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Abstract

The bidirectional causal relationship between type 2 diabetes mellitus (T2DM) and breast

cancer (BC) has been established by numerous epidemiological studies. However, the

underlying molecular mechanisms are not yet fully understood. Identification of hub genes

implicated in T2DM-BC molecular crosstalk may help elucidate on the causative mecha-

nisms. For this, expression series GSE29231 (T2DM-adipose tissue), GSE70905 (BC-

breast adenocarcinoma biopsies) and GSE150586 (diabetes and BC breast biopsies) were

extracted from Gene Expression Omnibus (GEO) database, and analyzed to obtain differ-

entially expressed genes (DEGs). The overlapping DEGs were determined using FunRich.

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Transcrip-

tion Factor (TF) analyses were performed on EnrichR software and a protein-protein interac-

tion (PPI) network was constructed using STRING software. The network was analyzed on

Cytoscape to determine hub genes and Kaplan-Meier plots were obtained. A total of 94

overlapping DEGs were identified between T2DM and BC samples. These DEGs were

mainly enriched for GO terms RNA polymerase II core promoter proximal region sequence

and its DNA binding, and cAMP response element binding protein, and KEGG pathways

including bladder cancer, thyroid cancer and PI3K-AKT signaling. Eight hub genes were

identified: interleukin 6 (IL6), tumor protein 53 (TP53), interleukin 8 (CXCL8), MYC, matrix

metalloproteinase 9 (MMP9), beta-catenin 1 (CTNNB1), nitric oxide synthase 3 (NOS3) and

interleukin 1 beta (IL1β). MMP9 and MYC associated unfavorably with overall survival (OS)

in breast cancer patients, IL6, TP53, IL1β and CTNNB1 associated favorably, whereas

NOS3 did not show any correlation with OS. Salt inducible kinase 1 (SIK1) was identified as

a significant key DEG for comorbid samples when compared with BC, also dysregulated in

T2DM and BC samples (adjusted p <0.05). Furthermore, four of the significant hub genes

identified, including IL6, CXCL8, IL1B and MYC were also differentially expressed for

comorbid samples, however at p < 0.05. Our study identifies key genes including SIK1, for

comorbid state and 8 hub genes that may be implicated in T2DM-BC crosstalk. However,

limitations associated with the insilico nature of this study necessitates for subsequent vali-

dation in wet lab. Hence, further investigation is crucial to study the molecular mechanisms
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of action underlying these genes to fully explore their potential as diagnostic and prognostic

biomarkers and therapeutic targets for T2DM-BC association.

Introduction

Breast cancer signaling pathways are governed by two functionally distinct, antagonistic sets of

genes: tumor suppressors and oncogenes. Genetic alterations in these master regulators result

in the ‘switching off’ of tumor suppressor genes such as tumor protein (p53), breast cancer
genes 1 and 2 (BRCA 1/2), phosphatase and tensin homolog deleted in chromosome 10 (PTEN)
and retinoblastoma gene (RB1), and ‘turning on’ of proto-oncogenes into oncogenes like tran-

scription factor MYC, phosphatidylinositol-4,5-Bisphosphate 3-Kinase catalytic subunit A
(PIK3CA) and receptor tyrosine protein kinase ErbB2, mediating a series of molecular and

physiological changes leading to carcinogenesis in the mammary gland [1, 2]. Interestingly,

several of these genes have also been reportedly dysregulated in diabetes, particularly type 2

diabetes mellitus (T2DM), potentially laying down the foundation for the molecular bases

underlying the two-way relationship between these two complex and multifactorial diseases.

This in turn supports the growing body of epidemiological evidence reporting the incidence of

T2DM in breast cancer patients and also cases of T2DM induced breast cancer [3].

Breast cancer (BC) is the most frequently reported cancer amongst females [4], worldwide, and

diabetes too is emerging globally as a pandemic [5, 6]. Hence both these diseases are leading causes

of national and international health concern. At this rate, reports of increased breast cancer inci-

dence in diabetic patients and the worsening of prognosis in breast cancer patients with T2DM

onset, adds to the health burden, and requires immediate attention of scientists worldwide [7, 8].

