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Abstract

One of the goals of precision medicine is to classify patients into subgroups that differ in

their susceptibility and response to a disease, thereby enabling tailored treatments for each

subgroup. Therefore, there is a great need to identify distinctive clusters of patients from

patient data. There are three key challenges to three key challenges of patient stratification:

1) the unknown number of clusters, 2) the need for assessing cluster validity, and 3) the clin-

ical interpretability. We developed MapperPlus, a novel unsupervised clustering pipeline,

that directly addresses these challenges. It extends the topological Mapper technique and

blends it with two random-walk algorithms to automatically detect disjoint subgroups in

patient data. We demonstrate that MapperPlus outperforms traditional agnostic clustering

methods in key accuracy/performance metrics by testing its performance on publicly avail-

able medical and non-medical data set. We also demonstrate the predictive power of Map-

perPlus in a medical dataset of pediatric stem cell transplant patients where a number of

cluster is unknown. Here, MapperPlus stratifies the patient population into clusters with dis-

tinctive survival rates. The MapperPlus software is open-source and publicly available.

Author summary

The era of precision medicine represents a unique and exciting opportunity in transform-

ing the way we treat patients. With the immense availability of biomedical data and new

computational techniques, we are more able than ever to understand what makes a patient

unique. Indeed, even for a single condition, we can recognize that there are heterogene-

ities within the patient population. Understanding these differences can and should influ-

ence the way we treat patients. Key to this process is patient stratification, which is the

division of patient populations into clinically meaningful subgroups. The goal of patient

stratification is to capture the individuality of patients without becoming overly fine-

grained. This is an exciting balancing act that engages both meaningful medical and math-

ematical questions. We develop the MapperPlus pipeline for patient stratification. This is

an unsupervised learning pipeline that leverages the mathematical notion of topology to
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detect clusters within high-dimensional data. It is effective in many settings and we dem-

onstrate, in particular, its efficacy in a precision medicine application.

1 Introduction

Precision medicine research aims to improve clinical outcomes of individual patients by devel-

oping treatments on the basis of characteristics which make them unique [1]. Integral to this

approach is analyzing and understanding patient data; integrating biomarkers, genetic, pheno-

typic, and epigenomic data allows for a deeper understanding of the patient. By understanding

what makes each patient unique, we can tailor the optimal treatment.

Yet this desire to individualize patients represents a paradigm shift away from the historical

practice of medicine. Medical treatments are typically designed for the so-called “average”

patient [2]. This design is born out of necessity: evidence-based medicine requires that patients

are grouped for clinical studies and the statistical testing of medical hypotheses [1]. Thus we

arrive at one of the central challenges of precision medicine: how does one treat each patient as

an individual when robust scientific practices are developed by the grouping of patients?

Patient stratification is “the division of a patient population into distinct subgroups based

on the presence or absence of particular disease characteristics” [3]. The goal is to develop clin-

ically meaningful subgroups of patients within a single diagnosis or conditions of interest. This

is especially relevant for highly heterogeneous diseases with multiple comorbities, such as car-

diovascular diseases [4–6]. There are numerous computational methodologies available for

patient stratification, including clustering, dimensionality reduction, similarity measures, and

supervised learning techniques [1]. In a 2018 systematic review of patient similarity analysis

for precision medicine, it was found that clustering was the most popular approach for analyz-

ing high-dimensional data for subtyping disease [1]. Clustering was used when the the

researchers’ primary goal was to define groups of patients who had a “similar disease evolua-

tion” [1].

Clustering refers to the process of identifying subgroups within multidimensional data on

the basis of some notion of similarity [7]. The process of clustering typically requires mathe-

matically defining a measure of similarity in order to create subgroups. Our long-term goal is

to better define clustering in the context of precision medicine. To that effect, we identify three

key challenges that must be addressed in order to apply clustering to patient stratification.

First, it is not known how many subtypes exist within a single medical condition. For

instance, heart failure, a disease for which two main subtypes have been characterized: pre-

served ejection fraction and reduced ejection fraction. And yet, recent research has character-

ized a “grey-zone” between these two types [8] which may represent a different subtype of the

disease. Within precision medicine, there is an ongoing need to better detect subtypes from

complex pathophysiologic states [9]. Thus, clustering approaches for patient stratification

which rely on the a priori knowledge of the number of clusters can be inherently flawed. They

rely on an initial assumption of the number of subtypes, even when such information may not

be available. We emphasize this because popular clustering techniques such as k-means and k-

medoids require the user to input the number of clusters [10]. These techniques do have some

heuristics by which the optimal number of clusters can be estimated, such as the elbow

method, but such methods do not always provide a clear answer in many situations [11].

These clustering methods, while efficacious in the abstract, necessitate some degree of insight

that may not be available. We propose that agnostic approaches that do not require such user
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input are better suited to biomedical applications to heterogeneous and multi-factorial

diseases.

Second, we must have a method for assessing cluster validity. Many clustering methods

require the selection of parameters by the end user [9] and every parameter set can return a

clustering. The onus is on the researcher to determine which of these clusterings, if any, are

acceptable and there is ongoing research in measuring the validity of clustering results [12].

