M) = Pr(Ŷ = 1, Y = 0)S0 + Pr(Ŷ = 0, Y = 1)D

+ Pr(Ŷ = 1, Y = 1) ((1− α)D + S1)

= Pr(Ŷ = 1, Y = 0)S0

+ Pr(Ŷ = 0, Y = 1)(αD− S1)
+ Pr(Y = 1)((1− α)D + S1).

Because the last term is constant across all metrics (which cannot
affect prevalence of high outcomes), this cost is proportional to
the weighted misclassification rate:

C(M) ∝ pFPS0 + pFN (αD− S1)
∝ pFP + pFNwt.

We can therefore rank metrics based only on performance
(i.e., their probabilities of making each error type) and the
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decision maker’s relative preference for false positives compared
to false negatives (wt). As the above expression indicates, we
can conceptualize weight wt as the ratio of the net benefit from
taking action on a true positive (αD − S1) to costs incurred by
unnecessary action in the case of a false positive (S0).

We considered three values of this weight. “Neutral” weighted
false negatives and false positives equally (wt = 1, equivalent
to unweighted accuracy), “don’t cry wolf” down-weighted false
negatives as half the cost of false positives (wt = 0.5), and “better
safe than sorry” down-weighted false positives as half the cost of
false negatives (wt = 2).

We estimated weighted accuracy for each metric as 1 minus
the weighted misclassification rate:

δwt(M) = 1− pFPwP − pFNwN .

While any wN and wP such that wP
wN

= wt would produce the
same ranking of metrics, the absolute value of δwt depends on
wN and wP . We set wN and wP such that both error weights are
shifted equally in magnitude to achieve the desired ratio, with an
increase in one and corresponding decrease in the other. That is,
we set wN and wP using the value a such that wN = (1 − a),
wP = (1 + a), and wN /wP = (1 − a)/(1 + a) = wt. With
neutral weighting, wN = wP = 1.

We used weighted accuracy as our primary measure of
performance, with higher weighted accuracy indicating better
performance. We further weighted δwt by population to reflect
the total proportion of individuals living in a location with an
accurate classification (SI Appendix, Text A).
Static metrics. We considered two types of metrics, static and
adaptive. Static metrics used the same threshold each week to
classify a locality as high risk. They differed in input indicators,
which could include 1) new cases only (C), 2) new hospital
admissions only (H), 3) cases and hospital admissions (CH),
4) hospital admissions and bed occupancy (HO) or 5) all three
indicators (CHO)). We varied the threshold on cases from 50 to
300 per 100,000 (in increments of 50), on new hospitalizations
from 5 to 25 per 100,000 (in increments of 5), and on occupancy
from 5 to 20% (in increments of 5). We designated an area as
high risk if all the indicators in a given indicator set were above
their specified thresholds.

We also replicated the CDC’s Community Levels, designating
an area as highrisk if

[XC,i,w < 200 AND (XH,i,w ≥ 20 OR XO,i,w ≥ 15%)] OR
[XC,i,w ≥ 200 AND (XH,i,w ≥ 10 OR XO,i,w ≥ 10%)] .

Last, we considered a metric (Z) that designated an area as
high risk if the outcome was above the threshold of interest at

the time of prediction, i.e., Ŷi,w+3 = I (Yi,w = 1), predicting
Ŷi,w+3 = 1 at time w + 3 only if Yi,w was equal to 1, indicating
the area was currently observing the high designation.
Adaptive metrics. Adaptive metrics changed thresholds over time
based on their ability to predict mortality during the recent past
(Fig. 1). At time w, we used the most recent weeks of past
indicator data with complete 3-wk-ahead outcomes as training
data. To these training data, we fit logistic regression models with
outcomes on the Left-hand side and indicators from previous
weeks on the Right-hand side. For example, in the model
corresponding to the CHO indicator set, we fit

logit(Pr(Yi,v = 1)) = β0+β1XC,i,v−3+β2XH,i,v−3+β3XO,i,v−3.
[1]

for v ∈ [w − 3, w]. From this model, we obtained β̂0, β̂1, β̂2,
and β̂3, which we then used to produce fitted probabilities for
each locality’s mortality 3 wk ahead using:

P̂r(Yi,w+3 = 1) = logit−1
(
β̂0 + β̂1XC,i,w + β̂2XH,i,w

+ β̂3XO,i,w). [2]

Logistic regression smoothed over noise in the small training data
and reduced the dimension of multiple indicators by converting
to a probability scale.

