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Abstract

Exonic variants present some of the strongest links between genotype and phenotype. However, these variants can have significant in
ter-individual pathogenicity differences, known as variable penetrance. In this study, we propose a model where genetically controlled 
mRNA splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from RNA-sequencing data in GTEx 
V8, we find that pathogenic alleles are depleted on highly included exons. Using a large-scale phased whole genome sequencing data 
from the TOPMed consortium, we observe that this effect may be driven by common splice-regulatory genetic variants, and that natural 
selection acts on haplotype configurations that reduce the transcript inclusion of putatively pathogenic variants, especially when limiting 
to haploinsufficient genes. Finally, we test if this effect may be relevant for autism risk using families from the Simons Simplex Collection, 
but find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, our results indicate that common splice- 
regulatory variants may play a role in reducing the damaging effects of rare exonic variants.

Keywords: incomplete penetrance, QTLs, alternative splicing, functional genomics, GTEx, TOPMed, Simons Simplex Collection, 
statistical genetics

Received: February 02, 2023. Accepted: April 18, 2023
© The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America. All rights reserved. For permissions, please e-mail: 
journals.permissions@oup.com

GENETICS, 2023, 224(4), iyad115 

https://doi.org/10.1093/genetics/iyad115
Advance Access Publication Date: 22 June 2023 

Investigation

mailto:jeinson@nygenome.org
mailto:tlappalainen@nygenome.org


Introduction
Incomplete penetrance is a well-known phenomenon, where an 
individual carries a disease-associated allele, but develops no 
symptoms of the disease themself (Shawky 2014; Gettler et al. 
2021; Forrest et al. 2022). Similarly, variable expressivity refers to 
analogous gradual differences in disease severity; here, we refer 
to both as variable penetrance. These instances are likely under
reported in the literature due to ascertainment bias, when many 
studies are based on sequencing due to a prior genetic condition 
(Cooper et al. 2013; Dewey et al. 2016). Even amongst Mendelian 
disease variants, which are typically thought of as having strong 
effects on phenotype, differing levels of severity have been ob
served between carriers (Chen et al. 2016). These changes have 
been attributed to epistatic or additive effects of genetic modifiers, 
as well as environmental modifiers of penetrance, which can be dif
ficult to control in an experimental setting (Maya et al. 2018). When 
looking at incomplete penetrance in specific diseases, genetic 
modifiers have been mapped, for example, to BRCA in breast can
cer (Milne and Antoniou 2011), and RET in Hirschsprung’s disease 
(Emison et al. 2005). Modified penetrance has also been studied in 
the context of polygenic risk scores, where multiple common risk 
variants increase the expected pathogenicity of a disease-relevant 
variant (Fahed et al. 2020). However, genome-wide patterns under
lying modified penetrance are still poorly known. One potential 
mechanism for incomplete penetrance is cis-regulatory mechan
isms that affect the regulation of a gene carrying a pathogenic vari
ant. This model has been tested with expression quantitative trait 
loci (eQTLs) acting as modifiers of penetrance (Castel et al. 2018), 
but can be expanded to other types of gene regulatory processes, 
such as mRNA splicing. While eQTLs control the dosage of their tar
get genes, splicing alters inclusion of variant-carrying exons in 
transcripts, which could potentially have a large effect on the over
all pathogenicity of a damaging variant.

Alternative splicing is responsible for the great diversity of iso
form structures observed across human tissues and cell types 
(Keren et al. 2010). With regard to coding variant interpretation, 
exons with lower expression have been shown to be less likely 
to harbor pathogenic variants, while ubiquitously included exons 
can be prioritized for gene disrupting rare variants (Cummings 
et al. 2020). Autistic individuals with variants on the same exons 
have been shown to have remarkably similar disease phenotypes, 
putatively due to the variants having similar effects on gene dos
age or function, a notable finding given the extreme heterogeneity 
of the condition (Chiang et al. 2021). Additionally, splicing can be 
influenced by common genetic variation, as evidenced by the 
many studies that use large scale whole genome sequencing 
(WGS) and transcriptomic datasets to map splicing quantitative 
trait loci (sQTLs) (Alasoo et al. 2019; Consortium 2020; Kerimov 
et al. 2020; Garrido-Martín et al. 2021). sQTLs in general have 
been implicated in disease risk and other genetic traits (Ongen 
and Dermitzakis 2015; Li et al. 2016; Noble et al. 2020).

In this study, we build upon the finding that transcript usage of 
genes containing alleles contributes to the allele’s pathogenicity, 
and ask if common splice-regulatory variants may partially drive 
this phenomenon and affect inter-individual variation in pene
trance. Expanding on previous methodology (Castel et al. 2018), 
we look for nonrandom haplotype combinations of sQTL variants 
and putatively pathogenic rare variants in population scale data
sets. Such an observation could indicate that haplotype combina
tions have an effect on fitness, and by proxy, disease risk. In doing 
so, we develop a general framework for modeling common and 
rare variant haplotypes in a population, with a corresponding 

test to detect deviations from the null (Fig. 1 and Supplementary 
Fig. 1). These analyses will improve our understanding of how var
iants across the annotation and allele frequency spectrum act to
gether to shape human traits and could ultimately aid our 
interpretation of rare variants in a clinical context.

Methods
Data sources
In this project, we utilize bulk RNA sequencing and WGS from the 
Genotype-Tissue Expression (GTEx) project Version 8 (Consortium 
2020), WGS from 19 cohorts included in the Trans-Omics for 
Precision Medicine Project freeze 8 (https://topmed.nhlbi.nih. 
gov/topmed-whole-genome-sequencing-methods-freeze-8) 
(Supplementary Table 2), and WGS from simplex families in the 
Simons Simplex Collection (SSC).

