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Abstract
Human immunodeficiency virus 1 (HIV) proviruses archived in the persistent reservoir currently pose the greatest 
obstacle to HIV cure due to their evasion of combined antiretroviral therapy and ability to reseed HIV infection. 
Understanding the dynamics of the HIV persistent reservoir is imperative for discovering a durable HIV cure. 
Here, we explore Bayesian methods using the software BEAST2 to estimate HIV proviral integration dates. We started 
with within-host longitudinal HIV sequences collected prior to therapy, along with sequences collected from the 
persistent reservoir during suppressive therapy. We built a BEAST2 model to estimate integration dates of proviral 
sequences collected during suppressive therapy, implementing a tip date random walker to adjust the sequence tip 
dates and a latency-specific prior to inform the dates. To validate our method, we implemented it on both simulated 
and empirical data sets. Consistent with previous studies, we found that proviral integration dates were spread 
throughout active infection. Path sampling to select an alternative prior for date estimation in place of the 
latency-specific prior produced unrealistic results in one empirical data set, whereas on another data set, the 
latency-specific prior was selected as best fitting. Our Bayesian method outperforms current date estimation tech-
niques with a root mean squared error of 0.89 years on simulated data relative to 1.23–1.89 years with previously 
developed methods. Bayesian methods offer an adaptable framework for inferring proviral integration dates.
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Introduction
Human immunodeficiency virus 1 (HIV) remains an on-
going pandemic with more than 30 million current infec-
tions (Feehan and Apostolopoulos 2021). However, due to 
the effectiveness of combined antiretroviral therapy 
(cART) in reducing viral replication, progression to ac-
quired immunodeficiency syndrome (AIDS), morbidity, 
and HIV transmission, HIV infection is now a manageable 
illness (Hogg et al. 1998; Palella et al. 1998). Despite this, 
cART alone cannot cure HIV infection, even over long 
timescales, because of the presence of persistent reservoirs 
of integrated HIV within host cells. As cART inhibits viral 
replication, it cannot eliminate latently integrated pro-
viruses (Chun et al. 1997; Finzi et al. 1997, 1999). As pro-
viruses in the persistent reservoir can reactivate at any 
time to reseed HIV infection, cART must be maintained 
for life (Chun et al. 1997; Finzi et al. 1997, 1999; Sneller 
et al. 2020). Thus, an effective, durable HIV cure must elim-
inate or permanently suppress the HIV in the persistent 
reservoir.

Obtaining a complete understanding of the compos-
ition and dynamics of the persistent reservoir is of the ut-
most importance for developing cure strategies. For 

example, it is pertinent to understand the distribution of 
both timings of proviral integration and lengths of proviral 
persistence because viruses of different ages may offer 
varying immune evasion or drug resistance phenotypes 
(Shankarappa et al. 1999; Clavel and Hance 2004; 
Sudderuddin et al. 2020). The reservoir is established early 
in infection (Chun et al. 1998; Whitney et al. 2014; Colby et al. 
2018; Brooks et al. 2020) and is continuously seeded through-
out untreated infection, where it persists after cART suppres-
sion (Brodin et al. 2016; Jones et al. 2018; Abrahams et al. 
2019) with the majority of persistent proviruses seemingly 
having been integrated in the period directly preceding 
cART initiation (Brodin et al. 2016; Abrahams et al. 2019). 
These properties were ascertained by estimating the integra-
tion dates of proviral sequences using genetic and phylogen-
etic methods. For example, the presence of proviruses dating 
close to the infection date indicates that the reservoir is es-
tablished early in infection; whereas a concentration of inte-
gration dates near cART initiation suggests that there is a 
large amount of proviral turnover or alternatively that 
cART influences viral latency. A wide distribution of integra-
tion dates suggests a reservoir that is actively contributed to 
and persists on therapy. Finally, estimated dates that fall 
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within periods of cART administration are evidence for on-
going replication during therapy.

Since HIV proviruses integrated into the persistent res-
ervoir do not replicate, and hence do not evolve, the se-
quence of a provirus will be identical (or nearly 
identical) to the genome of the original virus that infected 
the cell, and will therefore have the same “genetic age” as 
this original virus (Chun et al. 1995; Finzi et al. 1997). Thus, 
we can estimate the integration dates of individual pro-
viruses by identifying where they fit into the within-host 
HIV evolutionary tree. Brodin et al. (2016) produced a gen-
etic method to estimate HIV integration dates by compar-
ing each proviral sequence to the motifs of sequences 
collected longitudinally from plasma pre-cART. Jones 
et al. (2018) developed a method that infers a linear regres-
sion between root-to-tip phylogenetic divergence and 
sampling time of pre-cART plasma sequences and uses 
the regression to estimate proviral integration dates. 
Subsequently, Abrahams et al. (2019) used an evolutionary 
placement algorithm (EPA) that places a proviral sequence 
in a phylogenetic tree inferred from the participant’s 
pre-cART plasma sequences and estimates the proviral in-
tegration date by using the dates of the nearby plasma se-
quences. They also compared a nearest neighbor and a 
clade-based approach using phylogenies inferred from 
both pre-cART plasma and proviral sequences. Recently, 
we compared, using simulated HIV sequences (Jones and 
Joy 2020), several methods of inferring proviral integration 
dates including the nearest neighbor method, clade-based 
method, linear regression, node.dating (Jones and Poon 
2017), and least squares dating (LSD) (To et al. 2016)— 
which infer dates for internal nodes and proviral tips in a 
tree using maximum likelihood and least squares, respect-
ively. In that study, LSD produced the most accurate re-
sults on simulated data (Jones and Joy 2020).

Existing methods, however, have a number of short-
comings. For the method in Brodin et al. (2016) and the 
three methods described in Abrahams et al. (2019), the es-
timated proviral integration dates are restricted to the 
sampled dates of sequences collected from plasma. This 
can be problematic if plasma was sampled infrequently 
or over a restricted time frame. Phylogeny-based methods 
are generally implemented on a single tree topology, which 
may not have high support values, though linear regression 
has been applied to a Bayesian sampling of trees (Jones 
et al. 2020). Linear regression, node.dating, and LSD meth-
ods all rely on a mostly strict molecular clock that is unlike-
ly to be the best-fitting model. These shortcomings can be 
addressed with Bayesian methods where a distribution of 
compatible dates can be estimated from a sample of tree 
topologies employing relaxed clock models. Recently, 
Bayesian methods have been developed to estimate pro-
viral integration dates in HIV. Nagel and Rannala (2023) ex-
tended the software MCMCTree (Stadler and Yang 2013) 
to include tip sampling, and Ferreira et al. (2023) devel-
oped Bayesian-informed root-to-tip regression.