With predictions on a probability scale, we specified a
probability cutoff above which we classified a location as high
risk. We selected this cutoff based on the relative weighting of
different error types (wt). We classified a locality as high risk
whenever the probability was above 1/(1 + wt) (SI Appendix,
Text B for optimal cutoff derivation). For our three weights
(neutral, don’t cry wolf, and better safe than sorry), the cutoff
values were 1

2 , 2
3 , and 1

3 , respectively. With a single predictor, this
process would be equivalent to identifying the optimal threshold
for the indicator over the training period, accounting for user
preferences.

To assess sensitivity to different functional forms, we specified
analogous models based on CHOZ and HZ indicator sets and
an additional model (CHOD) that included all indicators as well
as the change in each indicator from the prior week. We also
included a simplified version that was updated less frequently,
only refitting to the training data each quarter, rather than each
week. We varied the number of training weeks from 4 to 12 (i.e.,
fitting Eq. 1 to training datasets as large as v ∈ [w − 11, w]).

Head-to-Head Comparison. We compared the performance of
the metrics during training and out-of-sample test periods. To

Fig. 1. Adaptive metrics. The diagram shows the model-fitting process using 4 wk of training data. We trained a model using the 4 most recent weeks with
complete outcome data, including inputs from w − 6 to w − 3 and outputs from w − 3 to w. We then used this model, with input data from w, to estimate the
probability of “high” or “very high” future mortality at w + 3 and specified a binary prediction based on whether this probability exceeded the user’s cutoff.
(When a single indicator is used as the only input, this process is equivalent to identifying the optimal threshold for the indicator over the training period,
accounting for user preferences.)
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define the training period, we began with the window the CDC
used to fit Community Levels (March 1, 2021, through January
24, 2022). We further allowed the month of March for model
fitting including 3 wk of past mortality data. Thus, our training
inputs spanned April 1, 2021 through December 31, 2021, 2021
Q3 and Q4, with outcomes extending through January 21, 2022.

We compared performance across metrics separately for each
outcome (e.g., >1 or >2 deaths/100k/wk), preference weight
(wt = 0.5, 1, or 2), and geographic area (state or county).
Within each combination of these, we chose the best-performing
static metric during the training period from among the 6, 5,
30, 20, or 120 possibilities within the C, H, CH, HO, and
CHO indicator sets. The CDC Community Levels and current
outcome (Z) metrics were fixed, so there was no selection within
this metric type. For adaptive metrics, we used the training period
to optimize the number of training weeks.
Performance evaluation. We present weighted accuracy of each
selected metric in the training quarters (during which the best
performer of each type was selected) and a test period of January
1, 2022, through September 30, 2022 (i.e., 2022 Q1–Q3).
As a sensitivity analysis, we used December 15, 2021 through
February 15, 2022, as a training period, to only include training
data from the omicron period when the infection-fatality rate fell
sharply. We then used data from February 16 through September
30, 2022, as the test period.

In addition to presenting overall weighted accuracy, we sum-
marize variation in performance across quarters with maximum
quarterly regret, the difference between a metric’s predictive
accuracy and the best performing metric (19). We calculated
regret for each selected metric in each quarter and took the
maximum across quarters:

MRM = max
q∈Q

(
max
m∈M

δwt,q(m)
)
− δwt,q(M),

where M is a metric of interest, Q is a set of quarters,M is a set
of metrics, and δwt,q is weighted accuracy during quarter q.

Last, to decompose variation between metrics into differences
in predictive power and differences in error preferences, we com-
puted sensitivity (Pr(Ŷi,w+3 = 1|Yi,w+3 = 1)) and specificity
(Pr(Ŷi,w+3 = 0|Yi,w+3 = 0)) across different wt values for
adaptive metrics and compared these to sensitivity and specificity
for static metrics.

Simulations. To generalize our approach beyond the specific
pandemic periods considered, we developed simple simulations,
varying the relationship between indicators and outcomes over
time as well as the prevalence of high maturity outcomes (SI
Appendix, Text C). We considered several functional forms for
the relationship between inputs and synthetic outputs, including
a scenario with a true constant optimal cutoff above which to
classify Ŷw+3 as 1 and scenarios with time-varying optimal cutoffs
(linear, logistic, and nonmonotonic). We also varied prevalence
of high mortality outcomes, including a constant case, a case
based on empirical hospitalization waves, and a case in which
waves designed to be much sharper than true waves. We then
estimated predictive accuracy across different scenarios.