We refer to the decision of choosing the appropriate parameter set for a given clustering appli-

cation as the problem of parameter selection. We argue that parameter selection is especially

relevant for patient stratification, as the subgroups detected may be used to guide future medi-

cal treatment. Thus, clustering techniques for precision medicine applications necessitate a rig-

orous and reproducible heuristic for cluster validation.

Finally, the clusters that are detected must be clinically interpretable. Interpretability is a

major consideration of computational models; a model must yield results that are understand-

able to its users [9]. For the patient stratification problem, we must be able to divide patients

not only into mathematically valid partitions, but also into clinically meaningful subgroups

[1]. Moreover, it would be advantageous to be able to statistically test the characteristics of

these groups. Such methods are necessitated by standard evidence-based medical practices [1].

As such, clustering techniques that return large numbers of clusters each with very few patients

may not be interpretable in the medical context. A precision medicine clustering algorithm

must be sensitive enough to detect meaningful differences between patients, but not so sensi-

tive as to become difficult to interpret.

Topological data analysis (TDA) refers to a broad set of tools for data exploration and anal-

ysis that leverage topology, a field of mathematics that rigorously examines notions of shape

and connectivity [9]. TDA is an emergent field with growing popularity in the biomedical sci-

ences that we propose can address some of these challenges. It has a unique approach to data

and can often uncover patterns that traditional approaches cannot. It can detect multivariate

shape-based features, both local and global behavior, and address the so-called “curse of

dimensionality” [9]. While a wealth of TDA techniques exist, we focused on Mapper, a particu-

lar TDA algorithm that may have several advantages over traditional statistical and machine

learning techniques.

Mapper [13] simplifies and visualizes high dimensional data as a graph using topology. To

do this, Mapper takes in high-dimensional data, projects it to a lower dimension, bins the pro-

jected data in an overlapping manner, and then uses that projection to generate a graph but

not clusters. Often, flares (long extended branches) and loops (connected circular figures) in

the Mapper graph correspond to interesting subpopulations in a dataset [14]. Mapper has

proven to be a popular tool for precision medicine research [9] with applications to conditions

like aortic valvular stenosis [15], attention-deficit/hyperactivity disorder [16], and traumatic

brain injury [17]. In many of these cases, Mapper has been used to identify subtypes of patients

within each individual condition.

The major roadblock for this technique is that Mapper alone cannot cluster data. Clustering

requires the identification of subgroups [7] and the final output of Mapper is a graph. Dividing

the resultant graph into distinct parts is not sufficient for partitioning the data into disjoint

groups. Due to the overlapping nature of the bins, individual data points can belong to multi-

ple nodes in the graph, leading to clusters that may share observations [18]. The only scenario

in which this approach produces completely disjoint clusters is if the mapper-graph contains

multiple connected components, and the optimal clustering of the graph aligns with these con-

nected components.

This problem has been approached by researchers in different ways. Some simply use the

overlapping clustering [16], while excluding the datapoints that appear in more than one
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cluster from the analysis [19]. None of these approaches address the problem of patient stratifi-

cation. An overlapping clustering corresponds to some patients being assigned to more than

one treatments which is not possible. Similarly, patients must not be excluded since this would

introduce bias. Thus there is a need for mew techniques that can convert the Mapper graph

output into disjoint clusters.

Here, we present MapperPlus, a novel unsupervised clustering pipeline which addresses

this need. MapperPlus builds on Mapper’s topological graph and blends it with two random-

walk techniques [20] for clustering on a graph network. MapperPlus automatically detects the

number of clusters within a dataset and then generates a disjoint clustering of the data. This is

a novel extension of the Mapper algorithm, allowing us to convert Mapper’s topological infor-

mation into disjoint subgroups. This extension has been developed specifically with the needs

of precision medicine in mind: we show how MapperPlus directly addresses the three key chal-

lenges of clustering in non-medical data sets or medical sets for tissue characterization or

patient stratification.

In this report, we first present a brief description of the Mapper algorithm and two ran-

dom-walk techniques: the walk-likelihood algorithm and the walk-likelihood community

finder. Then, we introduce the MapperPlus pipeline. This 8-step process generates the Mapper

graph and agnostically computes disjoint clusters based on the topology of the data. To test the

general efficacy of the pipeline, we compared its clustering against other algorithms on multi-

ple publicly available datasets including a breast cancer tissue dataset. Finally, in a patient strat-

ification case study, we apply MapperPlus to a dataset of pediatric stem cell transplant patients.

We find that MapperPlus has significant utility for patient stratification by showing differences

in survival rates and clinical characteristics of included subjects.

2 Methods

2.1 Mapper

Mapper is a TDA algorithm that leverages the geometric properties of a dataset in order to

generate a graph. It operates by defining a lens (which can be any function) on the dataset and

then clustering at different ranges of values of this lens while preserving the local connectivity

of those clusters. It takes a dataset as input and returns a graph GM(VM, EM), where vertices V
represent bins of observations and edges E are placed between vertices that share one or more

observations. Table 1 lists the frequntly-used symbols and their meaning.

