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Abstract

Computational prediction of absolute essential genes using machine learning has gained

wide attention in recent years. However, essential genes are mostly conditional and not

absolute. Experimental techniques provide a reliable approach of identifying conditionally

essential genes; however, experimental methods are laborious, time and resource consum-

ing, hence computational techniques have been used to complement the experimental

methods. Computational techniques such as supervised machine learning, or flux balance

analysis are grossly limited due to the unavailability of required data for training the model or

simulating the conditions for gene essentiality. This study developed a heuristic-enabled

active machine learning method based on a light gradient boosting model to predict essen-

tial immune response and embryonic developmental genes in Drosophila melanogaster.

We proposed a new sampling selection technique and introduced a heuristic function which

replaces the human component in traditional active learning models. The heuristic function

dynamically selects the unlabelled samples to improve the performance of the classifier in

the next iteration. Testing the proposed model with four benchmark datasets, the proposed

model showed superior performance when compared to traditional active learning models

(random sampling and uncertainty sampling). Applying the model to identify conditionally

essential genes, four novel essential immune response genes and a list of 48 novel genes

that are essential in embryonic developmental condition were identified. We performed func-

tional enrichment analysis of the predicted genes to elucidate their biological processes and

the result evidence our predictions. Immune response and embryonic development related

processes were significantly enriched in the essential immune response and embryonic

developmental genes, respectively. Finally, we propose the predicted essential genes for

future experimental studies and use of the developed tool accessible at http://heal.

covenantuniversity.edu.ng for conditional essentiality predictions.
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Introduction

A gene is defined as absolute essential if its loss of function causes infertility or death in an

organism or cell. There are a few computational approaches for predicting gene essentiality

including homology search and evolutionary analysis-based approach [1], constraint-based

methods [2], and machine learning (ML) approaches [3, 4]. Conditionally essential genes are

genes that are essential in a particular condition but non-essential in another condition.

Conditional essentiality has predominantly been defined in terms of growth conditions [5,

6]. Recent systematic studies of gene essentiality revealed that two sets of essential genes exist;

core essential genes that are always required for viability, and conditional essential genes that

vary in essentiality in different genetic and environmental contexts [7]. The variability in

essentiality depends on the phenotype being assessed (lethality, reproduction, growth and/or

development), the species in which the gene is encoded and environmental/growth conditions

[8, 9]. Costanzo and colleagues posited that environments often affect genes with a close func-

tional relation to the pathways that are perturbed by a condition [10].

Another cause of variability in gene essentiality is experimental conditions such as tempera-

ture, pH, nutrient availability and/or, potentially, exposure to pathogens or microbes. Condi-

tional essentiality has been linked to genetic factors. Some studies that systematically

compared gene essentiality among closely related yeast isolates identified modifier loci that

alter gene essentiality [11, 12]. Genetic factors also give rise to a phenomenon known as syn-

thetic lethality where the loss of one of two genes that perform similar functions could render

non-essential genes essential and essential genes dispensable [13]. More recently, it has become

evident that gene essentiality also depends on the ability of cells to adaptively evolve and prolif-

erate despite the inactivation of an essential gene, suggesting that essentiality is not a property

of genes, but of cellular functions [13].

Curation of experimentally identified essential genes in developmental stages has been doc-

umented in some model organisms such as Drosophila melanogaster [14]. A set of essential

genes are also required when a foreign body invades a host organism, this results in the

immune response condition [15, 16]. Identifying a comprehensive set of essential genes in

both developmental stage and immune response condition will be beneficial for identifying

potential novel drug and insecticidal targets that overcomes the current drug and insecticide

resistance in the fight against some diseases such as malaria [17].

Constraint-based methods such as Flux balance analysis have been used to identify condi-

tionally essential genes [18]. However, the constraint-based methods have some drawbacks,

which includes inability to identify non-metabolic genes and cannot be used to investigate

genome-scale metabolic reactions under transient dynamic states without including data on

enzyme kinetics [19, 20].

TnseqDiff is another commonly used computational approach for conditional essentiality

prediction [21]. TnseqDiff utilizes two steps to estimate the conditional essentiality for each

gene in the genome. First, it collects evidence of conditional essentiality for each insertion by

comparing read counts of that insertion between conditions. Second, it combines insertion-

level evidence to infer the essentiality for the corresponding gene. [21]. One of the major limi-

tations of this approach is that transposon sequencing (Tn-seq) data is only available for a few

model organisms thereby limiting the approach to bacteria. Owing to the genetic similarities

and conserved pathways between D. melanogaster and mammals, the use of the Drosophila

model as a platform to unveil novel mechanisms of infection and disease progression has been

widely investigated [22] including host-pathogen interaction studies [23, 24].

Manimaran and others made the first attempt to explain the conditional essentiality of

genes using the ML approach [25]. They obtained the protein interaction dataset from
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predictions of genome-wide functional linkages in E. coli which contains 3,682 proteins and

78,048 interactions. Three centrality features (Degree, closeness, and betweenness) were used

with an SVM model. The study focused on growth conditions determined based on the expres-

sion of the genes in a microarray dataset. They predicted 1192 bacteria genes to be condition-

ally essential across 61 growth conditions. An extensive experiment was conducted to obtain

the essentiality status of the genes used to train the ML model which is a very expensive, chal-

lenging, and time-consuming approach.