Results

Indicator levels and mortality varied substantially over the study
period (Fig. 2), which included two major waves of illness (delta
and omicron BA.1) and a smaller wave in summer 2022 (omicron

BA.5) (SI Appendix, Figs. S2 and S3 for detailed dynamics of
indicators and outcomes over the study period.) The percentage
of population-weighted state-weeks with high future mortality
ranged from a peak of 94% during Q4 2021 to a low of
17% during Q2 2021. For very high mortality, this ranged
from 61% (Q1 2022) to 3% (Q2 2022). We observed similar
variation in counties, with less extreme swings (e.g., from 74%
to 25% for high mortality). The relationship between indicators
and outcomes shifted substantially over the period studied. In
particular, in the third quarter of 2022, cases, hospitalizations,
and bed occupancy all increased, but mortality remained lower
than in previous waves (Fig. 2).

Static Metrics. In Fig. 3, we present the performance of the best-
performing static metrics from different health care indicator
sets (C, H, CH, HO, and CHO) during the training and test
periods. Recall that the static metrics designated an area as high-
risk if all included indicators exceeded their respective optimal
thresholds from the training period. For the high mortality
outcome (>1 death/100k/wk) at the state level with neutral
weighting, the chosen thresholds for static metrics were 50
cases/100k (C); 5 hospitalizations/100k (H); 50 cases/100k, 5
hospitalizations/100k (CH); 5 hospitalizations/100k, 5% bed
occupancy (HO); and 50 cases/100k, 5 hospitalizations/100k,
5% bed occupancy (CHO). The thresholds for the remaining
outcomes and geographic levels are given in SI Appendix,
Table S1.

During the training period, there were only minor differences
in training accuracy between static metrics that used different
health care indicator sets (e.g., 83 to 87% in predicting high
mortality for states with neutral weighting, 73 to 75% for
counties). However, for nearly all static metrics and outcomes,
test accuracy was lower and more variable than training accuracy
(e.g., 45 to 68% and 54 to 70% for high mortality in states and
counties, respectively).

Some of this variation was due to the shifting relationship
between indicators and lagged outcomes over time. We illustrate
this in Fig. 4, where gray lines show the performance of metrics
based on different hospitalization cutoffs with neutral weighting.
No single cutoff dominated during the full study period. For
example, the cutoff of 5 per 100,000 performed best for high
mortality during 3 quarters of the study period, with accuracy
above 90% in states and 75% in counties, but was the worst
performing in Q2–Q3 2022, with less than 50% accuracy. The
accuracy of the single best-performing metric also varied across
quarters (e.g., from 61 to 80% for high mortality and 72 to 90%
for very high mortality in counties).

Other static metrics similarly reflected the evolving rela-
tionship between indicators and mortality. For example, while
prediction based on current risk designation (Z) was the second-
worst performing static indicator during the training period for
high mortality (after Community Levels) in states, it performed
best during the test period, when waves of infection were
less extreme and variable. CDC Community Levels performed
relatively worse compared to other static metrics at predicting
high mortality during the training period, but similar or better
during the test period; the converse was true for predicting
very high mortality (Fig. 3). Overall, static metrics that used
hospitalizations and bed occupancy (HO) performed most
consistently across training and test periods, but we would have
been unable to discern this with only training data. Across
static metrics, training accuracy was an unreliable signal of test
accuracy.
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Fig. 2. State-level lagged mortality vs. indicator levels by quarter. Columns indicate different indicators (weekly cases per 100,000 population, new hospital
admissions per 100,000 population, and percentage of inpatient beds occupied by COVID-19 patients), and rows indicate quarters. The x-axis displays indicator
values on a log scale, and the y-axis displays 3-week-ahead mortality per 100,000 population on a log scale. Each point on the scatterplot is a state-week. Colors
show the mortality outcome level. The vertical gray dotted lines indicate thresholds from CDC Community Levels for each indicator (≥200 cases/100K/wk and
≥10 new admissions/100K/wk or ≥10% COVID-19 bed occupancy). See SI Appendix, Fig. S1 for a county-level plot.