GTEx percent spliced in quantification and 
filtering
Percent spliced in (PSI) was calculated from GTEx V8 RNA-seq 
data. We limited our analysis to 18 tissues, which were chosen 
for their coverage of tissue diversity GTEx and their coverage of 
the most coding genes possible (Supplementary Table 1). Exon 
PSI for protein-coding genes was quantified using the Integrative 
Pipeline for Splicing Analysis (IPSA) (Pervouchine et al. 2013; 
IPSA-nf 2020), which was run on Google Cloud through Terra 
(https://github.com/guigolab/ipsa-nf). The “-unstranded” flag 
was used during the sjcount process. Exons were defined by the 
modified version of Gencode annotation v26 used in GTEx V8, 
which collapses genes with multiple isoforms to a single isoform 

Fig. 1. Splice-regulatory variants as modifiers of penetrance hypothesis. 
The hypothesis of this study is illustrated with an example of an 
individual who is heterozygous for both a ψQTL and a coding variant. The 
2 possible haplotype configurations result in either a reduced or increased 
penetrance state of the coding allele, depending if the allele is on the more 
lowly or highly included exon, respectively. We predict that natural 
selection would deplete those that fall in a high-penetrance configuration 
in the general population. See Supplementary Fig. 1 for a quantitative 
description of the model.
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per gene (https://storage.googleapis.com/gtex_analysis_v8/reference/ 
gencode.v26.GRCh38.genes.gtf).

For downstream analyses, PSI data for each tissue was prepared 
by (1) removing exons with data available in less than 50% of donors 
and (2) removing exons with fewer than 10 unique values across all 
available donors (Supplementary Table 1). These data were normal
ized for QTL mapping by randomly breaking any ties between 2 
individuals with the same PSI at an exon, then applying inverse- 
normal transformation across all individuals. Filtered and normal
ized PSI calls were saved in BED format with start/end position 
corresponding to each gene’s transcription start side (TSS), which 
serves as a reference for where to define windows for QTL mapping. 
The gene containing each exon was included in the BED files for use 
with QTLtools’ group permutation mode.

Percent spliced in Z-score analysis in GTEx
We compiled a list of all exons with sufficiently variable splicing in 
at least one GTEx tissue, as defined in the previous step, and saved 
the genomic coordinates of these exons in BED format. Rare var
iants (gnomAD AF < 0.01) that fell on variably spliced exons 
were extracted from GTEx WGS VCFs, and were subsequently fil
tered to variants that appeared less than 6 and greater than 1 
time. Rare variant Combined Annotation Dependent Depletion 
(CADD) (Rentzsch et al. 2019) scores and annotations with respect 
to the relevant gene were extracted as well. Because CADD v1.5 
uses a different VEP annotation that in some cases does not cor
respond the exon annotations used previously, we re-annotated 
rare variants using VEP v93.2 and gencode v28, taking the most 
deleterious annotation when a rare variant covered multiple tran
scripts. Rare variant calls from exons represented disproportion
ately, either due to length or to high number of variants at the 
exon, were removed. Threshold for removing an exon was defined 
as Q3 + 1.5 ∗ IQR, where Q3 is the third quartile of the number of 
rare variants per exon and where IQR is the interquartile range 
of the number of rare variants per exon. For all remaining var
iants, we computed the PSI Z-score of the individual that carried 
the variant at that specific exon, across all tissues where the 
exon was expressed and sufficiently variable. The PSI Z-score for 
a particular individual i at an exon j in tissue k is calculated as (ψijk

−μjk)/σjk, where ψijk is an individual’s PSI level at a particular exon 
and tissue, and μj and σj are the mean and standard deviation of 
PSI for an exon j across all individuals with data available for 
that exon in tissue k. Importantly, we do not normalize PSI for 
this analysis, to preserve signal from exons with high PSI Z-scores.

Primary quantitative trait locus mapping, 
collapsing, and secondary ψquantitative trait 
locus mapping
For each of the 18 GTEx V8 tissue groups, quantitatice trait locus 
(QTL) mapping was run on every exon that passed filtering, using 
all genetic variants with an allele frequency greater than 5% with
in 1 Mb of the gene’s transcription start site. We used QTLtools 
(Delaneau et al. 2017) run in grouped permutation mode, with 
groups defined by gene. This strategy controls for correlation be
tween exons that are part of the same gene. 15 PEER factors recal
culated from normalized PSI, 5 genetic principal components, as 
well as sex, WGS PCR batch, and sequencing platform were also 
included as covariates in the QTL model, as recommended in 
the GTEx V8 STAR methods (Consortium 2020).

For every exon, we selected the most significant variant, and for 
every gene the most significant exon. We then compiled the QTL 
results across tissues to achieve a set of cross-tissue top 
QTLs. From here forward we refer to these QTLs as ψQTLs, using 

the ψ to distinguish from convention sQTLs in order to emphasize 
that the quantitative trait is exon PSI. When a gene was significant 
across multiple tissues, we used the tissue where the effect size 
(ΔPSI score) was the highest. This process ensured that a gene 
was only included once in our final set of ψQTLs, and was labeled 
by one variant that is associated to splicing (sVariant).

Since the splicing of multiple exons within a gene is often cor
related, we implemented an approach to identify additional exons 
whose splicing the sVariant is associated with. Consideration of 
multiple exons per gene is desirable because it increases the 
amount of genetic space where rare variant haplotypes can be 
identified. For each gene with a significant ψQTL, we ran a nominal 
QTLtools pass of just the sVariant against PSI of all other exons 
in the gene. We then considered secondary exons with a 
Bonferroni-corrected P < 0.05 if QTL effect direction was the 
same as the top exon.