Hence, this study aimed to investigate the molecular mechanisms underlying the type 2 dia-

betes mellitus and breast cancer association by utilizing bioinformatics methods to identify

key molecular players commonly dysregulated in both T2DM and breast cancer and potentiate

biomarker discovery based on identifying differential and common gene expression patterns

between samples derived from T2DM affected adipose tissue, breast adenocarcinoma biopsies

and comorbid patients.

Materials and methods

This paper adopted an ‘integrated in silico analyses’ approach for the identification of potential

biomarkers common to T2DM and breast cancer.

Selection of microarray and RNA-seq. data

The T2DM series GSE29231 is based on the GPL6947 platform Illumina HumanHT-12 V3.0

expression beadchip, BC series GSE70905 on GPL4133 platform Agilent-014850 Whole

Human Genome Microarray 4x44K G4112F (Feature Number version) [9, 10] and

GSE150586 series on GPL24676 Illumina NovaSeq 6000 (Homo sapiens). Table 1 describes

further details for each of these series. To the best of our knowledge, any combination of these

expression series has not been previously analyzed for T2DM-BC cross disease comparison.

All the expression data analyzed here is freely accessible on the GEO database website.

Differential gene expression analysis

Each of the series were analyzed using the GEO2R tool on NCBI GEO website to obtain differ-

entially expressed genes (DEGs) between diseased and normal/control samples (https://www.

ncbi.nlm.nih.gov/geo/geo2r/). An (adjusted) p value of< 0.05 and an absolute value of log of
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Abbreviations: LGALS8, galectin 8; S100A12,

S100 calcium binding protein A12; KDM5D, lysine

demethylase 5D; MIOX, myo-inositol oxygenase;

ISLR, immunoglobulin superfamily containing

leucine rich repeat; VNN2, vanin 2; CAMK2B,

calcium/calmodulin dependent protein kinase II

beta; GP9, glycoprotein IX platelet; NEUROD2,

neuronal differentiation 2; FOS, Fos proto-

oncogene, AP-1 transcription factor subunit;

SPATS2L, spermatogenesis associated serine rich

2 like; PLXNA4, plexin A4; SPDYE3, speedy/RINGO

cell cycle regulator family member E3; SP1, Sp1

transcription factor; DOK5, docking protein 5;

TAX1BP3, Tax1 binding protein 3; ARHGAP26, Rho

GTPase activating protein 26; ZSCAN29, zinc finger

and SCAN domain containing 29; ADAMTS10,

ADAM metallopeptidase with thrombospondin type

1 motif 10; TERT, telomerase reverse transcriptase;

FRG2B, FSHD region gene 2 family member B;

CD207, CD207 molecule; AMPD2, adenosine

monophosphate deaminase 2; ZNF8, zinc finger

protein 85; SLC24A5, solute carrier family 24

member 5; SLC5A12, solute carrier family 5

member 12; FBXO33, F-box protein 33; KRTAP23,

1 keratin associated protein 23–1; ABCB4, ATP

binding cassette subfamily B member 4; A1CF,

APOBEC1 complementation factor; SHCBP1, SHC

binding and spindle associated 1; SAA4, serum

amyloid A4, constitutive; LINC00152, long

intergenic non-protein coding RNA 152; MIGA1,

mitoguardin 1; EYA4, EYA transcriptional

coactivator and phosphatase 4; CHADL,

chondroadherin like; CDK15, cyclin dependent

kinase 15; EXOC7, exocyst complex component 7;

CCL23, C-C motif chemokine ligand 23; PYROXD1,

pyridine nucleotide-disulphide oxidoreductase

domain 1; SOD3, superoxide dismutase 3,

extracellular; POMZP3, POM121 and ZP3 fusion;

TAPBP, TAP binding protein (tapasin); MCL1, BCL2

family apoptosis regulator; CRTC1, CREB regulated

transcription coactivator 1; MMP9, matrix

metallopeptidase 9; CXCL8, C-X-C motif

chemokine ligand 8; MAP2K3, mitogen-activated

protein kinase kinase 3; SERPINB2, serpin family B

member 2; MYC, v-myc avian myelocytomatosis

viral oncogene homolog; alternatively c-Myc;

MSR1, macrophage scavenger receptor 1;