Consider a dataset, which can be represented as a finite metric space (X, δX). The dataset

will be projected to a lower dimension via a lens (or filter function) f : X! Y where Y � Rm.

The choice of lens is critical and often dependent on the dataset.

Table 1. Table of frequently-used mathematical notation.

GM(VM, EM) Mapper graph with vertex set VM and edge set EM
X Metric space equipped with metric δX
f Filter function or lens

C The cover, consisting of overlapping hypercubes

Cn The nth hypercube of the cover

r Resolution parameter for the cover, may be any natural number

g Gain parameter for the cover, a percentage such that 0% < g < 100%

G Network of instances

https://doi.org/10.1371/journal.pdig.0000307.t001
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Mapper takes two parameters as input, resolution r and gain g, which determine the cover.

The resolution determines how fine-grained the examination of the dataset will be, while gain

tunes the connectivity of the points in the dataset. The resolution and gain are used by the

Mapper algorithm as follows. A cover C ¼ fCng is constructed on the lens f. The cover is typi-

cally taken to be a collection of rm overlapping hypercubes, where m is the dimension of the

lensed space. The resolution determines the number of hypercubes used in the cover, while the

gain determines the extent to which the hypercubes overlap. We can think of the resolution as

“binning” the range of the lens.

Mapper then pulls back the cover, which is to say, it identifies which of the points fall into

each hypercube Cn under the function f. That is, we look at the inverse image f −1(Cn)� X for

each Cn 2 C. Crucially, some points will fall into more than one inverse image, which is a facet

of the gain. Intuitively, the higher the gain, the more points will be shared by multiple inverse

images.

At this point, Mapper applies a clustering method within each inverse image f −1(Cn). This

can be thought of as a partial clustering. The clustering method is never applied to the dataset as

a whole. Rather, it is applied to subdivisions of the dataset as determined by the hypercubes Cn.

Each cluster in each inverse image forms a node. Mapper then preserves the local connectivity

of the clusters by drawing an edge between two nodes if the corresponding clusters share an

observation. In this manner, Mapper produces a sparse representation of the original dataset.

2.2 Walk-likelihood algorithm

The walk-likelihood algorithm (WLA) is a graph partitioning algorithm first introduced by

Ballal, Kion-Crosby, and Morozov [20]. The algorithm takes the transition matrix of a graph,

the connectivity of each node in the graph, and an initial guess, a partition of the graph into m
communities. Beginning from the initial partition, WLA iteratively computes the number of

times per random walk that a node n is visited by random walks with lmax steps which start

from node n0 in community c. The assignment of nodes to communities is then updated in a

Bayesian manner using this probability. The process is repeated until the iterative node reas-

signment process converges to a stable assignment.

2.3 Walk-likelihood community finder

The walk-likelihood community finder (WLCF) is a community detection algorithm intro-

duced in [20] that exploits the random walk properties of graphs to detect communities.

Unlike WLA, WLCF automatically detects the number of communities within a graph based

on the modularity, a quantitative metric that evaluates the degree of community structure in a

network [21], of the graph. It does not require any a priori knowledge of the number of com-

munities for its computation.

WLCF functions by first bifurcating a graph into two communities. Within those two com-

munities, WLA is then applied to obtain a more accurate graph partition. The modularity

score is computed for all m communities and pairs of communities are merged together if this

would increase the modularity. This process of bifurcation and merging repeats until the num-

ber of communities in the partitions obtained by subsequent iterations remains constant and

converges to a stable community assignment.

2.4 MapperPlus

Our pipeline proceeds in 8 distinct stages. Each major step is explained in detail below, with a

flowchart of the pipeline shown in Fig 1. Typically, data inputted to MapperPlus is normalized,

for example, converted to z-scores.
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1. Define a lens: Define a function f : X! Y, which maps the dataset to a lower dimension,

where Y � Rm.

2. Define a cover: Select a resolution r 2 N and a gain g 2 [0, 1]. A cover C ¼ fCng is con-

structed on lensed data using rm hypercubes with g overlap in each dimension. Each Cn is a

hypercube and the union
S

n Cn contains Y.

3. Cluster each inverse image: Use a clustering algorithm to cluster observations in the

inverse image f −1(Cn) of each hypercube.

4. Generate Mapper graph: Generate a graph GM(VM, EM) where each node is a collection of

not-necessarily-distinct observations and edges eM connect nodes that share observations.

Fig 1. The MapperPlus pipeline can be divided into 8 distinct steps, beginning with projecting the dataset to a lower-dimension space via a lens and

ending with a disjoint clustering of the dataset.

https://doi.org/10.1371/journal.pdig.0000307.g001
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The edges eM are weighted by the number of observations the nodes share. Note that the

nodes in the graph GM(VM, EM) are connected to themselves.