This procedure produced the final set of common variant-exon 
pairs used in all downstream analyses (10,901 sExons, across 
5,198 sGenes). Haplotype calls from phased, filtered WGS datasets 
(see next section) were compiled by extracting rare variants that 
fell within sExons, and recording if the variant appeared on the 
same haplotype as the high inclusion or low inclusion ψQTL allele 
(code available at https://github.com/jeinson/mp_manuscript).

Whole genome sequencing filtering across 
datasets
Genotype-Tissue Expression (GTEx) project
Read-aware phased WGS data were used from all 838 samples in
cluded in GTEx V8 (Consortium 2020) (Supplementary 
Information Section 2.4). For use in haplotype calling, the follow
ing filters were applied as follows: (1) Variants were extracted with 
an allele frequency less than 0.005 in gnomAD, and singleton var
iants without read backing to support their phase call were re
moved. (2) Samples from donors that did not self-identify as 
European American were removed. Since the ψQTL data from 
GTEx is based on 85% European Americans, the sVariants selected 
from these data may not capture allele frequencies and haplotype 
structures in other ancestries, and differing numbers of rare var
iants across ancestries might bias the results. (3) Haplotype calls 
from genes represented disproportionately, either due to length 
or to high number of variants at the gene, were removed. 
Threshold for removing a gene was defined as Q3 + 1.5 ∗ IQR, 
where Q3 is the third quartile of the number of haplotypes per 
gene and where IQR is the interquartile range of the number of 
haplotypes per gene.

Trans-Omics for Precision Medicine (TOPMed) initiative
Population-phased WGS data from donors of European-American 
ancestry were used from TOPMed, since this matches the popula
tion source of the ψQTL data from GTEx (see above). To define in
dividuals of European ancestry, we used the approach outlined in 
Morris et al. (2019). Briefly, TOPMed samples were projected onto 
the first 20 principal components estimated from the 1000 
Genomes Phase 3 (1000G) project (Auton et al. 2015) using 
FastPCA v2.0 (Galinsky et al. 2016). Only biallelic variants shared 
between the 2 datasets, and that passed a strict set of criteria 
(minor alelle frequency [MAF] >1%, minor allele count >5, geno
typing call rate >95%, and Hardy–Weinberg P-value >1 × 10−6) 
were used to calculate the principal components. Expectation 
Maximization (EM) (Chen and Maitra 2015) clustering was used 
to compute the probabilities of cluster membership, and eigen
vectors 1, 2, 5, 6, and 8 were selected for efficiently separating 
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the individuals of White European and American ancestry (subpo
pulation codes CEU, GBR, FIN, CEU, IBS, and TSI) from other ances
try groups. Finally, 8 predefined clusters were chosen for EM 
clustering based on sensitivity analyses. This resulted in 52,426 
TOPMed individuals clustering together with the 1000G CEU, 
GBR, FIN, CEU, IBS, and TSI subpopulation, and they were termed 
of White ancestry. We kept 19 cohorts (Supplementary Table 2), 
and 49,542 individuals, filtering out the remaining cohorts, which 
collectively contained less than 5% of all haplotypes.

To define rare coding variants for downstream analysis, we ex
tracted SNPs and small indels with more than 1 and 10 or fewer 
occurrences; singletons were removed due to unreliable 
population-based phasing. To account for unusually long genes, 
and genes with an unusually high number of rare variants, we ap
plied the same filtering procedure as step 3 from the GTEx analysis 
to produce a final set of rare variant haplotypes.

Simons Simplex Collection (SSC)
Phased WGS data was used from 2,380 families. Simplex families 
consist of a proband child diagnosed with Autism Spectrum 
Disorder (ASD), an unaffected sibling, and 2 unaffected parents 
(Turner et al. 2016). We genotype the SSC whole-genome dataset 
(An et al. 2018; Ruzzo et al. 2019; Yoon et al. 2021) using the trans
mission mode of our Multinomial Genotyper (Iossifov et al. 2012) 
that produces only high-quality Mendelian family genotypes. 
The whole-genome sequence and the genotype calls are available 
to qualified researchers through the Simons Foundation. In add
ition, we transmission-phased the heterozygous variants on a per- 
variant basis when possible, using the genotypes of both parents. 
Since this method is accurate for singleton variants in probands, 
these were included in downstream analysis.

We additionally removed genes that contained an unusually 
high number of rare coding variants across parents, using the 
same outlier definition as in the previous 2 datasets. This set of 
variants post-filtering was considered in siblings and probands 
in downstream analyses.

Haplotype calling from phased genetic data and 
filtering
ψQTL-coding allele haplotypes were generated using a similar pro
cedure across all 3 phased-resolved WGS datasets. First, all rare 
variants were extracted among sExons using the filters described 
above, considering variants that fell in primary and secondary 
sExons, taking account of the haplotype phase assignment. Then, 
the genotype of sVariants, and phase for heterozygous cases, was 
extracted from VCFs, and haplotypes were labeled as high- 
penetrance (β = 1) and low penetrance (β = 0) according to our mod
el for splice QTLs as a modifier of penetrance (Fig. 1).