Computational prediction of conditional essentiality research is an open problem that is

gaining wide attraction in recent years. Recent reviews have identified prediction of condition-

ally essential genes as a major limitation of the ML approaches so far [19, 20]. This is a major

limitation because there is no sufficient labelled data to train ML techniques for predicting

conditional essentiality. This study is motivated by the challenge posed by data that could not

be manually annotated by experts or require experiments for annotation as found in experi-

mental studies, an example is identifying gene function from sequence information or predict-

ing conditionally essential genes. Therefore, we sought to develop a ML technique that is

capable of reliably predicting conditionally essential genes in both model and non-model

organisms.

Active machine learning (AL) techniques have been used for annotating unlabelled data

based on the limited data as seen in image recognition [26], activity recognition [27], and text

labelling [28]. A traditional AL algorithm was presented by [29, 30]. Active learning algorithms

are iterative sampling schemes, where a classification model is adapted regularly by feeding it

with new labelled samples corresponding to the ones that are most beneficial for the improve-

ment of the model performance. The new labelled samples used to improve the model perfor-

mance are obtained using a sample selection strategy. A sample selection strategy describes the

techniques used by the active learning procedure to select the most valuable points to be man-

ually labelled. Some of the commonly used strategies are Uncertainty-based [31], Committee-

based [32, 33] and Expected Impact [34] selection strategies.

Uncertainty-based AL technique is the most widely used. The challenge with the applica-

tion of the existing AL techniques in bioinformatics is that most biological data require exten-

sive literature search and experiments for annotation which is time-consuming and very

expensive. Therefore, the use of AL techniques for annotating biological data when there is

limited label data requires an innovative approach. This study replaces the human component

of AL with a heuristic component to enable the application of AL to predict conditionally

essential genes and pave a way for broad application of heuristic-enabled active learning to

solve challenging problems in biomedical research. To our knowledge, this study is the first to

apply machine learning method to conditional essentiality prediction.

Methods

Defining benchmark models and datasets

To benchmark the HEAL technique, the sampling query strategy used was replaced with a ran-

dom selection technique which is hereafter referred to as the RandAL technique. In addition,

the traditional AL technique that uses the uncertainty query strategy was implemented hereaf-

ter referred to as the UncAL technique. The RandAL technique trains the base classifier using

the labelled data and the trained classifier was used to pre-label all the samples in the unla-

belled set. Subsequently, a specified batch (n = 20) of pre-labelled samples were randomly

selected and presented to the expert for manual correction of the pre-labelled samples. The

manually corrected labelled samples are then added to the labelled dataset for the next iteration

of the annotation until a stop criterion is reached. The stop criterion in this experiment is
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when 90% of the entire dataset has been labelled. For the UncAL technique, the random selec-

tion of query samples was replaced by the uncertainty technique. The three techniques (HEAL,

UncAL, and RandAL) were evaluated based on five real-world datasets retrieved from the UCI

Machine Learning Repository [35]. The real-world datasets are diabetes, breast cancer, heart

disease, and credit scoring (Australia and German) datasets. Table 1 presents the description

of the real-world datasets. For each of the five datasets, 20 percent of the dataset was randomly

selected as the labelled set and the class label was excluded from the remaining 80 percent

which was designated as the unlabelled set.

Datasets for conditional essentiality

This study sought to develop a technique for annotating unlabelled data when there is limited

label data to train an ML model. Annotating genes that are essential in a given condition pres-

ents a problem of sparsity of labelled data [36]. For the purpose of evaluation of the developed

technique, two categories of conditions in D. melanogaster were evaluated, these are the

embryonic developmental condition and immune response condition. A total of 161 and 343

genes were collected from FlyBase as essential in embryonic developmental condition and

immune response conditions respectively, while 12,058 and 11,993 genes were assigned as the

negative class label samples in embryonic developmental condition and immune response

conditions respectively. The essential embryonic genes were queried from Flybase using the

term “lethal—all die during embryonic stage” which implies the organism died when the genes

were mutated during the embryonic stage. For immune response labelling, Drosophila pheno-

typic data “allele_phenotypic_data_fb_2020_02.tsv” was downloaded from Flybase. Lethal and

immune response were used to filter the phenotype of the genes. The most common technique

used for identifying the physical trait of the genes was transposon mutagenesis. 21 genes were

found to be essential in both conditions as shown in Fig 1B.

The training data for embryonic developmental condition comprised of 80 positive and

1600 negative samples which were randomly selected to represent the labelled data while the

remaining samples represent the set of unlabelled data for the active learning analysis. 144 of

the 343 essential immune response genes and 2880 of the non-essential immune genes were

also randomly selected to represent the labelled data while the remaining samples represent

the set of unlabelled data.

Feature generation

Feature quality is a major factor in the development of a ML model for predicting essential

genes. A total of 50,334 features were generated based on broad range of features derived from

(1) gene sequence, (2) protein sequence, (3) functional domains of the proteins, (4) gene sets

from Gene Ontology (GO), (5) the number of homologous sequences, (6) topology properties

from protein-protein interaction networks, and (7) subcellular localization of the protein (Fig

1A). Protein and gene sequences were downloaded from Ensembl [37, 38] using BioMart [39].

Table 1. Description of the real-world datasets for model validation.