5. WLCF on Mapper graph: We apply WLCF to the Mapper graph GM, which yields a parti-

tion of GM into m communities. This automatically determines the optimal number of

communities present within the dataset.

6. Overlapping clustering: WLCF yields c overlapping communities of instances. This is

done by taking the union over all nodes within each detected community. The overlap is

due to the fact that the Mapper nodes need not contain distinct observations.

7. Network of instances: At this crucial step, we translate the information in the Mapper

graph GM(VM, EM) into a new graphical representation G as follows:

1. For each observation i in the dataset, create a node ni.

2. For distinct observations i, j, draw an edge eij between their corresponding nodes ni and

nj if i, j 2 nM for some node nM 2 VM. That is, we connect two nodes in the new graph

representation if the corresponding instances would be binned together in the original

Mapper graph. The edge eij is weighted by the number of such nodes nM that exist. Note

that we also include self-edges for the network of instances (eii).

3. For distinct observations i, j, draw an edge eij if i, j 2 f −1(Cn) for some n. Now we are

connecting instances if they fall in the pullback set of the same hypercube under the

Mapper construction. Suppose there are k instances in the hypercube Cn. Then the edge

eij is weighted by 1

k :

This step is crucial because it translates the information embedded within the overlap-

ping nodes of a Mapper graph into a non-overlapping network of individual instances.

The manner in which individual instances are connected preserves all of the topological

information inherent to the Mapper graph while resolving the problem of the overlap-

ping nodes.

8. WLA (Disjoint clustering): In order to obtain a final clustering on the novel graph G, we

apply WLA with c communities (the number of communities having been automatically

detected in step 5). This yields a disjoint clustering of the original dataset into c clusters.

To summarize, the original Mapper algorithm described by steps 1–4 of this pipeline con-

verts the data into Mapper graph; a graph that embeds the topological features of the data. This

graph is clustered into communities (Step 5) to obtain overlapping clusters (Step 6). We fur-

ther use the information on Mapper graph and overlapping clusters to obtain the graph of

instances (Step 7) and cluster them into disjoint clusters (Step 8). Steps 5–8 represent our

extension of the Mapper algorithm.

2.5 Software availability

An open-source Python implementation of MapperPlus is available for use.

2.6 Normalized mutual information

MapperPlus relies on two tunable parameters, gain and resolution, which affect the resultant

clustering. To compare distinct sets of clusters, we use normalized mutual information (NMI).

The NMI compares two sets of clusters and returns a score between 0 and 1. Consider a dataset
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of N observations and a clustering UN×m of the observations into m communities, where Uic =

1 if and only if node i belongs to community c. Given two such clusterings UN×m and U 0N�m0 ,
the normalized mutual information between them is defined as ([22]):

NMIðU;U 0Þ ¼
2IðU;U 0Þ

IðU;UÞ þ IðU 0;U 0Þ
; ð1Þ

where I is the mutual information between U and U0 defined as

IðU;U 0Þ ¼
Xm

c¼1

Xm0

c0¼1

PUU0 ðc; c
0Þ log

PUU0 ðc; c0Þ
PUðcÞPU0 ðc0Þ

; ð2Þ

where PU(c) is the probability that if an observation i is chosen at random from the dataset, it

belongs to cluster c of the clustering U, given by

PUðcÞ ¼ N � 1
XN

i¼1

Uic; ð3Þ

and PUU0(c, c0) is the probability that if an observation i is chosen at random from the dataset, it

belongs to both the cluster c of the clustering U and the cluster c0 of the clustering U0, given by

PUU0 ðc; c0Þ ¼ N � 1
XN

i¼1

UicU
0

ic0 : ð4Þ

Note that because of the normalization in (1), the NMI is always between 0 and 1. The NMI

is 1 if and only if the clusterings U and U0 are identical. If the two clustering U and U0 are

mutually random, i.e. PUU0(c, c0) = PU(c)PU0(c0) (PU(c) and PU0(c0) are independent events, then

the NMI between them is 0. NMI thus negates the effect of randomness and makes for a reli-

able benchmark for cluster similarity across different cluster size distributions.

Supervised learning methods are evaluated by their accuracy. That is, given a labeled dataset

(in which observations have assigned clusters), researchers evaluate how well the method can

assign new observations to the given clusters. This differs fundamentally from the problem of

unsupervised clustering, where the method is not trained on the ground-truth labels, but

draws conclusions based on the mathematical properties of the data (e.g., its topology). In

some cases, ground-truth labels may not even exist. As such, unsupervised clustering cannot

be evaluated using traditional conceptions of accuracy.

Yet we still require the ability to compare clusterers, at least in cases where a ground-truth

label is available. We utilize the NMI score for this purpose. It is like accuracy, in that it can

provide insight into the amount of useful information captured by an unsupervised learning

algorithm. Taking the NMI score between the ground-truth labels and the resultant clustering

of an unsupervised technique, we can capture how accurately a clusterer matched the ground-

truth without penalizing the technique for finding a different number of clusters. This applica-

tion of the NMI score can be found in Section 5.1.