Test for depletion of regulatory haplotypes that 
increase penetrance
We sought to test the hypothesis that QTL-coding allele haplotype 
combinations are present in the population at frequencies that 
deviate from a baseline expectation, based on allele frequencies 
alone. Such a result could indicate high-penetrance haplotypes 
with deleterious variants being removed from the population by 
natural selection. The total number of high-penetrance haplo
types arising from ψQTLs with varying allele frequencies can be 
modeled by the Poisson-binomial distribution, which is a general
ization of the binomial distribution. While a binomial describes 
the sum of n independent identically distributed Bernoulli ran
dom variables, the Poisson-binomial describes the sum of n inde
pendent but non-identically distributed Bernoulli random 

variables. Therefore, the distribution must be parameterized by 
a vector of probabilities of length n. While we could calculate 
P-values using a variety of methods that obtain the cumulative 
distribution function (CDF) of the Poisson-binomial (Hong 2013), 
these methods all lack a way to quantify the magnitude of the ef
fect size. Furthermore, they measure deviation from the null but 
do not allow comparison of 2 datasets (in our case, haplotypes car
rying non-deleterious and deleterious coding alleles). Therefore, 
we developed the following procedure that approximates the 
Poisson-binomial CDF. This has the advantage of generating a 
quantifiable effect size for deviation from the null model, as 
well as corresponding confidence intervals.

Our procedure for approximating the Poisson-binomial, and 
subsequently testing for nonrandom occurrences of putative 
high-penetrance haplotypes, which we applied to each WGS data
set in this study, is as follows:

For each observation of a heterozygous coding allele that falls in 
a sExon, let L and H represent the low and high exon inclusion ψQTL 
haplotypes, respectively, and let B and b represent the coding vari
ant reference and minor allele, respectively. Here, we focus on rare 
variants, with our main interest being deleterious ones, and we here 
treat rare alleles as independent. Using variant phasing informa
tion, for a given haplotype g, we define an indicator function β which 
is set equal to 1, corresponding to putatively high-penetrance, if the 
coding allele falls on the highly included sExon, and 0 otherwise. 
The genotype of the major coding allele is irrelevant, and for rare 
variants, b/b homozygotes are absent in practice.

β(g) = 1 if g ∈ (Hb/HB), (Hb/LB)
0 if g ∈ (Lb, LB), (Lb/HB)

􏼛􏼚

Next, we define an expectation function on β, under the null model 
where observing a high-penetrance haplotype and low-penetrance 
haplotype are equally likely. E[β(g)] is dependent on the heterozy
gosity of the ψQTL variant in an individual. Assuming independence 
of rare variants, if an individual is heterozygous for a ψQTL allele, 
the probability that an exonic variant will land in a high-penetrance 
configuration is 0.5. If an individual is homozygous for the ψQTL al
lele, the probability that the exonic variant will land in a high- 
penetrance configuration is dependent on the ψQTL’s allele fre
quency.

E[β(g)] = 0.5 if g ∈ (L/H)
n(H/H) + 1/(n(H/H) + n(L/L)) if g ∈ (L/L), (H/H)

􏼛􏼚

We define the expectation of observing a homozygous ψQTL allele 
as the proportion of high inclusion ψQTL homozygotes in the data
set, plus a pseudo-count, to avoid getting an expectation of 0 in da
tasets where the low inclusion allele is much more common. This 
method does not assume Hardy–Weinberg equilibrium for the 
ψQTL allele, but requires that the proportion of homozygotes for 
the 2 alleles be recalculated on each dataset. This approach was 
used for the GTEx and TOPMed analyses. Alternatively, the expect
ation of β under the null model can also be calculated as follows:

E[β(g)] =
0.5 if g ∈ (L/H)

f (H)2/f (H)2 + (1 − f (H))2) if g ∈ (H/H), (L/L)

􏼨 􏼩

where f(H ) is the population frequency of the high exon inclusion 
ψQTL allele. We took this approach for haplotypes from SSC, where 
counting alleles across the whole dataset was infeasible due to the 
structure of the dataset, and used ψQTL allele frequencies from 
gnomad 3.0 (Karczewski et al. 2020).
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The function β is evaluated across all individuals, sGenes, and 
rare variants in sExons in a dataset. The average observed devi
ation from the expected totals of high- and low-penetrance haplo
types (ϵ) is calculated as follows:

ε =
1
N

􏽘N

n=1

(β(gn) − E[β(gn)]) 

where N is the total number of considered haplotypes. ϵ can be 
interpreted as the effect size of depletion/enrichment of high- 
penetrance haplotypes in the dataset such that ϵ < 0 would indi
cate a depletion of high-penetrance haplotypes.

We quantify the significance of ϵ by bootstrapping all haplo
types, generating 95% confidence intervals and drawing 2-sided 
empirical P-values as

P(H0) = 2 min
􏽐B

b=1 εb < 0
B

,
􏽐B

b=1 εb > 0
B

􏼢 􏼣

where B is the total number of bootstraps. In practice, we found 
that 1,000 bootstraps were enough to accurately approximate 
the Poisson-binomial distribution, while managing runtime.

Although the test was designed for counts of haplotypes, this ap
proach is generalizable to any system that can be modeled by a 
Poisson-binomial distribution. Therefore, to benchmark our test, 
we simulated data from several theoretical allele frequency distri
butions by sampling from beta distributions with various shape 
parameters, including one distribution where its parameters were 
estimated direction from our set of ψQTLs from GTEx using the 
method of moments estimator (Fig. 3 and Supplementary Fig. 4). 
We found that our bootstrapping procedure accurately approxi
mated the Poisson-binomial distribution for all inputs tested. 
However, the magnitude of ϵ—but not direction—is dependent on 
the shape of the theoretical allele frequency distribution, so com
paring magnitudes of ϵ across distinct datasets should be done 
with caution. The accuracy of our method increased with larger 
sample sizes. Therefore, we recommend using this approach 
when handling data where N > 1,000 (Supplementary Fig. 4).