S100A8, S100 calcium binding protein A8; CEL,

carboxyl ester lipase; TPM4, tropomyosin 4; ELN,

elastin; PTMS, parathymosin; SLC11A1, solute

carrier family 11 member 1; RBMS1, RNA binding

motif single stranded interacting protein 1; TPM3,

tropomyosin 3; ZC3HAV1, zinc finger CCCH-type

containing, antiviral 1; TNC, tenascin C; WDR1, WD

repeat domain 1; FGFR1, fibroblast growth factor

receptor 1; MAPK8IP3, mitogen-activated protein

kinase 8 interacting protein 3; RP2, retinitis
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fold change of 1, or more (|log FC|� 1) were utilized as selection criteria for identifying signif-

icant DEGs. The Venn diagram analysis was performed to determine an overlap between

DEGs from both series using the FunRich software (http://www.funrich.org/), which is a user

friendly tool that allows for graphical representation of the data [12].

DEG GO and KEGG analyses

The Gene Ontology (GO) and KEGG analyses were performed using EnrichR software

(https://maayanlab.cloud/Enrichr/). EnrichR is an online enrichment analysis tool that ana-

lyzes gene sets for various aspects of biological knowledge [13]. Functional enrichment of the

overlapping significant DEGs were obtained for three GO terms classified as biological process

(BP), molecular function (MF), and cellular component (CC). Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment was also determined. KEGG associates a set of

genes with biological functions such as signaling, pathways and interacting networks of pro-

teins [14].

PPI network construction

The protein-protein interaction (PPI) network for the cross disease analysis -common DEGs

were constructed using Search Tool for the Retrieval of Interacting Genes (STRING) software

(https://string-db.org/), by introducing the DEGs list onto the software interface online. PPI

pairs with a combined score of 0.4 or above were extracted to generate the networks.

Hub gene identification

The PPI network topology was then visualized using Cytoscape software (https://cytoscape.

org/), and the average node degree parameter was calculated using the ‘Network Analyzer’ fea-

ture. Genes corresponding to a node degree of 10 and above were considered as hub genes.

Survival analysis of hub genes

Kaplan Meir plot was generated using the Kaplan-Meir plotter (http://kmplot.com/analysis/)

to gain insight into the prognostic value of each hub/key gene in terms of breast cancer survival

outcome. Kaplan-Meir plotter is an online tool that features the option to assess the prognostic

relevance of about 54000 genes in various types of cancers, including expression data for 4929

breast cancer patients [15, 16].

The methodology is summarized in Fig 1.

Table 1. GEO series utilized for this study. The table details the disease sample size and microarray/RNA-seq. plat-

form. T2DM: type 2 diabetes mellitus; BC: breast cancer; D: diabetes.

# Series ID Description Platform Disease Ref.

1 Series

GSE29231

Samples of visceral adipose tissue taken

from 3 female T2DM patients and 3

female healthy controls (3 biological x 4

technical replicates)

GPL6947 platform Illumina

HumanHT-12 V3.0 expression

beadchip

T2DM [9]

2 Series

GSE70905

47 Breast adenocarcinoma and 47

adjacent paired normal samples

GPL4133 platform Agilent-014850

Whole Human Genome Microarray

4x44K G4112F (Feature Number

version)

BC [10]

3 Series

GSE150586

6 samples from comorbid patients

(diabetes with breast cancer) and 6 breast

cancer samples

GPL24676 platform Illumina

NovaSeq 6000 (Homo sapiens)
D+BC [11]

https://doi.org/10.1371/journal.pone.0289839.t001
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pigmentosa 2 (X-linked recessive); CALD1,

caldesmon 1; AGRN, agrin; GEM, GTP binding

protein overexpressed in skeletal muscle; ARID4B,

AT-rich interaction domain 4B; MRGPRF, MAS

related GPR family member F; TYMP, thymidine

phosphorylase; SIK1, salt inducible kinase 1;

ACTRT1, actin related protein T1; HIPK2,

homeodomain interacting protein kinase 2;

SCAMP1, secretory carrier membrane protein 1;

FSTL3, follistatin like 3; ITGAX, integrin subunit

alpha X; CCDC86, coiled-coil domain containing 86;