We further apply NMI scoring in order to assess cluster validity, which is distinct from

adherence to ground-truth labels. We use the NMI to measure the stability of MapperPlus clus-

ters relative to the choice of resolution and gain parameters. This is discussed in Section 4.3.

2.7 Datasets and availability

Four publicly available datasets with labeled clusters were used to compare MapperPlus to

other commonly-used agnostic clustering algorithms. None of these datasets had missing val-

ues. The datasets are summarized in Table 2.
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In a clinical case study examining the performance of MapperPlus for patient stratification,

we applied the pipeline to a pediatric stem cell transplant dataset. This dataset comprised the

treatment and outcomes for 187 pediatric patients with hematologic diseases who were subject

to unmanipulated allogenic unrelated donor hematopoietic stem cell transplantation from

2000 to 2008 [23], [24]. Unlike the datasets used for comparison, this dataset is unlabelled.

That is, there are no previously-defined classes that patients were assigned to. Further, this

dataset contains a mix of both categorical and continuous variables, as well as pre-transplant

data and post-transplant outcomes, which is characteristic of many medical datasets.

The patient cohort consists of 112 males and 75 females. In addition to patient sex, there

are several categorical variables to describe the patients, such as disease type (acute myleoid

leukemia, acute lymphocytic leukemia, chronic, nonmalignant, and lymphoma), disease cate-

gory (malignant or nonmalignant), transplant compatibility statuses, and risk group (high or

low). These categories, while informative to the conditions of the patients, were not considered

labels as no one variable completely characterizes the patients. This can be contrasted to the

Breast Cancer dataset, in which malignancy was the key characterization of each cell

(observation).

We divided the 39 features available in the dataset into pre-transplant features and post-

transplant outcomes. We identified 27 pre-transplant features that were input to MapperPlus.

Categorical variables were translated into continuous values using frequency encoding [25].

The primary outcomes we evaluated were survival time (in days) and survival status following

the procedure. Details regarding data processing and the handling of missing values can be

found in the Supplement (S1 Text).

2.8 Statistical analysis

To measure feature and outcome differences among the clusters from the pediatric transplant

dataset, we used chi-squared test (categorical) or ANOVA test (continuous). A p-value< 0.05

was considered statistically significant.

3 Results

3.1 Numerical validation: Comparison to other clustering methods

The clustering algorithms chosen for comparison were Affinity Propagation [26], DBSCAN

[27], and MeanShift [28]. These were chosen due to their widespread use and because, like

MapperPlus, they do not require an a priori knowledge of the number of clusters.

Each algorithm yields a list of cluster assignments on the dataset. The cluster assignments

were then compared to the ground-truth labels of the dataset using NMI scores. For DBSCAN,

we performed a manual tuning of the parameters. To make the fairest possible comparison,

multiple parameter sets were considered and we reported the highest NMI score achieved.

Details on the Mapper inputs for each dataset can be found in the Supplement (S1 Text).

Table 2. Summary of the publicly-available UCI Machine Learning Repository datasets used for method

comparison.

Number of observations Number of attributes Known number of clusters

Wine 178 13 3

Breast Cancer 569 32 2

Iris 150 4 3

Rice 3810 8 2

https://doi.org/10.1371/journal.pdig.0000307.t002
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We find that MapperPlus outperforms in NMI score to the other clustering algorithms

(Table 3). In one dataset (Iris), DBSCAN produces a comparable result, with both algorithms

detecting 2 clusters within the dataset. However, in the case of the breast cancer dataset, Map-

perPlus detected 3 clusters, which is an order of magnitude smaller than the number predicted

by any of the other approaches. The result was similar for the rice dataset, where MapperPlus

detected 2 clusters compared to affinity propagation detecting nearly 100. MapperPlus cluster-

ing is closer to the ground truth labels than the clustering returned by the other algorithms.

3.2 Using MapperPlus to predict survival in pediatric transplant patients

In a case study of MapperPlus in patient stratification, we analyzed the pediatric transplant

dataset introduced in Section 2.7. The 27 pre-tranplant features (excluding outcome variables)

were given to MapperPlus. Details regarding MapperPlus inputs for the clustering analysis can

be found in the Supplement (S1 Text).

3.2.1 Clustering analysis. The MapperPlus algorithm yielded three disjoint clusters with

n1 = 83, n2 = 82, and n3 = 22.

As the goal of patient stratification is to yield clinically meaningful subgroups, we examined

the characteristics of the clusters detected using statistical analysis. A summary of the analysis

can be found in Tables 4–8. Of the 27 variables, 6 were categorical, but no data dictionary was

included in the dataset. While these variables were input to MapperPlus, they were excluded

from our statistical summaries.

MapperPlus partitioned the patient cohort into three groups in which 7 features had mean

values that were statistically significantly different. (Two of these features had incomplete

labeling and are thus not summarized in the associated tables). In addition to this phenotypic

clustering, MapperPlus was able to separate the patients by survival rate. Cluster 1 patients had

an above-average survival rate (61.45% survival, p = 0.03), whereas the overall group survival

rate is 54.6%. Cluster 2 patients had the worst survival rate at 43.9% (p = 0.03) and Cluster 3

has the best survival rate at 68.2% (p = 0.03). In addition, Cluster 2 patients had the shortest

average survival time (in days) in the first year of 259.02 while Cluster 1 had the longest aver-

age survival time of 312 days in the first year (p = 0.035).