Dataset Number of Instances Positive samples size Negative samples size Number of Attributes

Breast cancer 699 241 458 10

Credit rating-A 690 307 383 14

Credit rating-G 1000 700 300 24

Diabetes 768 268 500 8

Heart disease 270 150 120 13

https://doi.org/10.1371/journal.pone.0288023.t001
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For deriving the protein and gene sequence features (features in categories 1 and 2), various

numerical representations characterizing the nucleotide and amino acid sequences and com-

positions of the query genes were calculated using seqinR [40], protr [41], CodonW [42] and

rDNAse [43]. Using seqinR [40] the number and fraction of individual amino acids and other

protein sequence features including the number of residues, the percentage of physico-chemi-

cal classes and the theoretical isoelectric point were calculated. Further protein sequence fea-

tures were obtained using protr [41] including autocorrelation, Conjoint Triad Descriptors

(CTD), quasi-sequence order and pseudo amino acid composition. CodonW [42] was used to

calculate gene characteristics like gene length and GC content but also frequencies of optimal

codons (frequency of codons favored by natural selection, see [44]) and the effective number

of codons. Using rDNAse [43] gene descriptors like auto covariance or pseudo nucleotide

composition, and kmer frequencies (n = 2–7) were calculated.

For deriving domain features (feature category 3), BioMart was used to obtain protein fam-

ily (pfam) domains, number of coiled coils, the prediction of membrane helices, post-transla-

tional modifications, β-turns, cofactor binding, acetylation and glycosylation sites, trans

membrane helices and signal peptides. In addition, the number and lengths of UTRs were

obtained using BioMart. For features obtained from gene sets defined by Gene Ontology (fea-

ture category 4), gene sets of all GO terms including biological process, cellular localization

and molecular function were obtained from Ensembl (version 102, released in Nov, 2020) [37,

38]. Gene sets were removed if they showed high redundancy according to the following

method. The gene overlap of each pair of gene sets A and B was quantified by Jaccard similar-

ity coefficients,

J A;Bð Þ ¼
jA \ Bj
jA [ Bj

ð1Þ

Pairs with J(A, B) above a threshold (threshold = 0.3) were included in the model and repre-

sented as an undirected graph, G = (X, E), with the gene sets as vertices X and the pairs above

the threshold as edges E. A linear model was set up with a constraint to select at most one of

the vertices of an edge:

Xiþ Xj � 1; for every fi; jg 2 E ð2Þ

Xi ¼ 0; or Xi ¼ 1; for 1 � i � n ð3Þ

Fig 1. Distribution of the features and class label for conditional essentiality prediction in D. melanogaster. A. The generated features included

intrinsic (e.g. protein and DNA sequence) and extrinsic features (e.g. topology of co-expression and protein-protein interaction networks). The

number of features derived from individual categories is shown below the various categories. B. Venn diagram shows the total number of essential

genes in each condition obtained from FlyBase and the number of genes essential in both conditions.

https://doi.org/10.1371/journal.pone.0288023.g001

PLOS ONE Predicting essential developmental stage and immune response genes in Drosophila melanogaster

PLOS ONE | https://doi.org/10.1371/journal.pone.0288023 August 9, 2023 5 / 23

https://doi.org/10.1371/journal.pone.0288023.g001
https://doi.org/10.1371/journal.pone.0288023


with the objective function to maximize
X

wiXi

where, wi is the weight of a gene set. The weight is derived from its significance (p-value) and

calculated as 1 − log10(p-value)/100. This maximization was done employing linear integer

programming solved using Gurobi (version 7.5.1, https://www.gurobi.com). With this, we for-

mulated the optimization problem to select at most one gene set from each pair in such a way

that the overall number of non-redundant gene sets was maximized. This optimization prob-

lem was formulated as a mixed integer linear programming problem and solved using Gurobi

(version 7.5.1, https://www.gurobi.com). A gene list was generated for each query gene accord-

ing to a protein association network obtained from the STRING database [45]. The gene list

for a gene is the set of all adjacent genes in the protein association network. A gene set enrich-

ment test was performed employing Fisher’s exact test and the negative log10 of the p-value

was used as a feature.

The number of homologous proteins (feature category 5) was obtained by blasting the pro-

tein sequence of the query protein against the complete RefSeq database [46] using PSI-BLAST

[47]. The number of proteins found with e-value cutoffs from 1e–5 to 1e-100 were used as fea-

tures. Topology features (feature category 6) were computed using the NetworkX [48] library

in Python. Protein association data was downloaded from STRING [45] and an undirected

network was constructed. From this, degree, degree distribution, closeness centrality, eigen-

value centrality, betweenness centrality, harmonic centrality, subgraph centrality, load central-

ity and Page rank as topological features were computed for each gene. To note, the harmonic

centrality of a node g is the sum of the reciprocal of the shortest path distances from all other

nodes to g. The higher the value, the higher the centrality [49]. The subcellular localization of

proteins (feature category 7) was derived using DeepLoc [50]. DeepLoc predicts the likely loca-

tion of a protein within a cell by assigning probability scores to eleven eukaryotic cell compart-

ments (cytoplasm, nucleus, extracellular, mitochondria, plasma membrane, ER, chloroplast,

Golgi apparatus, lysosome, vacuole and peroxisome). In total we generated 50,334 features.

Data normalization and feature selection

The dataset for conditional essentiality prediction consists of thousands of features from differ-

ent categories with different range of values. Therefore, the data requires to be normalized and

prepared for ML. All the features were merged into a single table followed by a z-score trans-

formation of each feature to normalize the data. In addition, redundant highly correlating fea-

tures with Pearson correlation coefficients > 0.70 were removed to avoid multicollinearity

which introduces a bias in the analysis and extrapolation is likely to be seriously erroneous [51,

52]. If more than two features are highly correlated, then the one with the highest correlation

with the target class was selected.