As an extension to this procedure, we can also conveniently 
calculate the significance of a difference in ϵ between 2 similar da
tasets A and B, for example, between haplotypes where the rare 
variant is putatively deleterious vs haplotypes where the rare vari
ant is non-deleterious:

ϵcomp =
1

NA

􏽘NA

n=1

(β(gAn ) − E[β(gAn )])

􏼠 􏼡

−
1

NB

􏽘NB

n=1

(β(gBn ) − E[β(gBn )])

􏼠 􏼡

.

We then apply the bootstrapping procedure as in the standard 
case, and draw P-values accordingly. The corresponding P-value 
from this procedure is referred to as the “comparison test” in the 
main text.

This test is implemented in the STatististic for Modified 
PENetrance (STAMPEN) R package that is available to download 
here (https://github.com/jeinson/stampen).

Results
Deleterious rare alleles accumulate at lowly 
spliced exons with respect to the population
We first tested the hypothesis that rare pathogenic alleles 
(CADD > 15) (Rentzsch et al. 2019) are more likely to occur at less 

spliced-in exons (Fig. 1). To accomplish this, we used bulk RNA- 
sequencing (RNA-seq) and WGS data from the Genotype-Tissue 
Expression (GTEx) project V8 release, which is representative of 
a general population free of severe genetic disease. We defined 
variants as rare if their variant frequency in gnomAD 
(Karczewski et al. 2020) was less than 0.5%, and they appeared 5 
or fewer times among the 838 GTEx WGS donors.

To begin, we calculated PSI scores for all annotated protein- 
coding gene exons across 18 GTEx tissues, and only kept exons 
with sufficient splicing variability across individuals (Methods, 
Supplementary Table 1, and Supplementary Fig. 2a). We extracted 
rare alleles that fell on variably spliced exons, separating alleles 
within 10 bp of a splice junction to avoid cases where the allele 
is more likely to directly affect splicing. To compare the splicing 
of each donor with a deleterious allele to the population distribu
tion per exon, we calculated PSI Z-scores across all tissues with 
available data (Supplementary Fig. 2b, Methods). We found that 
PSI Z-scores were significantly different between exons carrying 
deleterious (N = 19,178) and non-deleterious (N = 49,575) rare al
leles (Mann–Whitney U test: P = 2.577 × 10−4). This rank difference 
was accounted for by a modest decrease in mean PSI Z-score 
among donors that carried deleterious alleles in a given exon, 
which was consistent across tissues and across variant conse
quence annotations (Fig. 2 and Supplementary Fig. 3). Notably, 
stop-gained variants had the strongest association with low PSI 
Z-scores—even stronger than the signal for variants close to splice 
junction—but the overall result was present for multiple annota
tion categories (Supplementary Fig. 3). This suggests that the sig
nal is not solely driven by the most pathogenic variants nor direct 
rare variant effects on splicing. These results extend the previous 
work, comparing different exons and showing accumulation of 
stop-gained variants on those with lower inclusion (Cummings 
et al. 2020). Here, we observe a similar pattern when comparing 
different individuals within a given exon, consistent with the hy
pothesis that the penetrance of coding alleles is reduced when 
they fall on more lowly included exons. However, this approach 
does not discern the underlying reasons for splicing differences 
between individuals, including alleles that may drive a decrease 
in splicing and their haplotype combinations with rare alleles.

A general model for coding allele-quantitative 
trait locus haplotype configurations
We next sought to test if regulatory alleles on the same haplotype 
as rare coding alleles contribute to this phenomenon, using 
phased WGS data. Since directly quantifying the penetrance of 
coding alleles is difficult, our approach was to observe modified 
penetrance through the lens of purifying selection, where high- 
penetrance haplotype combinations would be depleted from the 
general population. Advantageously, this technique allows us to 
use large phased WGS datasets where individual gene expression 
data is not available.

Initially, splice-regulatory alleles were cataloged in GTEx 
through quantitative trait locus (QTL) mapping, using the percent 
spliced in (PSI or ψ) (Pervouchine et al. 2013) of each exon as a 
quantitative phenotype. These alleles are hence referred to as 
ψQTLs. We use the “ψ” nomenclature to differentiate from 
sQTLs, where the splicing phenotype can vary between studies 
and is often less interpretable for downstream applications. 
ψQTL mapping and properties are described in Einson et al. 
(2022). Briefly, we mapped ψQTLs from GTEx V8 using the same fil
tered set of PSI scores across 18 tissues as in the previous analyses 
(see Methods). We compiled a set of 5,196 cross-tissue ψQTL genes 
[one significant ψQTL variant (sVariant) and one exon associated 
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with the sVariant (sExon) per gene], and recorded which alleles led 
to higher or lower sExon inclusion. We also mapped secondary 
sExons across ψQTL genes where the most significant sVariant 
was also associated with splicing in the same direction as the 
top sExon in the same gene, which were used to expand the 
amount of genic space where rare variants could be considered.