The last decades have seen a proliferation in software 
available to analyze sequence data utilizing a variety of 

phylogenetic models in Bayesian frameworks. These soft-
ware are developed for multifarious purposes including in-
ferring phylogenetic tree topologies, analyzing population 
structure, estimating epidemic reproductive numbers, mo-
lecular dating, and quantifying speciation (Huelsenbeck 
and Ronquist 2001; Lartillot et al. 2009; Suchard et al. 
2018; Bouckaert et al. 2019). Additionally, Bayesian meth-
ods can be used to estimate the dates of sequences with 
otherwise unknown dates using tip date sampling 
(Shapiro et al. 2011).

The main challenge with Bayesian phylogenetic analysis 
is the large number of parameters that need to be consid-
ered. This leads to likelihood functions with complex 
shapes containing many peaks and valleys that are challen-
ging for Bayesian methods to resolve. One way to over-
come the estimation of many parameters at once is the 
fixation of the tree topology instead of sampling multiple 
trees; however, this limits the scope of the results and fails 
to account for phylogenetic uncertainty. A further compli-
cation of Bayesian phylogenetic analysis is selection of the 
appropriate prior distributions. In Bayesian analysis, the 
prior distribution should reflect our existing assumptions 
about the system. To achieve this, we can employ an in-
formative prior that imposes our a prior knowledge 
(Nowak et al. 2013). Alternatively, we can select a prior 
that best fits our data with model selection through, for 
example, path sampling/stepping-stone sampling strat-
egies (Fan et al. 2011; Xie et al. 2011; Bouckaert et al. 
2019) or nested sampling (Skilling 2006; Russel et al. 2019).

Here, we develop and explore the use of Bayesian ana-
lysis with BEAST2 (Bouckaert et al. 2019) for estimating 
the integration dates of HIV proviral sequences. We apply 
our methodology to simulated and empirical data sets. We 
compare the merits of using informative priors versus ap-
plying model selection with path sampling. Finally, we 
compare our results to previously developed date estima-
tion methods.

New Approaches
We detail a new Bayesian approach to estimate proviral in-
tegration dates of HIV using BEAST2. Though tip date sam-
pling, in which sequence dates are adjusted between states 
of a Markov chain Monte Carlo (MCMC) simulation, is not 
new (Shapiro et al. 2011), it has only recently been used to 
estimate proviral integration dates. We combine tip date 
sampling with a latency-specific prior to estimate the dates 
(see fig. 1 for a visual outline of the model). This latency- 
specific prior accounts for the time since infection and 
the sampling time and is an informative prior that models 
HIV latency dynamics. We employ our new BBD package 
for BEAST2 that includes the latency-specific among other 
date priors and operators to assist in unknown sequence 
date estimation.

We employ a new RootExchange operator in our BBD 
package to estimate the root position without changing 
the tree topology. This allows us to use a fixed tree in 
our analyses without having to also fix the root position. 
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Some data sets require using a fixed-tree topology in order 
to achieve convergence due to the complexity of simultan-
eously estimating tree topology and model parameters. 
Being able to infer the root position allows us to overcome 
the biases of a fixed root that may result from an outgroup 
sequence or root-to-tip regression.

We explore simultaneously inferring the tree topology 
and the integration dates in our framework. However, 
we could only reliably execute this on simulated data. 
This is an advance over previous methods which can be 
biased by a single tree inferred through maximum likeli-
hood approaches. Simultaneous inference of tree topology 
and date estimation allows us to overcome the low- 
supported trees of within host HIV data sets (Capoferri 
et al. 2019; Miller et al. 2019).

Results
Estimating Proviral Integration Dates
We estimate proviral integration dates by using tip date 
sampling (Shapiro et al. 2011). With tip date sampling, 
an operator is added to a BEAST2 model that can adjust 
the date of the proviral sequences with a random walk 
across MCMC samplings. A latency-specific prior distribu-
tion, called the Latent prior, is assigned to the proviral in-
tegration dates and through MCMC, we achieve a sample 
of the posterior distribution of the proviral integration 
dates.

We applied our method to three data sets, one simu-
lated and two empirical. To fashion the model, we applied 
model selection to determine the substitution, clock, and 
tree models (see Materials and Methods). The substitution 

model selected for each data set is shown in the Bayesian 
Information Criterion (BIC) column of supplementary 
table S1, Supplementary Material online. Uncorrelated re-
laxed clocks with log-normally distributed rates and co-
alescent tree priors with exponential population growth 
were selected for all data sets (see supplementary tables 
S2 and S3, Supplementary Material online).

Simulated Data
First, to assess method accuracy, we applied our Bayesian 
approach to simulated data with known latent sequence 
integration dates. Our simulated data set represents a sin-
gle individual living with HIV who initiated cART 10 years 
following infection, and remained on suppressive cART for 
another 10 years, from whom we sampled 100 active se-
quences at ten pre-cART time points (10 per year for 10 
years) and 50 latent sequences at five time points during 
suppressive cART (10 each at 2-year intervals); see 
Materials and Methods for details. After deduplication, 
we were left with 99 active sequences and 49 latent se-
quences. For this data set, the real integration dates of 
the latent sequences are known; the distribution of inte-
gration dates for the 49 distinct sequences are shown in 
supplementary figure S1, Supplementary Material online.