To overcome the class imbalance problem when training the classifier, Synthetic Minority

Over-Sampling Technique (SMOTE) was used. SMOTE is a technique that creates synthetic,

non-duplicated samples of the minority class, thereby making the total samples in both minor-

ity and majority classes to be equal [53]. For each minority class observation, SMOTE calcu-

lates the k nearest neighbours and randomly creates multiple synthetic samples between the

observation and the nearest neighbours depending on the number of oversampling needed.

For each iteration and based on the labelled set, we performed two steps for feature selec-

tion prior to training of the machines. First, we applied an embedded approach based on Ran-

dom Forests as suggested by [54] for feature selection. Each tree in the forest was initialized by

bootstrapping from the training data to train a baseline model. Its performance was estimated
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using the out-of-bag (OOB) samples from the training data. Then, the values of one feature

were randomly shuffled, keeping all other features the same, yielding permutated data. The

permutated dataset was applied to the learned model and its performance was evaluated.

Finally, the difference between the benchmark score from the baseline model and the score

from the permutated model was calculated to determine the importance of the feature [55]. By

this, we ranked all features and selected the top 400 features for training the downstream

classifier.

Heuristic-enabled active machine learning

In this study, Light GBM, an ensemble model was used as the classifier for the active learner

due to its high prediction accuracy and fast execution time [55]. Also, in recent studies, ensem-

ble models such as Random forest and Extreme gradient boosting have shown to have a good

performance on numerical data from biological sources [3, 56]. Due to the small size of the

labelled data, 5-fold CV was used during the training of the classifiers. The hyper-parameter

settings for the classifier was set according to the optimal settings obtained in our previous

study [56] where n_estimators = 600, learning_rate = 0.05, num_leaves = 32, colsample_by-
tree = 0.2, reg_alpha = 3, reg_lambda = 1, min_split_gain = 0.01 and min_child_weight = 40.

The traditional AL algorithm was modified by replacing the human component with a heu-

ristic function that uses a threshold specified by the user to filter queried samples. The sam-

pling query function was also modified to use the certainty sampling technique proposed by

this study instead of the widely used uncertainty technique. The certainty technique is the

reverse of the uncertainty method. Unlike the uncertainty method that selects samples close to

the classification or decision boundary as queries for the human expert, the certainty technique

selects samples with high prediction confidence, these are samples with high prediction proba-

bility for the positive class and very low prediction probability for the negative class. Typically,

the prediction probability is between 0 and 1 and by default, ML algorithms set their classifica-

tion boundary as 0.5. It classifies all samples with a prediction probability below 0.5 as negative

samples while those with a level of 0.5 and above are classified as positive samples. However,

the classification boundary was set to 0.6 for this analysis when it was observed that the data

was biased towards the positive samples and resulting in a high false positive rate.

The sample selection strategy described in the heuristic function introduced by this study is

based on a cut-off that is dynamically assigned at each iteration according to the distribution

of the classes in the pre-labelled dataset. The distribution of the prediction probability of the

positive (0.6–1.0) and negative (0.0–0.59) samples as obtained from the automatic annotation

is represented as quantiles. Samples in the first quartile for the negative distribution (Q-1, closer

to 0) and samples within the fourth quartile of the positive distribution (Q+4, closer to 1) were

selected by the heuristic function for further filtering. The heuristic function contains a thresh-

old set by the user to exclude samples below the threshold and append the samples with values

above the threshold to the labelled data. This further increases the classifier’s prediction power

which has a similar impact as selecting samples closer to the classification boundary, requiring

humans to refine the automatic annotation by the classifier manually. A threshold of 0.9 was

chosen by this study which ensures samples very close to the positive samples in the labelled

data are annotated as positive. The complete implementation is described in Algorithm 1 and

2 and the schematic workflow of the Heuristic-Enabled Active Learning (HEAL) is shown in

Fig 2.
Algorithm 1: Heuristic-Enabled Active Learning Algorithm
Inputs
- Initial training set Xa ¼ fxi; yig

l
i¼1

(X2χ, α =1)

- Pool of candidates Ua ¼ fxig
lþu
i¼lþ1

(U2χ, α =1)
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- Threshold = confidence cut-off specified by the user.
1: repeat
2: Train a model with the current training set Xα.
3: for each candidate in Uα do
4: Score = Evaluate a user-defined classification model
5: end for
6: Pα = Uα + Score
7: Rank the candidates in Pα according to the score of the classifica-
tion model
8: Sα = Heuristic component (Pα, threshold)
9: Add the batch to the training set Xα+1 = Xα[Sα

10: Remove the batch from the pool of candidates Uα+1 = Uα\Sα

11: α = α+1
12: until a stopping criterion is met.
Algorithm 2: Heuristic component (Pα, threshold):
1: Divide Pα into P+ and P− sets according to ranked score
2: Compute quartiles for P+ and P−: Qi ¼

i
4
ðnþ 1Þ

th termj 1 � i � 4; n ¼ jUjð Þ

3: Dynamically estimate the filtering cut-off for P+ and P−

4: if min (P+Q4) > threshold
5: sup = min (P+Q4)
6: else:
7: sup = threshold
8: Set cut-off for P−: inf = max (P−Q1)
9: Filter P+ and P− based on sup and inf respectively where q = the
batch size of selected points S.
10: Return filtered sample points Sa ¼ fxk; ykg

q
k¼1

to the main function

Gene set enrichment analyses of the predicted essential immune response

genes

To discover the biological and functional knowledge of the genes predicted to be essential for

embryo developmental stage and immune response conditions in D. melanogaster, gene set

enrichment analysis was performed using g:Profiler based on the Ensembl database version

102 [57]. The SCS algorithm with default settings as described by [57] was used to correct for

multiple testing and the significance threshold was set to p = 0.05. The term size of the selected

enriched gene sets was set between 3 and 500 to filter out too specific and too general gene

sets.