ADAMTS1, ADAM metallopeptidase with

thrombospondin type 1 motif 1; SP2, Sp2

transcription factor; SYN2, synapsin II; PRMT2,

protein arginine methyltransferase 2; SNCA,

synuclein alpha; PMP22, peripheral myelin protein

22; RFX1, regulatory factor X1; CDKN1A, cyclin

dependent kinase inhibitor 1A; NOS3, nitric oxide

synthase 3; NUP98, nucleoporin 98; EPOR,

erythropoietin receptor; LDOC1L, leucine zipper

down-regulated in cancer 1 like; DYNLT3, dynein

light chain Tctex-type 3; TP53, tumor protein p53;

GGCX, gamma-glutamyl carboxylase; WTAP,

Wilms tumor 1 associated protein; SF3A2, splicing

factor 3a subunit 2; GRASP, general receptor for

phosphoinositides 1 associated scaffold protein;

PTPRE, protein tyrosine phosphatase, receptor

type E; CYSLTR1, cysteinyl leukotriene receptor 1;

EPN1, epsin 1; BCORL1, BCL6 corepressor-like 1;

PLPP1, phospholipid phosphatase 1; WDR4, WD

repeat domain 4; TUBA1C, tubulin alpha 1c;

HSPA1A, heat shock protein family A (Hsp70)

member 1A; RBPJ, recombination signal binding

protein for immunoglobulin kappa J region;

FAM222B, family with sequence similarity 222

member B; CBX4, chromobox 4; FKBP1A, FK506

binding protein 1A; FGR, FGR proto-oncogene, Src

family tyrosine kinase; CTNNB1, catenin beta 1;

IL1B, interleukin 1 beta; WRNIP1, Werner helicase

interacting protein 1; MYL9, myosin light chain 9;

TSPAN13, tetraspanin 13; JUNB, JunB proto-

oncogene, AP-1 transcription factor subunit;

STX11, syntaxin 11; BCL3, B-cell CLL/lymphoma 3;

SLC25A20, solute carrier family 25 member 20;

IL6, interleukin 6; GTPBP8, GTP binding protein 8

(putative); EXOC4, exocyst complex component 4;

CDC14A, cell division cycle 14A; SMAD5, SMAD

family member 5; KRTAP3, 2 keratin associated

protein 3–2; PER3, period circadian clock 3;

MCOLN3, mucolipin 3; RPL21, ribosomal protein

L21; CHURC1, churchill domain containing 1;

EGFR, epidermal growth factor receptor; TFAP2A,

transcription factor AP-2 alpha; SMAD3, an

acronym from the fusion of Caenorhabditis elegans

Sma genes and mothers against decapentaplegic

transcription factor 3; KAT2A, protein lysine

acyltransferase; CEBPA, CCAAT enhancer-binding

http://www.funrich.org/
https://maayanlab.cloud/Enrichr/
https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
http://kmplot.com/analysis/
https://doi.org/10.1371/journal.pone.0289839.t001
https://doi.org/10.1371/journal.pone.0289839


Results

Identification of DEGs

Two series containing microarray data, were selected, one each for T2DM and breast cancer,

for cross disease analysis. GSE29231 consisted of visceral adipose tissue of 3 female T2DM

patients and 3 healthy controls and GSE70905 with 47 BC and 47 paired healthy control sam-

ples as summarized in Table 1.

DEG analysis for each of these series was carried out by comparing the disease samples with

corresponding normal samples and the list of differentially expressed genes was extracted

according to the criteria of adjusted p< 0.05 and |log FC|� 1, as shown in Table 2. A total of

1187 significant DEGs were screened for T2DM adipose tissue samples, which consisted of

857 up-regulated and 330 down-regulated DEGs. For the breast adenocarcinoma samples, a

total of 3003 significant DEGs were obtained, of which 1290 were up-regulated and 1713 were

Fig 1. Flow diagrammatic representation of methodology. The boxes in green represent analyses, yellow-conditions

applied and blue for immediate outcome/ subsequent process step. The pink box indicates the final outcome.

https://doi.org/10.1371/journal.pone.0289839.g001
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protein alpha; HIF1A, hypoxia inducible factor 1-

alpha; TFAP2C, transcription factor AP-2 gamma;

EP300, histone acetyltransferase p300.

https://doi.org/10.1371/journal.pone.0289839.g001
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down-regulated. As part of subsequent validation, DEG analysis of GSE150586 presented with

a total of 60 statistically significant DEGs, of which 33 were found to be up-regulated and 27

down-regulated. The top ten up- regulated and down-regulated DEGs for each of the analyses

are also listed (Table 2).