Estimated latent sequence integration dates and their 95% 
highest posterior densities (HPDs) of the estimates are dis-
played on the phylogenetic tree depicted in figure 2. All 
but two of the actual integration dates fell within the HPD 
of the BEAST2 sample’s estimated dates (indicated in fig. 2
with small squares). For both sequences, the real dates 
were later than the HPD. Consistent with previous studies 
of real individuals (Abrahams et al. 2019), the integration 
dates of our simulated data are concentrated in the period 
immediately preceding therapy (see supplementary fig. S1, 
Supplementary Material online). This is suggestive of ei-
ther a short reactivation period or cART-mediated integra-
tion (Abrahams et al. 2019). Our BEAST2 method was able 
to recover these dates to infer the same conclusion. 
However, six of the estimated integration dates were dur-
ing cART. Some of these estimates had wide HPDs, with all 
HPDs including the actual integration date. These results 
are similar to the results of the linear regression method 
of Jones et al. (2018), where wide confidence intervals on 
late estimated dates were observed.

For our integration date estimation, we used a fixed-tree 
topology inferred by maximum likelihood methods as de-
scribed in the Materials and Methods and sampled the 
root position in our MCMC. This was performed to assist 
convergence of the runs, since it reduces the number of para-
meters to integrate over. We re-performed our analyses on 
simulated data estimating the tree topology simultaneously 
with the date estimation. Overall, results with an unfixed 
tree topology were comparable to the results with a fixed- 
tree topology (see supplementary fig. S2, Supplementary 
Material online). However, integration date estimates using 
an unfixed tree topology were slightly more accurate with 
lower root mean squared error (RMSE) (0.89 vs. 0.87 years) 
and higher concordance (0.890 vs. 0.893).

0 1 2 3
Collection Year

Tree pr ior (co alescent): selected 
with p ath sampling u sing active 
sequences

Root position:
sampled with
roo t exchange
oper ator

Integr ation date pr ior : 
infor mative latency pr ior

Latent integratio n dates
sampled with ran dom walke r

Active sequence dates fi xed Clock prior: selected with
path sampin g using active
sequences

Substitution model: 
selected with  maximum
likeli hood

Fixed tr ee topolog y: infer red
with maximum likelihood

FIG. 1. Diagram of BEAST2 model for proviral integration date esti-
mation. Within a coalescent framework, tip date sampling is per-
formed on the latent sequences to estimate their integration 
dates keeping the dates of active sequences fixed. The diagram is col-
ored by each component of the model. The method to determine 
the prior for each component is detailed.
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Empirical Data
Next, we applied our method to an empirical data set from 
an individual living with HIV. We acquired 122 HIV nef se-
quences from participant 1 from Jones et al. (2018). We will 
call this data set P1. This participant had been living with 
HIV for more than a decade before initiating suppressive 
cART, after which their viral load remained largely sup-
pressed for the next decade (see Jones et al. 2018 for de-
tails). This participant’s long infection history and 
breadth of sampling make them ideal for phylogenetic 
dating.

Figure 3 shows a maximum clade credibility tree of the 
BEAST2 run with the Latent prior. As in previous studies of 
this participant’s proviral age distribution (Jones et al. 
2018, 2020; Jones and Joy 2020), the estimated proviral in-
tegration dates spanned the infection period. This suggests 
that there is continual seeding of the persistent reservoir. 
Of note, we found four of the latent sequences had esti-
mated integration dates later than the last plasma se-
quence collection date and the onset of suppressive 
therapy. This is possibly the same artifact as with the simu-
lated data. However, this participant had two episodes of 
viral rebound following therapy initiation, the first in 
2007 and the second in 2008 (see Jones et al. 2018). 
These proviruses could be descendants of reactivated 
viruses from these events. However, our date estimates 
are subject to the assumption that the mutation rate is 
held relatively constant (specifically it follows a log-normal 
distribution) and the later dates suggest that these 

sequences are fairly divergent from the latest plasma se-
quences. Dates in this range were observed previously 
using linear regression to estimate the integration dates 
(Jones et al. 2018).

Our last data set, N133M, consists of 97 HIV env se-
quences from participant N133M of Brooks et al. (2020). 
This participant had <3 years of untreated infection before 
going on suppressive cART. An important feature of this 
participant is that we have a lower bound for when they 
were infected via a negative HIV test result, which was 
92 days before the first sample was collected (see Brooks 
et al. 2020 for details).

As with the other data sets, the estimated integration 
dates for N133M are spread throughout infection includ-
ing some dates that fall within the treatment interval. 
Notably, there are two sequences from both sampling 
time points that date very close to infection (bottom left 
corner of fig. 4), which is compatible with early seeding 
of the persistent reservoir (Chun et al. 1998; Whitney 
et al. 2014; Colby et al. 2018; Brooks et al. 2020). Proviral 
sequences nicely bridge the sequences from the different 
plasma sampling time points in the tree showing the con-
stant within-host evolution of the participant’s viral popu-
lation (see fig. 4).

Other Date Priors and Path Sampling
Next, we wanted to see what effect using different tip date 
priors would have on the estimated dates. We performed 
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FIG. 3. Phylogeny of date esti-
mation analysis on P1. Nodes 
of the phylogeny are placed at 
their mean date. Colored cir-
cles indicate mean integration 
dates (i.e., estimated dates) 
and colored bars indicated 
their 95% HPD intervals for 
the integration dates. Black cir-
cles denote active sequences. 
Numbers on edges show the 
percentage of times that edge 
was sampled as the root after 
burn-in. Edges without num-
bers were not sampled as the 
root. Edges with at least 70% 
maximum likelihood bootstrap 
support are marked with an 
“asterisk.” 
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the tip date sampling using ten additional priors (see 
supplementary table S4, Supplementary Material online 
and the methods for details). The priors each depend on 
the sampling times of the plasma and latent sequences and 
are shown in supplementary figures S3–S5, Supplementary 
Material online. We then performed path sampling to deter-
mine which priors best fit the data.