3.3 Cluster validity: Choice of resolution and gain

It is well known that Mapper output can change significantly relative to small changes in its

input parameters [29]. While some results guiding stability for resolution and gain choices

have been found in simplified instances [14], there are currently no general guidelines for opti-

mal parameter choice. Since MapperPlus leverages the Mapper graph directly, it too is affected

by the instability of the Mapper algorithm.

Table 3. Performance of clustering algorithms on real-world data. Shown are the NMI score and number of clusters

(m0) predicted by MapperPlus, affinity propagation, DBSCAN, and Mean Shift on 4 real-world datasets. The datasets

vary in the number of observations (N) and known numbers of clusters (m).

Dataset N m MapperPlus Affinity

Propagation

DBSCAN Mean Shift

NMI m0 NMI m0 NMI m0 NMI m0

Wine 178 3 0.77 4 0.53 14 0.41 9 0.04 2

Breast Cancer 569 2 0.53 3 0.26 50 0.22 20 0.17 14

Iris 150 3 0.73 2 0.56 10 0.72 2 0.73 2

Rice 3810 2 0.57 2 0.19 97 0.03 28 0 0

https://doi.org/10.1371/journal.pdig.0000307.t003
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Given that resolution and gain are tunable, it is necessary that we have a rigorous and

reproducible method for selecting these parameters. In the absence of ground-truth labeling

(as expected from many patient datasets and represented here in our pediatric transplant case

study), we use stability as a guide for parameter selection. We select resolution r and gain g
pairs such that the resultant clustering does not change significantly due to small changes in r
and g, as measured by the NMI score.

We apply NMI to the problem of finding stable parameter choices as follows. For a given

resolution r ang g, we represent the associated MapperPlus clustering U(r, g) as a point. The

pairwise NMI scores are then averaged over the clusterings of all neighbors (the 8 adjacent

Table 4. Summary of binary and continuous pre-transplant variables, outcome variables. For continuous variables, we include the mean and standard deviation for the

overall dataset and clusters. For binary variables, we include the count.

All (n = 187) N1 (n = 83) N2 (n = 82) N3 (n = 22) p-value

Pre-transplant Features

Donor age 33.47 ± 8.27 32.82 ± 9.27 31.61 ± 8.55 31.70 ± 6.83 0.22

Recipient age 9.93 ± 5.31 5.61 ± 2.71 14.19 ± 3.79 10.35 ± 4.54 <0.001

CD34+ cell doses per kilogram (10⌃6/kg) 11.89 ± 9.91 15.03 ± 10.44 8.53 ± 7.53 12.56 ± 11.94 <0.001

CD3+ cell doses per kilogram (10⌃6/kg) 4.74 ± 3.86 6.11 ± 4.50 3.15 ± 2.75 4.43 ± 2.87 <0.001

CD3+ cell to CD34+ cell ratio 5.39 ± 9.60 5.16 ± 11.17 5.61 ± 8.80 4.16 ± 3.69 0.81

Recipient stem cell body mass (kg) 35.81 ± 19.65 20.83 ± 9.14 50.27 ± 18.01 35.08 ± 15.02 <0.001

Donor age below 35 104 (55.61%) 48 (57.83%) 40 (48.78%) 16 (72.73%) 0.115

Presence of cytomegalovirus infection (CMV) in donor prior to transplantation 72 (38.50%) 33 (39.76%) 30 (36.59%) 9 (69.23%) 0.889

Recipient age below 10 99 (52.94%) 83 (100%) 7 (8.54%) 9 (40.91%) 0.001

Recipient gender 112 males (65.24%) 46 (55.42%) 52 (63.41%) 14 (63.64%) 0.537

Presence of CMV in recipient prior to transplantation 100 (53.48%) 42 (50.60%) 44 (53.66%) 14 (63.64%) 0.552

Disease categorized as malignant 155 (82.89%) 62 (74.70%) 75 (91.46%) 18 (81.82%) 0.017

Compatibility of donor and recipient according to gender (incidence of female

to male)

32 (17.11%) 11 (13.25%) 16 (19.51%) 5 (22.73%) 0.429

Compatibility of donor and recipient according to blood group (incidence of

matched)

52 (27.81%) 21 (25.30%) 26 (31.71%) 6 (27.27%) 0.655

Incidence of HLA match 159 (85.03%) 82 (98.80%) 62 (75.61%) 15 (68.18%) <0.001

Risk Group (high, low) 69 high risk (36.90%) 26 (31.33%) 34 (41.47%) 9 (40.91%) 0.369

Stem cells source (peripheral, bone marrow) 145 peripheral

(77.54%)

67 (80.72%) 60 (73.17%) 18 (81.82%) 0.446

Outcomes

1-year Survival Time (Days) 286 ± 132.39 312.11 ± 116.25 259.02 ± 143.87 291.72 ± 130.60 0.035

1-year Survival Rate 64.71% 74.39% 54.88% 68.18% 0.041

Study Duration Survival Rate 54.54% 61.45% 43.90% 68.18% 0.03

https://doi.org/10.1371/journal.pdig.0000307.t004

Table 5. This table presents a summary of the variable of age in years discretized into intervals. The overall row

shows the distribution (counts) in each age interval in the entire dataset. The remaining rows show the distribution for

each cluster. This variable was significant with p< 0.001.