Next, to robustly test for nonrandom haplotype combinations 
of rare exonic alleles and common ψQTL alleles, we describe an 
approach that quantifies the significance of deviations in haplo
type combinations from the null in a dataset, taking variable 
ψQTL allele frequencies into account. In most datasets, ψQTL al
leles that may have an effect on rare variant penetrance are 
nonuniformly distributed, and thus, we expect an unequal num
ber of high- and low-penetrance haplotypes under the null 
(Fig. 3). To account for this, we model these data using the 
Poisson-binomial distribution, a generalization of the binomial 
distribution describing the sum of n independent but non- 
identically distributed Bernoulli random variables. (Wang 1993; 
Hong 2013; González et al. 2016) When looking at counts of haplo
type combinations, the probability of observing a high-penetrance 
haplotype is assigned according to the relevant ψQTL allele fre
quency, independently across QTL genes. To apply the model to 
haplotypes extracted from phased genetic data, we developed a 
bootstrapping procedure that approximates the cumulative dis
tribution function of the Poisson-binomial, constituting a con
venient method for calculating the significance, enrichment/ 
depletion effect sizes (ϵ), and confidence intervals when compar
ing enrichment scores between groups i.e. haplotypes with dele
terious vs non-deleterious rare alleles (see Methods for details). 
In simulations, our method was well powered to detect deviations 
from the null across all tested theoretical allele frequency distri
butions, and performed well against other methods that directly 
calculate and approximate the CDF of the Poisson-binomial 
(Fig. 4 and Supplementary Fig. 4). We also found that the type I 

error rate was adequately controlled (Supplementary Fig. 5a), 
and that the test was well powered to detect differences between 
haplotype groups in our datasets, given their size (Supplementary 
Fig. 5b). Overall, this approach is generalizable to other analyses of 
haplotype combinations; here, we apply it to test nonrandom 
combinations of ψQTL and rare coding alleles.

High-penetrance haplotypes are depleted in 
TOPMed and GTEx
After defining a theoretical model that describes counts of com
mon regulatory alleles and rare coding alleles in a given popula
tion, we tested 3 datasets for evidence of selection against high 
penetrance coding alleles driven by genetically regulated splicing 
(Table 1).

Enrichment in GTEx
We identified ψQTL-rare allele haplotypes using population and 
read-backed phased (Castel et al. 2016) WGS data from GTEx V8, 
labeling haplotypes in putative high and low penetrance config
urations according to whether the rare alternative allele was on 
the higher or lower inclusion ψQTL haplotype, respectively (Figs. 
1 and 3). We limited our analysis to European-Americans, since 
the ψQTL data are dominated by European ancestries, with rare 
variants annotated to potentially deleterious (CADD > 15) and 
non-deleterious (CADD < 15) variants as described in Methods. In 
total, 14,767 haplotypes were identified, spanning 714 individuals 
and 2,475 genes (Table 1 and Supplementary Fig. 6). We observed 
an overall depletion of putative high-penetrance haplotypes 
(ϵ = −0.0156, Poisson-binomial test P = 1.006 × 10−6), consistent 
with our hypothesis. However, we did not detect a stronger deple
tion for putatively deleterious rare alleles (P = 0.508, Fig. 5), pos
sibly due to the modest sample size of GTEx limiting our 
statistical power.

Fig. 2. Mean PSI Z-scores across tissues. Mean decrease in PSI Z-scores among individuals carrying rare alleles at variably spliced exons across 18 GTEx 
tissues, split by deleterious (CADD > 15) and non-deleterious (CADD < 15) rare variants. The number of deleterious and non-deleterious alleles, 
respectively, is printed below each tissue name. Error bars represent 95% bootstrapped confidence intervals.
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Enrichment in TOPMed
Next, we increased our power to detect evidence of selection against 
putative high-penetrance haplotypes by using population-phased 
WGS data from 44,634 European-American ancestry individuals 
in 19 TOPMed cohorts, post-filtering (Methods, Table 1, and 
Supplementary Fig. 6). The large sample size in TOPMed allowed 
us to limit the analysis to exonic variants with 10 or fewer occur
rences (excluding singletons due to limitations of population-based 
phasing), or <0.0213% minor allele frequency. With the same set of 
ψQTLs from GTEx, we identified the haplotype of 38,869 rare alleles 
that fell in primary and secondary sExons. Across all protein-coding 

genes and rare alleles, we observed a modest but significant 
overall depletion of high-penetrance haplotypes than expected 
(ϵ = −0.0037, Poisson-binomial P = 3.43 × 10−4). Haplotypes with pu
tatively deleterious rare alleles had some indication of being more 
depleted than those with non-deleterious rare alleles, but not to a 
degree that reached statistical significance (P = 0.100, Fig. 5). 
However, we hypothesized that this result would be more pro
nounced in genes with stronger ψQTLs, as well as genes known to 
be intolerant to loss of function variation. When focusing on genes 
with stronger ψQTLs where the ΔPSI score was in the top quartile 
(ΔPSI > 0.076), the difference was again not significant (P = 0.248). 

(a) (b)

Fig. 3. ψQTL high inclusion allele frequencies and haplotype counts in GTEx. a) Distribution of allele frequencies for ψQTLs that lead to higher exon 
inclusion. High inclusion ψQTL allele frequencies are skewed to the right, meaning ψQTLs that include their target exon are more common in the general 
population. b) As a result of the nonuniform frequency distribution of high inclusion ψQTL alleles, we expect to see more high-penetrance haplotype 
configurations in general. This motivates the necessity to design a test that accounts for this difference.

(a)

(b) (c) (d)