Adaptive Metrics. Adaptive metrics consistently outperformed
static metrics for both primary outcomes in training and test
periods (Fig. 3). For example, when predicting high mortality
in states with neutral weighting, adaptive metrics had an overall
accuracy of 86 to 89% in the training period and 77 to 83%
in the test period; for very high mortality, this was 85 to 90%
and 91 to 94% respectively. While all adaptive functional forms
performed well, metrics corresponding to CHOZ and HZ (88 to
89% training, 83% test for high mortality) slightly outperformed
CHO and the simplified HZ version with less frequent updating.
They also performed better than metrics that included week-on-
week indicator changes (CHOD). Importantly, while adaptive

metrics performed similarly to static metrics during some
quarters, they rarely underperformed by a substantial margin
and often achieved substantial gains (Fig. 4). This was reflected in
regret, which was better controlled by adaptive metrics than static
metrics in nearly all cases at both state and county levels. Adaptive
metrics also weakly dominated static indicator-based metrics and
Community Levels in the sense that HZ could achieve at least
equal (and often higher) sensitivity and specificity for at least one
value of wt at both geographic levels (SI Appendix, Fig. S11).

Alternative Preferences, Secondary Outcomes, and Sensitivity
Analyses. Adaptive metrics similarly outperformed static metrics
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Fig. 3. Head-to-head comparison results. The top plots display results from state-level analyses and the bottom plots display results from county-level
analyses, both weighted for population. Metrics are displayed on the Left, with training data from Q2–Q4 2021 and test data from Q1–Q3 2022. Cells report
weighted accuracy and maximum regret (MR) over training and test periods. Rows vary outcomes, and columns vary preferences for false positives versus false
negatives, with “neutral” corresponding to unweighted accuracy. Prevalence indicates the proportion of high location-weeks in a given time period. A version
including HSA-level analyses can be found in SI Appendix, Fig. S4. Secondary outcomes are presented in SI Appendix, Fig. S5, and weighted accuracy by quarter is
presented in SI Appendix, Figs. S6–S8. For adaptive metrics, models vary functional form to include: 1) CHO (cases, hospitalizations, inpatient bed occupancy); 2)
CHOZ (cases, hospitalizations, inpatient bed occupancy, current risk designation); 3) CHOD (cases, hospitalizations, inpatient bed occupancy, weekly changes in
each indicator); 4) HZ (hospitalizations, current risk designation); 5) Simplified HZ (hospitalizations, current risk designation—updated quarterly). (For additional
adaptive functional forms, SI Appendix, Fig. S9.)

across preference weights (Fig. 3) and for secondary outcomes
of future ICU hospitalizations over 2 per 100,000 and future
COVID-19 inpatient bed occupancy >10% (Fig. 4 and SI
Appendix, Fig. S5). Across outcomes, we only observed substantial
improvement in predictive performance from adding weekly
changes for the inpatient bed occupancy outcome; for this
outcome, adaptive metrics without weekly changes had smaller
improvements over static metrics (SI Appendix, Figs. S6–S8).

The gain in weighted accuracy for adaptive metrics was higher
when estimated at the HSA level rather than at the county level
(about 2 percentage points for both mortality outcomes with
neutral weighting) (SI Appendix, Fig. S4). Running the training
period from December 15 to February 15 to capture the omicron
variant did not substantially alter the relative benefit of adaptive
metrics, with a 14 percentage point increase in weighted accuracy
in states for high mortality compared to Community Levels with
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Fig. 4. Weighted accuracy by metric. The top plot displays states, and the bottom plot displays counties. Columns indicate different outcomes. The x-axis
indicates quarter, and the y-axis predictive accuracy with neutral weighting. Gray lines depict metrics based on new hospital admissions exceeding the labeled
threshold. The red line indicates CDC Community Levels and the blue line the best-performing adaptive metric in the training period of those listed in Fig. 3. A
version with HSA-level results can be found in SI Appendix, Fig. S10.

a neutral weighting (compared to 12% in the base case) and 7%
in counties (compared to 6%) (SI Appendix, Fig. S12).