(0,5] (5,10] (10,20]

Overall 47 51 89

Cluster 1 38 45 0

Cluster 2 6 1 75

Cluster 3 3 5 14

https://doi.org/10.1371/journal.pdig.0000307.t005
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points) of the point (r, g) to yield a mean cluster score. We set a mean cluster threshold and

only consider (r, g) pairs with average scores greater than that threshold. This ensures that the

clusters we examine are relatively stable, i.e., small perturbations in the parameter choice of

Mapper result in small or no change in the final clustering as measured by NMI. This method

is only possible because MapperPlus returns disjoint clusters from the Mapper graph. See the

Supplement (S1 Text) for further details regarding NMI scoring in this study.

Stability can inform our choice of tunable parameters to an extent, but we must also con-

sider the degree of resolution we want from the dataset. Very high resolution will separate

points to a great degree, naturally leading to a larger number of clusters each containing few

observations. Conversely, very high gain brings points close together, leading to a smaller

number of clusters. MapperPlus offers much-needed flexibility with the tuning of the resolu-

tion and gain parameters.

4 Discussion

The main contribution of our work is the development of a ready-to-use topological pipeline

for clustering high-dimensional data. Our pipeline is an agnostic approach that uses topologi-

cal data analysis to identify stable disjoint clusters by overcoming the limitations of early devel-

opments in this field. We have shown the performance of this new pipeline in multiple

datasets with benchmarks (higher NMI scoring and number of detected clusters being closer

to ground-truth labels) that suggest widespread applicability. Lastly, we present a case-in-point

of how our pipeline may be used in the field of precision medicine using publicly-available

clinical data that has no ground-truth labeling towards the expected number of clinically

meaningful subgroups.

Our clustering pipeline starts with Mapper, a TDA technique that leverages the topological

information inherent to the structure of data to produce a graph. Previous studies have shown

how Mapper can identify subsets of data that may not be easily found using traditional cluster-

ing methods [29]. Unlike traditional methods, Mapper preserves the local connectivity

between clusters, which allows for the exploration of complex relationships in datasets. Its

Table 6. This table presents a summary of the variable of disease category (acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML), chronic disease,

non-malignant disease, or lymphoma). The overall row shows the distribution (counts) of disease in the entire dataset. The remaining rows show the distribution for

each cluster. The variable was significant with p< 0.010.

ALL AML Chronic Non-malignant Lymphoma

Overall 68 33 45 32 9

Cluster 1 34 7 19 21 2

Cluster 2 26 20 22 7 7

Cluster 3 8 6 4 4 0

https://doi.org/10.1371/journal.pdig.0000307.t006

Table 7. This table presents a summary of the serological compatibility of the donor and recipient according to

CMV prior to transplantation. The higher the value (0—3), the lower the compatibility. The overall row shows the

distribution (counts) for patients in the entire dataset. The remaining rows show the distribution for each cluster. The

p-value was p = 0.831.

0 1 2 3

Overall 48 27 57 39

Cluster 1 32 12 22 17

Cluster 2 26 13 27 16

Cluster 3 6 2 8 6

https://doi.org/10.1371/journal.pdig.0000307.t007
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approach is also hypothesis-free: it requires no insight into the number of clusters in the data-

set to create the graph. Yet Mapper falters as it does not yield disjoint clusters, but a graph.

Current approaches for resolving this issue often rely on the exclusion of patients and their

valuable data, as seen for example in [19], which may introduce bias.

MapperPlus directly addresses this issue by extending the Mapper algorithm to yield dis-

joint clusters. As depicted in Fig 1, a Mapper graph is generated in Steps 1—4. In Step 5,

WLCF is applied to the Mapper graph to automatically detect the number of communities in

the graph. This yields an overlapping clustering on the dataset (Step 6), which is a direct result

of the structure of the Mapper graph. But MapperPlus also goes beyond the partitioning of the

Mapper graph in order to rigorously detect disjoint clusters. It does so by generating a novel

network of instances where each node is an individual observation (Step 7). Weighted edges

connect nodes that are binned together in the original Mapper graph. This crucial step embeds

the topological information of the Mapper graph while neatly avoiding the overlapping bin-

ning problem. Finally, in Step 8, WLA is applied to the novel graph using the number of com-

munities detected originally. This yields a rigorous disjoint clustering of the Mapper graph

that preserves all the topological information. Thus, MapperPlus presents a new solution to

the pressing question of identifying disjoint clusters using Mapper.