Venn diagram analysis

The overlapping DEGs between series were determined with Venn diagram analysis, where

the intersection represented DEGs common to both the series compared, in each analysis per-

formed. For T2DM, 1187 DEGs and for BC, 3003 DEGs were imported into FunRich software,

which were subsequently mapped to 835 (/870) and 1915 (/2084) genes respectively, removing

any repetitions in DEGs. There were a total of 94 DEGs common to both T2DM adipose tissue

and breast adenocarcinoma samples as shown in Fig 2A, of which 40 DEGs were commonly

up-regulated (Fig 2B) and 4 commonly down-regulated in both diseases (Fig 2C).

These common DEGs are listed in Table 3.

Functional enrichment analyses

Functional and pathway enrichment analyses showed that the common DEGs between T2DM

and BC series were enriched for GO category ‘biological processes’ such as negative regulation

of cell proliferation, entrainment of the circadian clock by photoperiod and photoperiodism,

‘molecular functions’ including RNA polymerase II core promoter proximal region sequence-

specific DNA binding, core promoter proximal region sequence and cAMP response element

binding protein, and ‘cellular components’ RNA polymerase II transcription complex, actin

myosin and actin filament. The top three significantly enriched KEGG pathways were bladder

cancer, thyroid cancer and PI3K-AKT signaling. Additionally, cellular senescence, TNF- sig-

naling and IL17 signaling pathways were also amongst the significantly enriched results, as

shown in Fig 3A–3D.

PPI network construction

STRING software was utilized to predict interactions between the common DEGs obtained

from comparing the singular disease’s DEGs lists. A total of 94 nodes were imported into the

online software to generate a PPI network with 146 edges at a confidence of 0.4 and average

node degree of 3.11, as shown in Fig 4.

Table 2. Differential gene expression analysis. The results show the number of differentially expressed genes (DEGs) for each series analyzed, along with the top 10 most

significant up-regulated and down-regulated DEGs.

# Series ID Total

Potential

DEGs

Total

Significant

DEGs

Up-Regulated

Genes

Down-

Regulated

Genes

Top 10 Up-Regulated Genes Top 10 Down-Regulated Genes

1 GSE29231 48803 1187 857 330 LGALS8; S100A12; KDM5D; MIOX;
ISLR; VNN2; CAMK2B; GP9; NEUROD2;
FOS

FRG2B; CD207; AMPD2; ZNF8;
SLC24A5; SLC5A12; FBXO33;
KRTAP23-1; ABCB4; A1CF

2 GSE70905 45015 3003 1290 1713 SPATS2L; PLXNA4; SPDYE3; SP1;
DOK5; TAX1BP3; ARHGAP26;
ZSCAN29; ADAMTS10; TERT;

SHCBP1 SAA4; LINC00152; MIGA1;
EYA4; CHADL; CDK15; EXOC7;
CCL23; PYROXD1

GSE150586 19231 60 33 27 UGT2B28; ALOX15B; SLC30A8; LBP;
FIBCD1 CEACAM5; CLCA2; SPINK8;
SERHL2; CRYM

SERPINA11 CYP2B7P; SYT13;
CYP4F30P; PHGR1; FOSB; SOCS3;
NR4A3; DLX2; LRP2

https://doi.org/10.1371/journal.pone.0289839.t002
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Fig 2. Venn diagram analysis for T2DM -adipose tissue and breast adenocarcinoma (BC) samples. The yellow

circle represents DEGs obtained from DEG analysis on T2DM samples and the pink circle represents DEGs from BC

samples, similarly. A- The intersection represents DEGs common to T2DM and BC. B- The intersection represents

up-regulated DEGs common to both diseases. C- The intersection represents down-regulated DEGs common to both

diseases.

https://doi.org/10.1371/journal.pone.0289839.g002
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Hub gene identification

The PPI network was imported into Cytoscape software and the nodes were evaluated for their

node degrees. Nodes with a degree� 10 were identified as hub genes. These included tumor
protein 53 (TP53) and interleukin (IL6) with the highest node degrees of 25 each, followed by

interleukin 8 (CXCL8) and MYC, both at 18, matrix metallopeptidase 9 (MMP9) and beta- cate-
nin 1 (CTNNB1) at 15, and nitric oxide synthase 3 (NOS3) and interleukin 1 beta (ILβ1) at a

degree of 10 each. A sub-network of these hub genes is represented in Fig 5.