Results

Evaluation of HEAL and benchmark models

A main hypothesis of this study was that a comparable performance could be achieved by

replacing the human component in the AL model with a heuristic function to eliminate the

high cost and time involved in using the traditional AL model. To evaluate the performance of

HEAL to existing traditional AL models, we implemented Uncertainty AL, which is the tradi-

tional AL model based on uncertainty sample selection method with human component and

Random AL, which is also a traditional AL model based on random sample selection method.

Five publicly available datasets were applied to the three AL models. The results show that

HEAL performed comparatively better than UncAL and has superior performance when com-

pared with RandAL (Fig 3). HEAL has a significantly lower running time compared to both

UncAL and RandAL across the five datasets (Fig 3D). The reason for the low running time is

because HEAL does not require an expert for its annotation which is associated with
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computational delay prior to each iteration in the process. A stratified view of the predictions

from the three techniques across the five datasets based on the confusion matrix is presented

in S1 Fig.

Prediction of conditionally essential genes in Drosophila melanogaster
To evaluate the proposed model for conditional essentiality prediction, two conditions based

on immune response and developmental stage conditions were examined. For the develop-

mental stage conditions, a total of 53 genes were predicted as essential in the embryonic stage

of D. melanogaster after five iterations with five of the predicted genes annotated as such in

FlyBase. We performed gene set enrichment analysis to elucidate the biological processes

enriched in the predicted genes. We found several growth and morphogenesis processes, such

as post-embryonic animal morphogenesis and post-embryonic animal organ development

(Fig 4A) indicating the need for these specific growth processes for the organism to develop

from the embryonic stage into the larva stage. Table 2 shows the list of top 10 genes predicted

to play essential roles during the embryonic stage of D. melanogaster and the complete list of

predicted genes is shown in S1 Table.

For the immune response conditions, a total of 10 genes were predicted as essential for

these conditions in D. melanogaster after eight iterations with 6 of the predicted genes anno-

tated as such in FlyBase. Strikingly, the enrichment analysis of the predicted immune response

genes revealed that immune and defense response related processes are significantly enriched

in the predicted genes (Fig 4B) which implies that the four novel immune response genes

would be good candidates for further experimental validation. Table 3 shows the list of the 10

genes predicted to play essential roles during the embryonic stage of D. melanogaster. Genes

highlighted in red were found to be annotated as essential immune response genes in FlyBase.

Fig 2. Heuristic-enabled active learning implemented to label conditionally essential genes.

https://doi.org/10.1371/journal.pone.0288023.g002
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Implementation of HEAL technique as a web resource

Lack of labelled data has been a challenge in bioinformatics research that has persisted for

decades. Prediction of conditionally essential genes using a machine learning approach is an

example of the numerous bioinformatics problems that remained intractable. Notably, this

study developed the HEAL technique into a web application that provides a tool for bioinfor-

matics analyses to annotate biological and non-biological data when there is limited labelled

data for training a machine learning model. Django framework was used for the development

of the web version of the HEAL technique. Django is a high-level Python framework that

encourages rapid development and clean, pragmatic design. The framework integrates Hyper-

text mark-up language (HTML), Cascading stylesheet (CSS), and JavaScript seamlessly with

Python. This application can be found on heal.covenantuniversity.edu.ng. Fig 5 presents the

HEAL web application portal. The portal provides fields for uploading the labelled and unla-

belled data in CSV format. After uploading the input data, the user has the option to first pre-

view the statistical information about the input data or perform data annotation directly. The

data statistics returned include the number of features, the ratio of labelled to unlabelled, and

the ratio of the class label of the initial training data. The data statistics are displayed on the

right-hand side of the screen. If an error occurs during the prediction, a log will appear specify-

ing the error. The server was configured to reject the processing of files with sizes more than

4Mb to avoid overloading the server with large data. This implies that feature selection should

be performed before using this tool for data with a large feature set.

A dropdown element provides a list of threshold values for the active learning component

for selection by the user. The threshold determines the stringency level of the active learning

Fig 3. Comparative analysis of HEAL and other techniques on five real-world datasets. Results from HEAL

technique show superior performance in terms: A. ROC-AUC B. Accuracy and C. Precision. D. HEAL has the lowest

running time compared to other methods.

https://doi.org/10.1371/journal.pone.0288023.g003

Fig 4. Functional enrichment analysis of genes predicted by the HEAL model. A. Biological process enriched in the

predicted essential embryonic genes. B. Biological process enriched in the predicted essential immune response genes.

https://doi.org/10.1371/journal.pone.0288023.g004
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component with the default threshold value set to 0.9. After the server successfully finishes the

processing, the output from the analysis which contains the dynamic cut-off for selecting high

confidence samples, current classifier performance scores, and the number of samples added

to the labelled set for each iteration are displayed in the result page shown in Fig 6. The base

classifier performance indicates the confidence of the prediction. It is recommended to have a

minimum of 90% base model accuracy for a reliable prediction.