MapperPlus also provides particular advantages as a clustering technique for precision

medicine. Specifically, it directly addresses the three key challenges of patient stratification: 1)

the unknown number of clusters, 2) the need for assessing cluster validity, and 3) the clinical

interpretability. In applications to publicly available data, we demonstrate that the MapperPlus

pipeline directly addresses all three of these issues.

First, MapperPlus is a wholly agnostic clustering technique. It does not require any

knowledge regarding the number of clusters within a dataset in order to function. This type

of agnostic approach is uniquely suited to the needs of patient stratification, particularly

when studying complex and heterogeneous diseases where the number of patient subtypes

may be unknown.

In addition, MapperPlus outperforms three other agnostic clustering algorithms (affinity

propagation, DBSCAN, and mean shift) when tested on four labeled datasets. The datasets var-

ied in size (from 178 observations to 3810) and in number of attributes (from 4 to 32). It was

important to use datasets with known labels to evaluate the performance of MapperPlus. Map-

perPlus consistently achieved higher NMI scores (a metric of adherence to ground-truth) than

these leading clustering algorithms, often by a significant margin (Table 3). MapperPlus clus-

tering consistently predicted fewer clusters and the resultant clusters had greater similarity to

ground truth labels than the other algorithms. In the rice dataset, MapperPlus returned 2 clus-

ters, while affinity propagation and DBSCAN predicted 97 and 28 clusters, respectively. In the

breast cancer dataset, MapperPlus returned 3 clusters, while affinity propagation and

DBSCAN predicted 50 and 20, respectively. This large number of clusters can lead to problems

of interpretability. First, it can be challenging to assign meaning to so many clusters. Second, if

Table 8. This table presents a summary of the HLA matches across cluster (10/10, 9/10 are considered matches).

The overall row shows the distribution (counts) for the patients in the entire dataset. The remaining rows show the dis-

tribution for each cluster. The p-value was p< 0.001.

10/10 9/10 8/10 7/10

Overall 94 65 23 5

Cluster 1 44 38 1 0

Cluster 2 36 26 15 5

Cluster 3 14 1 2 0

https://doi.org/10.1371/journal.pdig.0000307.t008
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the number of observations in a cluster is small, statistical comparison to other clusters may

not be possible. MapperPlus can be tuned to detect meaningful differences between observa-

tions while avoiding returning such a large number of clusters, which is integral to ensuring

that the generated clusters can be assigned clinical meaning.

Second, we provide a method for new assessing cluster stability and thereby selecting the

tunable MapperPlus parameters. We need to be confident that our clustering is stable if we

wish to base clinical decisions on it. There is currently no consensus on how to best select reso-

lution and gain values. A major contribution of our work is a heuristic for selecting parame-

ters: the NMI score. Selecting gain and resolution parameters that produce NMI scores that

exceed a set benchmark ensures that the clusters are stable with respect to the choice of param-

eters. The choice of an appropriate benchmark is dependent on the features of the dataset

being studied. In the absence of theoretical assurances of stability, the NMI score offers a

method for evaluating the stability of clusters.

After evaluating MapperPlus with datasets with known labels, we turned to analyzing a

publicly available cell transplantation data. This dataset is similar to many medical data-

sets, having a mix of continuous and categorical features and, importantly, no labeled clus-

ters. The goal was to determine if the patients within the clusters returned by MapperPlus

had discernibly similar clinical features. MapperPlus detected three clusters within the

data. 7 of the pre-transplant variables were statistically significant across the clusters.

These clusters also had significantly different survival rates and times, which is suggestive

of patient stratification for risk. Thus, MapperPlus clustering appears to capture clinical

insights from the data through the detection of meaningful features that could differenti-

ate outcomes across clusters. While further studies are needed, these insights may be

highly informative in the future determination of what features relate to improved survival

in patients.

The use of publicly available datasets to evaluate the performance of MapperPlus and

other clustering algorithms ensures transparency and the possibility of evaluation by oth-

ers. Our study of the transplant data was limited by the lack of a completed data dictionary,

so our statistical summary was incomplete. The transplant data did not have a complete

data dictionary, so our statistical summary was incomplete. The second limitation is the

open question of tuning parameters for MapperPlus. While we can provide some guidelines

for parameter choice, theoretical guarantees of stability for MapperPlus remains an open

area of research requiring more development. Finally, the MapperPlus pipeline is a collec-

tive of new and previously-established analytical components. Some of the intermediate

components (e.g. the clusterer) are used independently to observations, which can require

user-selected parameters. As such, our pipeline may not be considered wholly agnostic.

This is most notable in Step 3 of our pipeline, where user-selected parameters are used for

partial clustering on the dataset relative to the cover but not for the final clustering of obser-

vations. In future work, we would like to explore the use of a more agnostic intermediate

clusterer.

In conclusion, MapperPlus is an applied topological tool capable of clustering data in an

agnostic manner with valid and meaningful interpretation, which facilitates precision medi-

cine applications.
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