Fig. 4. The Poisson-binomial distribution models haplotype configuration counts. a) We use phased variant calls from WGS across large populations to 
test for deviation in the frequencies of ψQTL-coding variant haplotype configurations. The magnitude and effect direction of deviation, which we call ϵ, 
are calculated using a procedure described in Methods. The magnitude of ϵ—but importantly not its direction—depends on the underlying ψQTL allele 
frequency distribution, as the probability of observing a high-penetrance haplotype is dependent on the ψQTL allele frequency at each gene. Counts of 
highly penetrant haplotypes are modeled by the Poisson-binomial distribution. When running our test, we frequently divide haplotypes into those with 
deleterious (CADD > 15) and non-deleterious (CADD < 15) coding variants, which serve as a negative control where we do not expect to see evidence of 
purifying selection. b) To verify that our test captures deviations from the null under any theoretical allele frequency distribution, we simulated datasets 
by drawing samples from various beta distributions with different parameters. The beta is defined by shape parameters α and β. The parameters α = 1.387 
and β = 0.954 were estimated from the high-inclusion ψQTL allele frequency distribution in GTEx using the method of moments estimator. c) We 
benchmarked our test by simulating data from distributions with increasingly larger deviations from the expected mean, in order to test how the 
magnitude of ϵ differs depending on the input distribution. This diagram can be used as a reference for how to interpret the magnitude of epsilon, given a 
dataset’s underlying probability distribution d. P-values from a simulated dataset of haplotypes from 1,000 individuals across 1,000 genes, with ψQTL 
allele frequencies matching those in GTEx. We find that our method accurately replicates the results from the Poisson-binomial distribution, calculated 
using the “poibin” (Hong 2013) R package.
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However, when quantifying gene constraint with the loss-of-function 
observed/expected upper bound fraction (LOEUF) score (Karczewski 
et al. 2020) and limiting to genes in the first quartile among sGenes 
(LOEUF < 0.460), we detected a significant difference in high- 
penetrance haplotype depletion between the 2 groups (P = 0.048), 
suggesting that splicing may play a greater role in modifying pene
trance in genes known to be constrained. Finally, while we would ex
pect to see the greatest effects of purifying selection among 
constrained genes with strong ψQTLs, the small number of such 
genes limits our power and no significant association was detected 
(P = 0.982). We found that across genes in general, ΔPSI and LOEUF 
were positively correlated, so genes with high ΔPSI and low LOEUF 
were uncommon (Supplementary Fig. 7c). While subtle, these results 
suggest that deleterious rare alleles are more likely to be carried on 
exons that are skipped due to the effects of common regulatory var
iants, especially in constrained genes.

Next, we wanted to explore if any genes or classes of genes drove 
our observation of high-penetrance haplotype depletion. To this 
end, using the same TOPMed data, we tested for nonrandom haplo
type combinations on a gene-by-gene basis, instead of pooling hap
lotypes across all genes as in the previous approach. For 2,396 genes 
with more than 10 ψQTL-coding variant haplotypes across all avail
able individuals, we ran a Poisson-binomial test for high- 
penetrance haplotype depletion (Supplementary Fig. 8). We 

observed little signal, with approximately equal numbers of genes 
with enrichment and depletion of high- and low-penetrance haplo
types. However, only 411 of the genes had more than 30 deleterious 
allele haplotypes, indicating that our power is quite limited. Thus, 
our results indicate that observing signals of modified penetrance 
at the gene level in population cohorts is very challenging.

Genetically controlled splicing’s contribution to 
disease gene variant penetrance
In addition to studying the general population as above, we next 
turned to investigate nonrandom distribution of ψQTL-coding al
lele haplotypes in a disease cohort: the Simons Simplex 
Collection (SSC) with 2,380 ASD simplex families. Rare coding var
iants are known to contribute to the etiology of ASD (Sanders et al. 
2012, 2015; Iossifov et al. 2014), and the large set of transmission- 
resolved WGS data available in the SSC make it a suitable dataset 
to search for haplotype patterns indicative of modified pene
trance. While de novo variants also play an important role in aut
ism risk (Iossifov et al. 2014), their number is so low that we chose 
to focus on inherited variants.

First, we sought to replicate the depletion of potential high- 
penetrance haplotypes observed in TOPMed, using SSC parents, 
who are a cohort of unrelated individuals, phenotypically healthy 
but with potential enrichment of ASD risk variants due to having a 

Table 1. Properties of 3 WGS datasets used in this study.

GTEx TOPMed SSC—parents

N donors 714 44,634 4,731
Phasing method Population based and read backed phasing 

(SHAPEIT2(O’Connell et al. 2014) and PhASEr (Castel et al. 
2016))

Population phasing (Eagle) 
(Loh et al. 2016)

Phasing by 
transmission

Singletons included Yes, in calls with RNA-seq read backing. Otherwise, no No Yes
Rare variant allele 

frequency cutoff
0.5% MAF in gnomad. (No count cutoff due to the relative 

small size of the GTEx WGS dataset)
Appears 10 or fewer times 

(i.e. 0.0257% MAF)
Appears ≤ 3 times (i.e. 

0.126% MAF)

Across all datasets, we extract rare variants that fall on primary and secondary sExons.

Fig. 5. Rare alleles carried in predicted high penetrance ψQTL configurations in GTEx, TOPMed, and SSC parents. We tested for deviation in the 
frequencies of coding allele—ψQTL configurations across all protein-coding genes with a significant ψQTL. A negative value of ϵ indicates fewer 
haplotypes than expected given the population’s ψQTL allele frequencies. Individual P-values and 95% confidence intervals were generated using our 
approximation of the Poisson-binomial CDF, with 1,000 bootstraps. Comparison P-values were generated with 1,000 bootstraps.

8 | GENETICS, 2023, Vol. 224, No. 4

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad115#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad115#supplementary-data


child with ASD. We analyzed all genes with a ψQTL in GTEx, limiting 
our analysis to coding alleles with 3 or fewer occurrences across all 
parents, and removing genes with an unusually high number of rare 
variant haplotypes (Table 1, Supplementary Fig. 6). Singleton var
iants were included since their haplotype can be confidently re
solved using phasing by transmission. We recapitulated the 
patterns observed in TOPMed, with a significant depletion of high- 
penetrance haplotypes with deleterious rare alleles (ϵ = −0.019, 
Poisson-binomial P = 2.11 × 10−8), with high-penetrance haplotypes 
carrying deleterious rare alleles more depleted than those carrying 
non-deleterious rare alleles (comparison P-value = 0.042, Fig. 5).