Discussion

As at the time of conducting this research, there are no studies found from literature reviewed

that have successfully applied machine learning techniques to predict conditionally essential

genes responsible for any condition. A related study used a semi-supervised ML approach to

predict HIV dependency factors in humans using only network-based features from protein

interaction databases. They reported a precision score of 85% at 60% recall [58]. Some of the

top-ranked genes predicted as essential in immune response conditions are discussed below

along with their functions with respect to their importance to the organism’s immune response

conditions.

The state-of-the-art AL techniques have consistently used the uncertainty method for sam-

pling selection and present the queried samples to the expert for manual correction of the pre-

labelled samples. For the next iteration, the manually corrected samples were added to the

Table 2. Top 10 predicted essential embryonic stage genes.

FlyBase ID Gene Name Gene Description

FBgn0265623 Su(z)2 Suppressor of zeste 2

FBgn0283427 FASN1 Fatty acid synthase 1

FBgn0287184 FASN3 Fatty acid synthase 3

FBgn0286784 TER94 Transitional endoplasmic reticulum 94

FBgn0003315 satDNA satellite DNA, unknown function

FBgn0286785 scb scab

FBgn0286786 hoip hoi-polloi

FBgn0036448 mop myopic

FBgn0265434 zip zipper

FBgn0036980 RhoBTB Rho-related BTB domain containing

https://doi.org/10.1371/journal.pone.0288023.t002

Table 3. Predicted essential immune response genes.

FlyBase ID Gene Name Gene Description

FBgn0035976 PGRP-LC Peptidoglycan recognition protein LC

FBgn0016917 Stat92E Signal-transducer and activator of transcription protein at 92E

FBgn0041184 Socs36E Suppressor of cytokine signaling at 36E

FBgn0043903 dome domeless

FBgn0000250 cact cactus

FBgn0034476 Toll-7 Toll-7

FBgn0004364 18w 18 wheeler

FBgn0002930 nec necrotic

FBgn0086358 Tab2 TAK1-associated binding protein 2

FBgn0000229 bsk basket

# Genes in bold typeface are annotated as immune genes in FlyBase

https://doi.org/10.1371/journal.pone.0288023.t003
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labelled set and removed from the unlabelled set. The iteration was repeated until all samples

in the unlabelled set have been completely labelled. In this study, heuristic-enabled active

learning (HEAL) model, which replaces the human component of the traditional AL with a

heuristic function, was developed. To benchmark the HEAL technique, the state-of-the-art AL

Fig 5. Data description page of the HEAL annotator web application.

https://doi.org/10.1371/journal.pone.0288023.g005

Fig 6. Result page of the HEAL annotator. User uploads their input files, and the program annotates the unlabelled dataset and presents the result

to the user.

https://doi.org/10.1371/journal.pone.0288023.g006
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technique that uses the uncertainty method (UncAL) and random sampling method (RandAL)

were implemented. Five publicly available datasets were applied to the three techniques and

the HEAL technique performs better when compared to the UncAL technique. The RandAL

technique outputted the least performance which means that informed selection of samples

from the unlabelled set to be added to the labelled set is critical for the good performance of

the AL techniques. The certainty technique introduced by this study also seeks to increase the

prediction power of the ML model by selecting samples with high confidence based on the

pre-labelling by the base classifier to be added to the labelled set. The ambiguity at the decision

boundary of the model is gradually resolved as the prediction power of the ML model

increases. This accounts for the good performance recorded by HEAL technique.

In comparing the running time for the evaluated techniques, the HEAL technique showed a

significantly reduced running time. The low running time recorded by HEAL is a result of the

replacement of the human component from the AL process with a heuristic function. The

human expert is required to manually go over all the selected pre-labelled samples and correct

them one after the other which will be cumbersome if the size of the unlabelled set is large.

Replacement of the human expert with the heuristic function provided by the HEAL technique

also eliminates the financial cost associated with employing an expert for manual annotation

thereby making it a preferred choice for AL techniques in future studies. During the develop-

ment of HEAL, only binary classification was considered which implies that HEAL cannot be

directly applied to a multiclass classification problem. HEAL performed well on mixed (Cate-

gorical, Boolean, and Continuous) data types.

The choice of training samples for conditional essentiality prediction is a potential limita-

tion of this computational approach. The chances of getting sufficient positive and negative

samples of a specific condition to train an active learning model are very low because most

experimental studies focus on identifying “what genes do” and not “what they did not do” and

the function of several genes are yet to be completely known. The use of wrong training data

will affect the accuracy of the active learning model. When validated using Flybase, the pro-

posed HEAL model performs significantly well in immune response condition compared to

the embryonic developmental stage condition. The choice of features used to build the model

determines how well the model performs in varying conditions.