Path sampling revealed the best-fitting prior for the si-
mulated data to be Exp1a, an exponential distribution act-
ing on years before the latest active sampling date with a 
fixed mean. The next best-fitting prior was Exp1b, an expo-
nential distribution acting on years before the latest active 
sampling date with an exponential prior on the mean of 
the distribution. The marginal likelihood of the models 
with the fixed and unfixed means were within 2 standard 
deviations (SDs) of their estimates, suggesting that the prior 
with the variable mean may be the better fitting model. The 
Exp1a and Exp1b priors also had the highest prior probabil-
ity density of the actual integration dates (see fig. 5A and C) 
together with the lowest RMSE (see fig. 5B and C and 
supplementary table S5, Supplementary Material online). 
The Lnorm1 prior, a log-normal distribution on years before 
the latest active sequence, had a low prior posterior density, 
which resulted in a poor marginal likelihood and RMSE (see 
fig. 5A–C and supplementary table S5, Supplementary 
Material online). The Exp2b prior however, an exponential 

prior on years before latent sequence collection with an es-
timated mean, had a higher prior posterior density but a 
comparable marginal likelihood and higher RMSE than 
the Lnorm1 prior (see fig. 5A–C and supplementary table 
S5, Supplementary Material online). Overall, marginal likeli-
hood correlated negatively with the RMSE (Pearson correl-
ation coefficient: −0.941, P < 0.01), suggesting that the 
better fitting priors offer more accurate results for simulated 
data. Histograms of the estimated integration dates for each 
prior are shown in supplementary figures S6 and S7, 
Supplementary Material online.

The model with the Unif1 prior had the highest margin-
al likelihood of the models with unfixed tree topologies for 
simulated data. However, the model with the Exp1a prior 
(which was selected in the fixed-tree analyses) had the 
greatest accuracy, with a lower RMSE and higher concord-
ance. The uncertainty in estimating the marginal likeli-
hood was much higher in the unfixed tree analyses than 
the fixed-tree analyses. In fact, marginal likelihoods of all 
models fell within the error of the marginal likelihood of 
the best-fitting model (see supplementary table S6 and 
fig. S8, Supplementary Material online).

For P1, the Latent prior had the highest marginal likeli-
hood (see supplementary table S7, Supplementary 
Material online). Interestingly, with exponential priors 
and the Unif2 and Lnorm1 priors, two proviral sequence 
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dates predated the earliest active collection time point 
(see supplementary figs. S9 and S10, Supplementary 
Material online). Previous analysis using linear regression 
did not yield these results (Jones et al. 2018) and were 
not observed with the Unif1, Norm, Lnorm2, and Latent 
priors, but were seen with the other six priors (see 
supplementary figs. S9 and S10, Supplementary Material
online). The Norm, Lnorm2, and Latent priors have lower 
likelihoods for early dates than the other priors and the 
Unif1 prior has zero likelihood for early dates. A previous 
Bayesian estimate of this participant’s infection date 
yielded December 1995 (Jones et al. 2018); however, this 
estimate only included the sequences derived from plasma 
in its analysis. The actual infection date of the participant is 
unknown.

In N133M, path sampling chose the Exp1a prior as in the 
simulated data (see supplementary table S8, Supplementary 
Material online). Supplementary figure S11, Supplementary 
Material online shows a maximum clade credibility tree of 
the BEAST2 run with the Exp1a prior. Although it was the 
best-fitting model, the results using the Exp1a prior are 
unrealistic. The earliest estimated dates were in August 
2005, but the participant’s latest negative HIV test result 
was in May 2007. The root in this tree was sampled be-
tween the second and third plasma times points, which 
is indicative of dual infection (see supplementary fig. S11, 
Supplementary Material online). However, dual infection s 
unlikely for this participant as their viral phylogenetic di-
vergence is relativity low given HIV’s mutation rate and 
the time span. The results of this model contradicting 
our prior understanding of the participant suggest that 
path sampling may be inappropriate for this participant. 
Most priors exhibit the same behavior and estimate early 
integration dates; however, the Unif1, Norm, Lnorm2, 
Latent, and NoPrior do not exhibit this result (see 
supplementary figs. S12 and S13, Supplementary 
Material online). These priors have low or zero density 
before the first plasma time point.

Comparison to Other Dating Methods
To assess the performance of the Bayesian methods, we 
compared Bayesian-derived estimates of proviral integra-
tion dates to those estimated using other methods. 
Specifically, we compared the EPA employed by 
Abrahams et al. (2019), the linear regression approach 
we used previously (Jones et al. 2018) and LSD as imple-
mented in LSD (To et al. 2016). We recently showed that 
the least squares method, with a slight variation in the 
rooting method, was the most accurate at estimating pro-
viral integration dates when compared against similar tip 
date estimation software on simulated HIV genomes using 
a rooted phylogenetic tree (Jones and Joy 2020). The EPA 
method was not included in that study.

We compared the results of our BEAST2 date estima-
tion software to EPA, linear regression, and LSD on both 
data sets using each of three tree building software: 
FastTree, IQ-Tree, and RAxML. Our method using BEAST2 
substantially outperformed the other methods (see table 

1 and supplementary table S9, Supplementary Material on-
line) with almost half the RMSE compared to LSD, the next 
most accurate method.

The estimates of three alternate methods were rela-
tively different from each other, residing in different re-
gions of the multidimensional scaled (MDS) plot shown 
in supplementary figure S14, Supplementary Material on-
line. The choice of tree inference software (FastTree, 
IQ-Tree, or RAxML) had little effect of the estimates for 
each method (see supplementary fig. S14 and table S9, 
Supplementary Material online). The BEAST2 analyses 
with different integration date priors and the real integra-
tion dates were clustered in two groups in the MDS plot 
with the LSD estimates separating Exp2 priors and 
the Unif2 prior from the rest of the priors and the real inte-
gration dates (see supplementary fig. S14, Supplementary 
Material online).

For the empirical data set P1, the choice of tree infer-
ence software had a greater effect on the estimated inte-
gration dates than for the simulated data where the 
results were comparable. This was especially true for 
the LSD method where there were 415–1,248 day root 
mean square differences between the estimates using 
different tree inference software (see supplementary 
fig. S15, Supplementary Material online). The scoring 
values to assess model fitness also varied by tree infer-
ence software for P1 (see supplementary table S10, 
Supplementary Material online), whereas the simulated 
data had similar scores across tree inference software 
(see supplementary table S9, Supplementary Material
online). The BEAST2 analyses clustered together in the 
MDS plot (see supplementary fig. S15, Supplementary 
Material online).

In N133M, the choice of tree inference had an even 
greater effect on the results for the alternate methods 
than it did in P1. The EPA method estimates were distrib-
uted around the BEAST2 estimates and the LSD estimates 
derived from a tree inferred with FastTree clustered with 
the LR estimates (see supplementary fig. S16 and table 
S11, Supplementary Material online). The BEAST2 method 
estimates were grouped in two clusters based on whether 
early dates were detected or not. The later clustered with 
the LR method estimates since the LR method selects its 
root only based on the plasma-derived sequences and 
thus will preserve the appearance of a mono-infection 
with subsequent “linear” evolution.