Simulations. In simulations, adaptive metrics outperformed
static metrics when the relationship between indicators and
outcomes was changing over time, across different input/output
functional forms and regardless of whether prevalence was con-
stant or followed waves generated from empirical hospitalization
data (SI Appendix, Fig. S14). There was no gain when the
relationship between indicators and outcomes was constant;
adaptive metrics performed worse than static metrics when waves
were extremely sharp, and there could be insufficient training data
near the threshold to estimate the optimal cutoff.

Discussion

We proposed an adaptive approach to estimating local risk which
continually updates metrics to ensure they predict outcomes of
policy interest. We showed that this would have outperformed
static approaches, including CDC Community Levels over
the past year. Our metrics have a unique advantage in a
rapidly evolving pandemic context. They quickly pick up new
information as the relationship between indicators and future
mortality shifts, allowing us to refine the threshold for “high
risk” and improve discrimination.

Previous papers have proposed adaptive policies for COVID-
19 management, in which policymakers shift responses depend-
ing on observed indicators like cases and deaths (20–22). We
extend this work by allowing the trigger thresholds for indicators
to also vary over time. Such an approach could be particularly

advantageous for maintaining public trust when the relationship
between indicators and outcomes is not yet well-understood or
is changing quickly (23).

Our approach draws on ideas that have been applied in the
online calibration literature and in forecasting, but have not
yet been widely applied to population risk metrics (6, 24–26).
Nevertheless, some previous authors have noted that accounting
for the evolving pandemic conditions is important for effective
decision-making, suggesting policies that are adjusted for the
changing costs of mitigation over the course of a pandemic or the
number of people vaccinated over time (27, 28). We particularly
emphasize parsimony for policy metrics, demonstrating that
policymakers can obtain equal predictive performance with fewer
inputs potentially reducing the burden of data collection on state
and local public health departments. Similar to other authors,
we find hospitalizations to be the most powerful predictor of
future mortality (6). We further emphasize that it is valuable
to collect real-time data on outcomes of policy interest, like
mortality. In the case of COVID-19, while state mortality is
still collected and reported weekly, many counties have reduced
reporting frequency (15).

Our method can also reflect a policymaker’s preferences for
the trade-off between avoiding false negatives and false positives,
filling a previously identified gap between models and decision
theory (29). In practice, different indicators could be used to
guide different policies. For the most burdensome interventions
(e.g., business closures), policymakers might prefer a low risk
of false negatives, while for less burdensome interventions, (e.g.,
distribution of rapid tests), they might have a higher tolerance
for false positives. Future work could formally expand adaptive
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metrics to include multiple levels of risk designations (e.g.,
low/medium/high) based on different outcomes of interest,
prediction of multiple levels of a single outcome, or different
preferences for false negatives versus false positives. Metrics could
also be modified to reflect different outcomes for different users,
such as employers and workplaces, and to map designations to
institution-specific risk tolerances.

There are several additional limitations and potential exten-
sions to this study. First, we model only outcomes related to severe
disease and death from COVID-19, as national policymakers
have designated these priority outcomes. Nevertheless, metrics
to track illness are also important for understanding the full
burden of disease, which can include disruptions from illness
and Long COVID, and work is also needed to predict surges
with longer lead time (26, 30). In addition, no adaptive
framework can automatically incorporate all possible variations.
Manual tuning may be needed, for example, if the frequency
of reporting of hospitalization changes over time. Furthermore,
in high-danger situations, such as if an unusually lethal new
variant were identified in one country, it may be preferable
to implement preventative measures even prior to observing a
changing relationship between indicators and severe outcomes.
Mortality is a lagging indicator, following rises in cases and
hospitalizations, and changes in transmission dynamics are
influenced by other factors (e.g., seasonality, new variants) that
have proven difficult to predict (31). As a result, metrics based on

mortality should not be construed as leading indicators of future
surges, but rather a ‘fire alarm’ once a surge has begun. However,
metrics could be refined to upweight performance during critical
periods such as the start of a surge. Finally, future work could
also expand these methods to other contexts, such as prediction
of combined respiratory disease outcomes (including influenza
and RSV). Overall, adaptive metrics may be a powerful tool for
designing trustworthy, transparent metrics to guide infectious
disease policy.

Data, Materials, and Software Availability. Anonymized cleaned data
and code have been deposited in GitHub (https://github.com/abilinski/
AdaptiveRiskMetrics). Previously published data were used for this work (public
data, URLs in text and on GitHub (32)).
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