Next, we sought to analyze potential splicing modifiers of the 
penetrance of disease-causing alleles in SSC by focusing on rare inher
ited variants in ASD-implicated genes. These alleles, while potentially 
contributing to ASD in the proband, are also carried on the same hap
lotypic background by a healthy parent and often a healthy sibling. 
Thus, both increased or decreased penetrance ψQTL configurations 
could be possible (Supplementary Fig. 9a). To test this, we analyzed 
deviation in haplotype frequencies in parents, probands, and siblings, 
among the 218 out of the 1,010 genes implicated in ASD risk according 
to SFARI Gene (Banerjee-Basu and Packer, 2010) that also had a ψQTL. 
No significant deviation was detected in SSC parents (ϵ = −0.0278, P =  
0.122). Interestingly, across probands and unaffected siblings, we 
found that putatively highly penetrant haplotypes with deleterious 
coding alleles were depleted (ϵ = −0.055 and −0.047, P = 0.038 and 
0.104, respectively). While it seems counterintuitive to see depletion 
of penetrant haplotypes in individuals with ASD, we reason that 
this penetrance reducing effect may be acting to protect parents 
from developing phenotypes of ASD. We find that the SFARI genes 
tend to be highly constrained, compared to all protein-coding genes 
(Supplementary Fig. 9b) (Neale et al. 2012), and that these same alleles 
were also highly depleted among unrelated individuals in TOPMed 
(Fig. 6), further corroborating the overall observed pattern of selection 
for penetrance reducing haplotype combinations.

Discussion
In this study, we have expanded our model of cis-regulatory alleles 
as modifiers of penetrance of coding variants (Castel et al. 2018) to 
directly consider splice-regulatory alleles as potential additional dri
vers. We first show that individuals carrying potentially deleterious 
rare mutations at variably spliced exons tend to use those exons in 

transcripts less frequently. This observation could indicate that the 
penetrance of these rare alleles is reduced by their exclusion from 
transcripts. However, this approach does not reveal the reason. One 
approach to potentially shed light on this would be analysis of allele- 
specific transcript structure, but this is not possible with short read 
RNA-sequencing. However, our model could be tested in larger future 
studies with long-read sequencing technology (Glinos et al. 2021).

Thus, we investigate common splice-regulatory variants 
(ψQTLs) as potential modifiers of penetrance of rare alleles in their 
target exons. Across different datasets, we have demonstrated 
and replicated the result that high-penetrance haplotype config
urations of rare alleles and ψQTLs alleles are depleted. These find
ings emphasize the importance of alternative splicing as one of 
the many processes that regulate human traits, and suggest 
that splicing is involved in variable penetrance of coding variants.

Through this research, we derived a novel approach for calculat
ing the cumulative distribution function of the Poisson-binomial 
distribution, as well as a metric for evaluating a dataset’s deviation 
from an expected distribution or difference between 2 datasets (the 
comparison test). This method is well suited for very large datasets, 
and has further applications in genetic and nongenetic analyses 
where data are expected to follow the Poisson-binomial.

While we were able to detect a genome-wide signal of nonrandom 
combinations of splice-associated and coding alleles, it must be noted 
that finding evidence of modified penetrance in population cohorts is 
difficult, and requires very large sample sizes. This is particularly true 
on an individual gene level: Even in a dataset as large as TOPMed, 
which contains tens of thousands of donors, few genes have reason
able statistical power to detect depletion of high-penetrance haplo
type configurations individually. Furthermore, the biologically and 
medically important genes where variant penetrance is of most inter
est are also highly constrained and depleted of functional genetic 
variation overall, further limiting the data to test for haplotype com
binations in the general population.

An alternative approach is to study regulatory variation under
lying modified penetrance in disease cohorts with well annotated 
disease-causing variants, linking haplotype patterns with phenotype 
variation between and within families. The Simons Simplex 
Collection had some limitations in this respect: Most ASD- 
contributing rare variants are not known, and the trait is highly 
polygenic, making it difficult to compare penetrance of variants in 
the same gene between families. Furthermore, in simplex families, 

Fig. 6. ψQTL haplotype configurations in Autism Spectrum Disorder implicated genes in ASD families. We tested for deviation in the frequencies of high 
penetrance variant—ψQTL configurations in ASD-implicated genes in parents, probands, and unaffected siblings in SSC families.
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many causal variants are de novo, but their total number is small 
for statistical analysis. In the future, large ASD studies with multi
plex families may better capture ASD instances with heritable vari
ant etiology. Furthermore, experimental validation, for example 
with genome editing, may be a fruitful approach.

Overall these results suggest that depletion of high-penetrance 
ψQTL—coding variant haplotypes is robust across many data 
sources and gene sets. However, the data do not sufficiently support 
the hypothesis that modified penetrance by genetically controlled 
splicing is a significant driver for ASD risk, but that may provide 
some protection in families with a known incidence of autism.

In conclusion, this study provides evidence that splice-regulatory 
alleles play a role in controlling the impact of rare coding alleles with 
putatively deleterious effects. Understanding the importance of 
these mechanisms will be crucial for building a holistic model of gen
etic contribution to human phenotypic variation. We hope that in the 
future, the prognosis of individuals carrying rare variants will be in
formed by genomic context that extends beyond coding regions.

Data availability
All code used to perform analyses and generate figures is available 
at https://github.com/jeinson/mp_manuscript. Qualified research
ers requiring data access can apply for GTEx, TOPMed data through 
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function to generate simulated data in the stampen R package 
(https://github.com/jeinson/stampen). PSI and ψQTLs from GTEx 
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