Table 1. Comparison of Alternate Dating Methods (simulated data).

Method RMSE Concordance

BEAST2 (Latent prior) 0.89 0.890
EPA (FastTree) 1.64a 0.453a

Linear Regression (IQ-Tree) 1.89 0.572
LSD (IQ-Tree) 1.23 0.805

NOTE.—Only results using the tree inference software that produced the highest 
score (i.e., had the best fit; see supplementary table S7, Supplementary Material
online) are shown. RMSE, root mean squared error and is in years. 
aRMSE and concordance for the EPA method were calculated over sequences 
where dates were computable.
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Discussion
Our Bayesian method using BEAST2 was capable of reco-
vering HIV proviral integration dates. It produced more ac-
curate results than previous non-Bayesian methods 
employing optimization.

Nagel and Rannala (2023) recently described an alterna-
tive Bayesian method to estimate HIV proviral integration 
dates building upon the software MCMCTree (Stadler and 
Yang 2013). As with our method using BEAST2, their 
method uses HIV sequences collected longitudinally 
from plasma together with HIV sequences collected 
from the persistent reservoir and employs tip date sam-
pling to estimate proviral integration dates. Their method 
uses a fixed rooted tree without integrating over the root 
position, a strict molecular clock instead of a relaxed clock, 
and in place of using a coalescent model, a prior is imposed 
on the root date to inform divergence times. Their method 
however includes the ability to combine multiple gene seg-
ments to improve accuracy. Multigene analyses are pos-
sible with our approach, but for now, we begin with our 
proof of concept using a single-gene analysis.

Ferreira et al. (2023) also recently developed a Bayesian 
method to estimate HIV proviral integration dates using 
root-to-tip regression with the same kind of data set. 
Their approach does not employ tip date sampling, but in-
stead uses root-to-tip distances to estimate the integration 
dates. The advantage of this is that the proviral sequences 
do not bias the model estimate as they are not used to 
tune model parameters except through the tree construc-
tion. A disadvantage however is that their model does not 
leverage any biological insights that the proviral sequences 
may provide. As with our method, they used a fixed phylo-
genetic tree and estimate the root position. However, their 
model is based around root-to-tip regression instead of the 
coalescent framework utilized in our BEAST2 model.

The two recent approaches described above were ap-
plied to a greater number of data sets than in our study 
[over 1,000 simulated data sets and 3 empirical data sets 
for Nagel and Rannala (2023) and 100 simulated data 
sets for Ferreira et al. (2023)]. For our study, we chose to 
explore the depth of the intricacies of our method over 
its application to large numbers of data sets.

Our method uses a fixed-tree topology when estimating 
proviral integration dates. Likely due to the complexity of 
resolving a tree topology with intrahost HIV sequences 
(Capoferri et al. 2019; Miller et al. 2019), we were unable 
to achieve convergence with the empirical data sets 
when simultaneously estimating integration dates and 
tree topology. On simulated data, there was little differ-
ence between the estimates using a fixed-tree topology 
or estimating the tree topology. However, integrating 
over different topologies may have a greater effect with 
empirical data, evident when comparing the alternate dat-
ing methods with different tree inference software. Our 
dating method is dependent on the tree topology because 
divergence times and tip dates are highly associated with 
the dates of neighboring nodes and tips. Thus, the 

topology imposes a bias on the estimates and a poor top-
ology may result in incorrect date estimates.

Despite using a fixed-tree topology, we integrate over 
the possible root positions allowing us to overcome poten-
tial biases imposed by using an outgroup or root-to-tip re-
gression. The root position has a significant effect on 
estimating tip dates as divergence from the root is typically 
highly correlated with estimated tip date in phylogenetic 
dating methods. Over the three data sets, we found that 
although the support for any particular node being se-
lected as root was low, the alternatively sampled root po-
sitions were always nearby (see figs. 2–4). Given the utility 
of Bayesian methods, it is not difficult to integrate the pos-
sible root positions.

In all three data sets, some of the estimated dates fell 
within the period of cART administration. Though it is 
possible for viral genomes to integrate during this period, 
there is typically no viral replication and hence likely no 
proviral integration during suppressive cART (Brodin 
et al. 2016; Van Zyl et al. 2017). For simulated data, these 
late estimates were observed, despite it being unlikely for 
integration to occur during cART. This behavior is not un-
ique to the BEAST2 method as it also occurs for linear re-
gression and LSD, where estimates can actually be later 
than the sampling date (Jones et al. 2018, 2020). This arti-
fact is likely caused by highly divergent sequences that are 
difficult to date. One way to fix this would be to use a dif-
ferent prior that implements a low or zero likelihood of in-
tegration during cART, for example, the Exp1a prior.

There were marked differences between the results 
from our simulated data versus empirical data set. There 
was a greater degree of variability between the estimates 
with different integration date priors on the empirical 
data, especially when using different tree inference soft-
ware for the alternate dating methods. Our simulation is 
a simplification of the complexities of within-host HIV evo-
lution and thus produces data more amenable to phylo-
genetic analysis relative to empirical data. Despite this, 
the simulated data provide a proof of concept for our 
Bayesian integration date estimation method. It may be 
valuable in the future to explore how more sophisticated 
simulations affect the estimates of our method.

Although marginal likelihoods estimated via path sam-
pling correlated with the RMSE of the integration dates in 
the simulated data, the unrealistic results estimated by the 
best-fitting Exp1a prior in the N133M data sets suggest 
that path sampling is not appropriate for empirical data. 
In both empirical data sets, the Exp1a prior estimated early 
integration dates that likely preceded the participants’ in-
fection date. This highlights the importance of carefully se-
lecting priors when performing Bayesian analysis to reflect 
actual prior knowledge of the system. Here, the Latent 
prior best encapsulates this because it models the process 
of viral latency. The Latent prior was selected by path sam-
pling for P1 and gave consistent estimates to alternative 
methods and the Latent prior for the simulated data had 
comparable RMSE to the best-fitting model (0.89 vs. 0.62 
years). This RMSE is still lower than the RMSE of the 
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alternative methods. Overall, we recommend using the 
Latent prior for integration date estimation without per-
forming path sampling.