In the following, we discuss some of the top-ranked genes predicted as essential for embry-

onic stage and immune response conditions in D. melanogaster along with their functions

based on findings from our literature study. Ten proteins were predicted by HEAL as impor-

tant for immune response. Six of these genes: Peptidoglycan recognition protein LC

(PGRP-LC, FBgn0035976); Signal-transducer and activator of transcription protein at 92E

(Stat92E, FBgn0016917); Suppressor of cytokine signaling at 36E (Socs36E, FBgn0041184);

Domeless (dome, FBgn0043903); cactus (cact, FBgn0000250); Toll-7 (Toll-7, FBgn0034476) are

already annotated as immune response genes in the literature [59–63]. For example, Peptido-

glycan recognition protein LC (PGRP-LC, FBgn0035976) encodes a transmembrane receptor

that is recognized and bounded to diaminopimelic acid (DAP)- containing peptidoglycan

[64]. DAP- containing peptidoglycan is a cell wall component found on Gram-negative bacte-

ria and certain Gram-positive bacteria. Its binding to PGRP-LC during bacterial infection acti-

vates the immune deficiency signalling pathway [65]. This leads to the induction of

antibacterial genes and phagocytosis [60, 66]. Mutations in PGRP-LC leading to a loss of func-

tion increases susceptibility to gram-negative bacterial infection [67]. Knockdown of PGRP-LC
also increased the copy number of sigma virus and reduced the survival rate of Drosophila

infected with sigma virus when treated with CO2 [68], very likely to be linked to the cellular

immune response to sigma virus infection. Stat92E is important in sustaining an effective bal-

ance between immune responses and also in inhibiting transcription of diverse immune
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effector genes activated by Relish. Stat92E mutant flies have been reported to have higher bac-

terial clearance activities compared to the wild type. However, these mutant flies die upon bac-

terial infection [69]. This reveals the importance of Stat92E in regulating a balanced immune

response.

The four other genes predicted as immune response genes were 18 wheeler (18w,

FBgn0004364 or FBgn0287775); necrotic (nec, FBgn0002930); TAK1-associated binding pro-

tein 2 (Tab2, FBgn0086358), and basket (bsk, FBgn00002290). The 18w encodes a member of

the Toll-like receptor family involved in antibacterial humoral response. 18w mutant flies (lar-

vae) have been reported to have reduced expression of antimicrobial peptide genes and suf-

fered increased lethality upon bacterial challenge [70]. However, in adult flies, 18w mutant

flies had expressed antimicrobial peptide genes at levels similar to the wild type [71]. This sug-

gests that the role of 18w in immune response is age or developmental stage-specific. [72]

reported increased expression levels of 18w in 4-week-old flies infected with E. coli compared

to their 1-week-old infected counterparts. Also, the transcript level of 18w was significantly

correlated (r = 0.80) with the ability of the flies to clear the bacteria compared to their 1-week-

old counterparts. This further emphasizes the age-specific importance of 18w in immune

response to bacterial challenge.

Similarly, nec, encodes a hemolymphatic serine protease inhibitor (serpin, spn)—Spn43Ac
that negatively regulates the Toll immune signalling pathway [73, 74]. The nec mutant flies

constitutively express Drosomycin, in response to fungal infection [74]. Tab2 participates in

the activation of the immune deficiency (Imd) signalling pathway through its interaction with

the product of transforming growth factor (TGF) beta-activated kinase 1 (Tak1) [75]. dsRNA

silencing of Tab2 has been noted to block expression of an antibacterial peptide produced by

Imd activation, and JNK activation by peptidoglycans [76]. Likewise, Tab2 RNAi eliminated

the induction of a broad range of immune response genes in S2 Drosophila cells [77]. Further

to this, bsk encodes a serine/threonine-protein kinase, a key component of the JNK signalling

pathway. Drosophila bsk RNAi knockdown mutants have been reported to completely lack

clot melanization [78]. Also, bsk mutant Drosophila larvae failed to melanise eggs from the

parasitoid Leptopilina boulardi [79]. These studies showed bsk as an important mediator for

cellular immune response through melanisation.

HEAL predicted 53 genes as essential for development. The top ten genes include Suppres-

sor of zeste 2 (Su(z)2, FBgn0265623); Fatty acid synthase 1 (Fasn1, FBgn0283427); Fatty acid

synthase 3 (Fasn3, FBgn0287184); Transitional elements of the endoplasmic reticulum 94 kDa

(Ter94, FBgn0286784); Scab (scb, FBgn0286785); Hoi-polloi (hoip, FBgn0286786); myopic

(mop, FBgn0036448); Zipper (zip, FBgn0265434 or FBgn0287873); Rho-related BTB domain

containing (RhoBTB, FBgn0036980); Shibire (shi, FBgn0003392). These are discussed as

follows:

Su(z)2 encodes a protein that is a functionally redundant homologue of the Polycomb

Group (PcG) gene Posterior sex combs (Psc) protein [80]. PcG proteins are epigenetic regula-

tors crucial in maintaining cell fate and stem cell function [81]. Psc/Su(z)2 alongside Polyho-

meotic (PH), Polycomb (PC), and dRING make up the Polycomb repressor complex 1 (PRC1)

which play a role in ubiquitination of H2A [82]. Su(z)2 restricts the proliferation and main-

tains the identity of the Cyst Stem Cell (CySC) in testis samples of Drosophila. It is also impor-

tant for germline stem cell (GSC) maintenance and germ cell development, observed to act as

a tumor suppressor [83]. Su(z)2 disrupts dmyc auto-repression, Hence, it provides and main-

tains Myc levels required for embryonic growth and proliferation [84]. Similarly, [85] reported

that only 17.4% of embryos from Su(z)2 mutant flies emerged as adults compared to 91.5%

adult emergence observed in wild type. These studies reveal the importance of Su(Z)2 in the

development of Drosophila from embryo to adults.
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Fasn1 and Fasn3 encode fatty acid synthase involved in the biosynthesis of saturated fatty

acids [86]. [87] reported that Fasn–/–mutant mice embryos died before implantation and the