In the empirical data sets, the estimates using the Latent 
or NoPrior models were quite similar [concordance: 0.999 
(P1) and 0.993 (N133M)]. This reveals that the prior on the 
root dates has a great effect on the integration date esti-
mates. Nagel and Ranalla used a prior on the root dates 
to help inform the integration date estimates in their 
Bayesian method (Nagel and Rannala 2023). For the simu-
lated data set and P1, we used a relatively tight prior on the 
root date for the Latent and NoPrior models. It would be 
interesting in the future to look at relaxing this prior given 
that we do not know the infection date of P1. The root 
date prior for N133M was informed by the participant’s 
HIV test history and thus reflects our prior knowledge.

Two of our data sets feature a long period, approximate-
ly one decade, of untreated infection. This is at the upper 
end of the infection duration as untreated persons living 
with HIV typically go 6–10 years before progressing to 
AIDS. We chose these data sets to have this duration of un-
treated infection in order to ensure there were enough 
data and dispersion of data throughout time to get ad-
equate model fit and to allow reservoir sequences to be 
distributed through the longer period of time so that we 
could analyze integration during different infection stages. 
N133M had a shorter period of untreated infection, <3 
years, with only three time points of plasma samples. It 
is possible that the shorter interval with fewer time points 
led the path sampling to choose the Exp1a prior and with 
more data, a better prior would have fit or the Exp1a 
would have produced more appropriate results.

Being integrated into the BEAST2 framework provides 
an avenue of extensibility for our method allowing, for ex-
ample, inclusion of correlated relaxed clocks, skyline/sky-
grid models, and birth death priors with the bdsky 
package (Stadler et al. 2013). BEAST2 also includes support 
for multiple genomic regions, but currently BEAST2 can-
not date tips across multiple trees. Through a Bayesian 
framework, it is possible to incorporate additional prior in-
formation including from nongenetic sources such as viral 
load, T-cell quantity, and administration of therapy into 
the proviral date estimation model. Our method could 
be used to estimate proviral integration dates from differ-
ent anatomical sites; lymph nodes (Finzi et al. 1999), brain 
(Rose et al. 2016), reproductive tissue (Shen et al. 2009; 
Miller et al. 2019), etc. (Churchill et al. 2016; Wong and 
Yukl 2016); possibly including dynamic models of migra-
tion (Vaughan et al. 2014). This would allow us to investi-
gate genetic compartmentalization of proviruses in space 
and time as in Jones et al. (2020). Another avenue of future 
study is to estimate the “ages” of HIV emerging during viral 
rebound after treatment interruption or to compare the 
integration dates of intact and defective proviruses.

Latency is exhibited by other viruses including herpes-
virus (Cohen 2020) and nonhuman viruses which can 
have significant ecological impacts (Biggs et al. 2021). 
Estimating latency periods in these viruses may provide 

useful insights. It is also possible to use our approach of 
tip date sampling to estimate dates of fossil samples 
from molecular data or morphological traits (Bapst et al. 
2016; Froese et al. 2017) substituting latent sequences 
for fossil samples. We can also use tip date sampling to re-
cover unknown collection dates of samples from an epi-
demiological outbreak, provided sufficient evolution 
occurred during the outbreak (Kuhnert et al. 2011; 
Didelot et al. 2018). Imposing prior information on the es-
timated collection dates may improve the epidemiological 
statistics computed.

In summary, we developed and implemented a method 
to estimate proviral integration dates from within-host 
HIV sequences using Bayesian analysis with BEAST2. Our 
method yielded accurate and precise results on both simu-
lated and empirical data sets. Bayesian methods will yield a 
more accurate, granular, and complete understanding of 
persistent reservoir dynamics, ultimately contributing to 
development of durable HIV cure strategies.

Materials and Methods
Simulated Data Generation
Simulated HIV sequence data were generated using a 
modified SANTA-SIM, which allows multiple compart-
ments (Jariani et al. 2019; Jones and Joy 2020) following 
the model described in Jones and Joy (2020). with the fol-
lowing alterations from Jones and Joy (2020): 1) instead of 
a full-length HIV sequence, the nef gene of the ancestral 
HIV subtype B strain HXB2 (GenBank accession: K03455) 
was used as the seed, after replacing the adenine (A) at 
position 371 with a guanine (G) to correct the premature 
stop codon at nef codon 124 to a tryptophan (W) and 2) 
neutral fitness was assumed, but nonstart codons at codon 
position 1 were given a fitness of 0.001 and stop codons 
were given zero fitness as before. This simulation model si-
mulates longitudinal within-host HIV nef sequences with 
an active and latent compartment. HIV mutates and repli-
cates freely in the active compartment and moves to and 
from the latent compartment where mutations do not oc-
cur. The simulation samples ten genomes from the active 
compartment each year over 10 years, at which point the 
initiation of antiretroviral therapy is simulated by setting 
the fitness of the active compartment to zero, thus clear-
ing the active compartment. Ten more years are simulated 
on therapy during which time ten genomes are sampled 
from the latent compartment every 2 years. This results 
in 150 simulated sequences (100 active and 50 latent). 
The alignment was deduplicated using a custom R script 
that utilizes the R package seqinr (Charif and Lobry 
2007) retaining duplicated sequences from the earliest 
collection time point.

Empirical Data Acquisition
We curated HIV nef sequences from participant 1 of Jones 
et al. (2018) available on GenBank (accessions: MG822918, 
MG822919, MG822923–MG822933, MG822935–MG822997, 
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MG822999–MG823015, and MG823144–MG823170). 
Specifically, we used the alignment from Jones and Joy 
(2020), which was deduplicated and checked for hyper-
mutation and recombination previously. This alignment 
includes 93 HIV RNA nef sequences derived from plasma 
from 14 time points during which the participant was 
not receiving antiretroviral therapy and 29 proviral nef se-
quences derived from peripheral blood mononuclear cells 
(PBMCs) from two time points while the participant was 
receiving cART.