Fasn+/–embryos died at various stages of their development, hence, the importance of fasn in

embryonic development. In Drosophila, Fasn1 levels have been observed to steadily increase

during embryogenesis (peaks at 13.5–18 h), and then decline at the end of the embryonic life

[88]. While Fasn1 is present in all larvae tissues, Fasn3 is expressed in the cuticle, epidermis,

muscle, and oenocytes of larvae [89]. [90] noted that Drosophila with RNAi targeting Fasn3 in

their oenocytes, produced embryo that did not mature into adults. Lethality in the offspring

was observed either at the second/third larval transition stage 4–5 days after egg deposition, at

the third larval stage or at the pupa stage. However, flies with RNAi targeting Fasn1 in oeno-

cytes produced viable offspring. This might be due to an incomplete RNAi effect, although

Fasn3 is oenocyte-specific in adult flies but Fasn1 is not [91]. These studies reveal the impor-

tance of fatty acid synthase 1 in the development of Drosophila.

Ter94 is a regulator of the ubiquitin proteasome system [92]. It is expressed in the embryo,

in pupae, and in imago, but suppressed in the larvae stage of Drosophila [93]. Overexpression

of Ter94 RNAi in Drosophila third instar wing imaginal discs has been observed to cause

pupal lethality [94]. Similarly, Ter94 is important for oogenesis. [95] reported that embryos

laid by female flies with germ-line clones of weak loss-of-function alleles of Ter94 have reduced

hatchability compared to the wild type. In turn, female flies with germ-line clones of a strong

loss-of-function allele of Ter94, do not produce egg chambers [96]. Ter94 regulates Bone mor-

phogenetic proteins (BMPs) signalling during embryogenesis [97]. It also positively regulates

Notch signalling [98]. Also, maternal knockdown of Ter94 caused significant 86% arrest in

early stage 2 embryogenesis [99]. Hence, it is important for developmental events in the fly.

Scb encodes the α-PS3 Integrin. It regulates cell adhesion, signalling, polarity, and migra-

tion [100]. It is required for heart lumen formation [101]. Scb mutant flies have abnormal sali-

vary glands, mislocalized pericardial cells and interrupted trachea [102]. It regulates pupal

wing vein formation [103]. Also, mutations in scb reportedly resulted in impaired phagocytosis

of apoptotic cells in Drosophila embryos [104]. These studies allude to the importance of scb
during the development of Drosophila.

Hoip in Drosophila encodes a highly conserved RNA-binding protein [105]. Hoip mutant

embryos have been reported to have aberrant myogenesis preventing them from emerging

from the chorion after embryogenesis [106]. Hence, hoip is necessary for the initiation and

maintenance of muscle structural gene expression during embryogenesis. Deficiency of hoip
in mice has also been noted to cause embryonic lethality [107]. These studies portray hoip to

be important during development in flies.

In turn, mop encodes a His domain protein-tyrosine phosphatase [108]. Depletion of mop

impairs border cell cluster integrity and cell adhesion during oogenesis in Drosophila [109]. In

Drosophila, zip encodes the non-muscle myosin II heavy chain. Zip mutant embryos have

abnormal cell shape changes in the epidermis and incomplete dorsal closure [110]. Dorsal

close in Drosophila embryo involves reorganization and contractions of the actin-myosin

cytoskeleton within epithelial cells, thereby leading to the shaping of the embryo [111]. [112]

reported that zip RNAi embryos had aberrant elongation (about 80% of zip RNAi embryo

had< 50% of egg length, compared to the wild type which all had�70% egg length). Similarly,

none of the zip RNAi embryo hatched 1 day after compared to the wild type in which >80% of

the embryos hatched. The study revealed that the absence of zip leads to embryonic lethality.

Hence, it is essential for embryo development.

RhoBTB is an atypical Rho GTPase. It is important for dendritic development in Drosophila

with its knockdown in dendritic arborization neurons leading to a reduced number of den-

drites [113]. Shi is Drosophila’s dynamin, a GTPase necessary for endocytosis and vesicle
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recycling [114, 115]. It regulates endocytosis throughout its development [116]. Temperature-

sensitive shi mutants shits1, shits3 and shits6 have been reported to display phenotypes of

embryonic lethality, continuous larval, and adult paralysis at 29˚C [117, 118]. Similarly, loss of

function of shi results in disruption of the tracheal network with ectopic branching and misal-

location of dorsal trunk cells, implicating shi in tracheal development [119].

In summary, HEAL was able to predict important genes involved in development or

immune response conditions, which were not previously identified in Drosophila melanoga-

ster. This discovery will provide more insight into the immune response factors and the

growth mechanism in Drosophila. Furthermore, the success of the HEAL model has provided

a viable solution to the challenge of limited class labelled data to train a ML classifier often

encountered in bioinformatics predictive analysis.

Conclusion

We developed a heuristic-enabled active machine learning model that eliminates the human

component in the active learning pipeline and possessing a superior prediction performance

compared to the state-of-the-art AL models based on five public datasets. The HEAL model

was implemented as a web tool for annotating biological and non-biological data when there is

limited labelled data for training a machine learning model. The HEAL model was also applied

to address the problem of predicting conditionally essential genes which is an intractable prob-

lem in bioinformatics. Essential immune response and embryonic developmental stage genes

in D. melanogaster were predicted. Four of the 10 predicted immune response genes were

novel and 53 genes were identified as important in the embryonic developmental stage in D.

melanogaster. These predicted genes are proposed for future experimental studies.
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