We curated 99 sequences from participant N133M of 
Brooks et al. (2020) available on GenBank (accessions: 
MT195425-195535). The sequences were deduplicated using 
a custom R script that utilizes the R package seqinr (Charif 
and Lobry 2007) retaining duplicated sequences from the earli-
est collection time point. Hypermutated sequences were de-
tected and removed using a custom R script based on 
HYPERMUT (https://www.hiv.lanl.gov/content/sequence/ 
HYPERMUT/hypermut.html) and recombinants were identi-
fied and removed using OpenRDP (https://github.com/ 
PoonLab/OpenRDP). This resulted in 63 HIV RNA nef se-
quences derived from plasma from three time points during 
which the participant was not receiving antiretroviral therapy 
and 34 proviral nef sequences derived from PBMCs from two 
time points while the participant was receiving cART.

For consistency with the simulated data, we will refer to 
the plasma-derived sequences from empirical data sets as 
“active sequences” and those derived from PBMCs as “la-
tent sequences.”

Substitution Model Selection
Substitution model selection was performed using 
ModelTest-NG v0.1.6 (Darriba et al. 2020) considering all 
203 substitution schemes, equal/unequal base frequencies, 
and uniform rate heterogeneity/discrete Gamma rate het-
erogeneity (GAMMA)/proportion of invariant sites (pInv)/ 
GAMMA and pInv; and using all the distinct sequences for 
each data set. For the discrete Gamma rate heterogeneity, 
we employed four rate categories. The model with the low-
est BIC was selected.

Prior Selection
We compared 6 BEAST2 models for each data set using 
only the sequences collected during active infection (99 si-
mulated sequences and 93 empirical sequences) to deter-
mine the most appropriate clock and tree prior to use in 
the ultimate analyses. The specific clock and tree priors 
considered are given in supplementary table S2, 
Supplementary Material online. Clock priors for simulated 
data used a mean rate of 0.013 sub./site/year (Cuevas et al. 
2015) and clock prior for empirical data used a mean rate 
of 8.2E−5 sub./site/day (Zanini et al. 2017). These models 
used the substitution model selected with ModelTest-NG 
under the default priors. A maximum likelihood phylogeny 
generated by IQ-TREE v1.6.1 (Nguyen et al. 2015) from the 
active sequences was used as a starting tree. All model 
XML files were generated via a custom R script.

Each model was run in BEAST v2.6.2 (Bouckaert et al. 
2019) with a chain length of 100 million iterations, sampling 
every 10,000 iterations. We used the same operators for each 
run; except, we used larger operator weights and scales on 
the tree scale operator for models with a relaxed clock 
with exponential rate variation and coalescent with constant 
population size to facilitate convergence. Ten percentage of 
burn-in was discarded from each run and the parameters 
were checked for convergence by ensuring their effective 
sampling sizes (ESS) were all >200 and by inspection of par-
ameter traces with Tracer v1.7.1 (Rambaut et al. 2018).

For each run, we performed path sampling using the 
BEAST package MODEL_SELECTION v1.5.3 (Leache et al. 
2014). The model specifications were identical to the origin-
al run with 50 steps, 10 threads, alpha equal to 0.3, burn-in 
of 10,000,000 iterations and chain length of 11,000,000 
iterations. We then ran the PathSampleAnalyser app in-
cluded with MODEL_SELECTION with 100 cross-validations 
to compute the marginal likelihood and its SD.

Bayesian tip Date Sampling
We used our selected best-fitting BEAST2 model of clock 
and tree priors for each data set to generate BEAST2 mod-
els for the estimation of HIV proviral sequence integration 
dates. To our best model, we added latent sequences to 
the underlying data set and then extended our model add-
ing the Latent prior on the integration date of the latent 
sequences. The Latent prior used the LatencyPrior class 
in the package BBD. Tip dates were sampled using the 
TipDatesRandomWalkerPadded operator in the BBD package 
with the padding set to 0. A maximum likelihood phylogeny 
generated by IQ-TREE including both active and latent se-
quences was used as a starting tree. The topology of the 
tree was fixed to aid run convergence and the root of the 
tree was sampled using the RootExchange operator from 
the BBD package. A diagram of the model is given in figure 1.

We developed a new prior in BEAST2 to serve as an in-
formative prior based on our understanding of HIV latency 
dynamics. We call this prior the Latent prior. This prior mod-
els the likelihood that an HIV sequence underwent latency 
and was sampled before it could reactivate. The likelihood 
of the sequence becoming latent is given by an exponential 
distribution over the number of years/days since infection 
(the root of the tree), and likelihood of latent sequence re-
activation is given by an exponential distribution over the 
number of years/days since proviral integration. Thus, the 
Latent prior is given by the following equation:

P(I = t) := P(L = t − Tr|R ≤ Ts − t) 

where I is the integration date, L is the time till integration 
after infection, R is the time to reactivation after integration, 
Tr is the infection date, and Ts is the sampling date. This re-
sults in the likelihood function:

I(t) =
(ρ − λ)e(ρ−λ)t

e( ρ−λ)Ts − e(ρ−λ)Tr 
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where λ is the latency rate and ρ is the reactivation rate. The 
values of these parameters are set the same as in the simu-
lation (Jones and Joy 2020), which were based on Rong and 
Perelson (2009) and Strain et al. (2005). We also include a 
prior on the root date, a log-normal prior in the number 
of years/days the root was before first sampled sequence. 
See supplementary table S4, Supplementary Material online 
for details.

We ran the model in BEAST v2.6.2. To facilitate conver-
gence, each run had variable chain lengths and operator 
scales. The specific values for each run are shown in 
supplementary table S12, Supplementary Material online. 
Ten percentage of burn-in was discarded from each run 
and the parameters were checked for convergence by en-
suring that their ESS were all >200 and through inspection 
of parameter traces with Tracer. For some data sets (see 
supplementary table S12, Supplementary Material online) 
to achieve convergence, we split the analysis into 10 paral-
lel runs with chain lengths of 1 or 5 billion iterations, sam-
pling every 1,000,000 or 5,000,000 iterations. Ten 
percentage of burn-in was discarded from each run, the 
runs were combined using LogCombiner v2.6.2 
(Bouckaert et al. 2019) and the combined runs were 
checked for convergence as above. The mean sampled 
date of each latent sequence was used as the estimate of 
the proviral integration for that sequence.

Path Sampling tip Date Priors
We performed the same analyses as above with ten add-
itional priors on the integration dates and used path sam-
pling to find the best-fitting priors. These priors are listed 
in supplementary table S4, Supplementary Material online 
and shown in supplementary figures S3–S5, Supplementary 
Material online. The priors which employed uniform or nor-
mal distributions used the MRCAPrior class in BEAST2, the 
log normal and exponential priors used the BBDPrior class 
in the package BBD v1.0.15 (available at https://github. 
com/brj1/BBD).

Each prior was selected and parametrized in an attempt 
to model the integration dates. The Unif1 and Unif2 use a 
uniform distribution bounded by the sampling times of 
the plasma sequences or the collection time of latent se-
quence and sometime before infection. These are meant 
to encapsulate nonpreferential seeding of the reservoir 
during active infection and nonpreferential seeding during 
the entire infection. The Norm prior uses a normal distri-
bution centered at the midpoint of plasma sampling times 
with SD set to a quarter of the sampling interval of the 
plasma sequences. This prior is unrealistic in that it allows 
sequences to date later than their collection time, but it 
has most of its density within the period of sampling 
from plasma during active infection when we expect the 
majority of proviral integration to take place. We included 
this model to see if an unrealistic model will be selected by 
the path sampling. The Lnorm1 and Lnorm2 priors use log- 
normal priors on the number of days before the last 
sampled active sequence or collection date of the latent 

sequence. This distribution biases the dates to fall within 
the sampling period of plasma sequences during active in-
fection in the absence of therapy. The Exp1a and Exp1b 
priors use exponential priors on the number of days before 
the last sampled active sequence or collection date of the 
latent sequence. These priors model a waiting time to pro-
viral integration before collection. We also included Exp1b 
and Exp2b priors which had an estimated mean. We in-
cluded these priors to see if we could infer the waiting 
time or “remain latent rate” from the data. Finally, we per-
formed our analysis without specifying any prior for the in-
tegration dates. For these models, we also include the same 
prior on the root date as in the Latent prior; this prior on 
the root date was not included for the other runs. These 
runs are called the NoPrior runs.

The Unif2, Lnorm2, Exp2a, Exp2b, and Latent prior all 
depend upon the collection time of the latent sequence 
and thus for those priors each time point of latent se-
quences has its own prior. The other priors and the models 
with no prior on the integration dates do not depend on 
collection time and thus, those models have the same 
prior for each latent sequence.

We ran each model in BEAST v2.6.2 as described in the 
previous section. For each run except for runs with no prior 
on the integration dates, we performed path sampling with 
the BEAST2 package MODEL_SELECTION. We cannot use 
path sampling for the NoPrior runs because their likelihood 
function is improper. As before, the model specifications 
were identical to the original run with 50 steps, 10 threads, 
alpha equal to 0.3. We used the same burn-in as the original 
run and then sampled 100 times the sampling frequency of 
the original run, sampling the likelihood 1,000 times. We 
then ran the PathSampleAnalyser app included with 
MODEL_SELECTION with 100 cross-validations to compute 
the marginal likelihood and its SD.

Other Date Estimation Methods
For comparison, three other methods were used to infer 
proviral integration dates: EPA, linear regression, and 
LSD. EPA was performed as described in Abrahams et al. 
(2019). The alignment of unique active sequences was 
used to infer a maximum likelihood phylogeny using 
each of three software: FastTree v2.1.11—compiled with 
double precision (Price et al. 2010), RAxML v8.2.11 
(Stamatakis 2014), or IQ-TREE v1.6.1 (Nguyen et al. 
2015). Then EPA was used to find the most likely position 
in the phylogeny of each latent sequence using the scripts 
found at https://github.com/veg/ogv-dating running in 
HYPHY v2.5.8 (Kosakovsky Pond et al. 2020). For the em-
pirical data, nucleotide position 34 was removed from 
the alignment as one sequence had a deletion.

Linear regression was performed as described in Jones 
et al. (2018). The alignment of all (including active and la-
tent) distinct sequences was used to infer maximum like-
lihood phylogenies using the same three software 
packages. The phylogeny was rooted using root-to-tip re-
gression maximizing the correlation between the active 
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sequence dates and their phylogenetic distance from the 
root of the phylogeny using the R package ape. With R, a lin-
ear regression between sequence date and phylogenetic dis-
tance from the root was fit using only the active sequences. 
The latent sequence dates were then inferred from the linear 
regression using their phylogenetic distance from the root.

LSD was performed using the software LSD v2.3 
(To et al. 2016). The same three maximum likelihood phy-
logenies inferred for the linear regression were used for 
LSD. The phylogeny was reduced to contain only active se-
quences using a custom R script and the root of the re-
duced phylogeny was inferred using LSD. The position of 
the root was then inferred in the complete phylogeny (ac-
tive and latent sequences) from the position of the root in 
the reduced phylogeny using a custom R script. The inte-
gration dates of the latent sequences were then inferred 
using LSD with the rooted phylogeny containing all the 
sequences.

Statistical Analyses and Data Visualization
Statistical analyses and data visualization were performed 
in R v4.1.2. Specifically, the R packages: tidyverse (Wickham 
et al. 2019), magrittr, seqinr (Charif and Lobry 2007), and 
treeio (Wang et al. 2020) were used for data reading, writ-
ing, and manipulation. The R package optparse was used 
for script parameterization. The R package DescTools 
was used for statistical tests including RMSE and Lin’s con-
cordance coefficient (Lin 1989). The R package MASS 
(Venables and Ripley 2002) was used to perform 
Sammon MDS (Sammon 1969). The R packages ape 
(Paradis and Schliep 2019), phytools (Revell 2012), and ti-
dytree were used for statistical analyses on trees. Finally, 
the R packages ggpubr, ggtree (Yu et al. 2017), and patch-
work were used for producing graphics.

Edge bootstrap support values for phylogenies were 
computed by generating 1,000 bootstrap trees with 
IQ-Tree (Nguyen et al. 2015) using the “-bo” command 
and then assigning bootstrap values with the “prop.clades” 
function in the R package ape (Paradis and Schliep 2019).

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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