Table 3. Venn diagram analysis. The 94 DEGs common to both T2DM and BC are listed. The expression of each of the DEGs in both diseases is also indicated. DEGs:

differentially expressed genes; T2DM: type 2 diabetes mellitus; BC: breast cancer.

T2DM- BC

Series

Compared

No. of

Common

DEGs

Expression Pattern in T2DM Expression Pattern in BC

" # " #

T2DM- BC 94 KDM5D; SOD3; MIOX; POMZP3;
TAPBP; MCL1; CRTC1; MMP9;
CXCL8; MAP2K3; SERPINB2;
MYC; MSR1; S100A8; CEL; TPM4;
ELN; PTMS; SLC11A1; RBMS1;
TPM3; ZC3HAV1; TNC; WDR1;
FGFR1; MAPK8IP3; RP2; CALD1;
AGRN; GEM; ARID4B; MRGPRF;
TYMP; SIK1; FAM118A; ACTRT1;
HIPK2; SCAMP1; FSTL3; ITGAX;
CCDC86; ADAMTS1; SP2; SYN2;
PRMT2; SNCA; PMP22; RFX1;
CDKN1A; NOS3; NUP98; EPOR;
LDOC1L; DYNLT3; TP53; GGCX;
WTAP; SF3A2; GRASP; SPATS2L;
PTPRE; CYSLTR1; EPN1; BCORL1;
PLPP1; WDR4; TUBA1C; HSPA1A;
RBPJ; FAM222B; CBX4; FKBP1A;
FGR; CTNNB1; IL1B; WRNIP1;
MYL9; TSPAN13, JUNB, STX11;
BCL3; SLC25A20; IL6; EXOC4;
GTPBP8

CDC14A; SMAD5;
KRTAP3-2; RAX;
PPP2R1B; PER3;
MCOLN3; RPL21;
CHURC1

KDM5D; SOD3; JUNB; TAPBP;
CEL; CRTC1; MMP9; IL1B; MYL9;
MYC; FGR; ZC3HAV1; WDR1;
TPM3; CALD1; CBX4; GEM;
ARID4B; SIK1; CDKN1A; NUP98;
TP53; SP2; SYN2; SPATS2L;
GGCX; CYSLTR1; BCORL1;
WDR41; HSPA1A; EPN1; FKBP1A;
WRNIP1; EXOC4; TSPAN13; RBPJ;
SLC25A20; RPL21; SMAD5;
ITGAX; HIPK2; PPP2R1B;
MCOLN3; TNC; CHURC1;
SCAMP1

MIOX; POMZP3; MCL1; BCL3; IL6;
CXCL8; MAP2K3; SERPINB2;
MSR1; S100A8; TPM4; ELN; PTMS;
SLC11A1; RBMS1; FGFR1; PRMT2;
MAPK8IP3; PER3; AGRN;
MRGPRF; TYMP; RP2; ACTRT1;
FSTL3; CCDC86; PMP22;
FAM118A; SNCA; ADAMTS1;
RFX1; NOS3; EPOR; FAM222B;
LDOC1L; DYNLT3; WTAP; SF3A2;
GRASP; PTPRE; PLPP1; TUBA1C;
CTNNB1; STX11; GTPBP8;
CDC14A; KRTAP3-2; RAX

https://doi.org/10.1371/journal.pone.0289839.t003

Fig 3. Functional and pathway enrichment analyses. The most significant results are presented from top to bottom.

A- Shows the results for GO term biological processes, B- GO term molecular function, and C- GO term cellular

component. D- Most significantly results for KEGG pathways.

https://doi.org/10.1371/journal.pone.0289839.g003

PLOS ONE Bioinformatics analyses in identifying biomarkers for breast cancer and type 2 diabetes mellitus

PLOS ONE | https://doi.org/10.1371/journal.pone.0289839 August 9, 2023 7 / 24

https://doi.org/10.1371/journal.pone.0289839.t003
https://doi.org/10.1371/journal.pone.0289839.g003
https://doi.org/10.1371/journal.pone.0289839


Hub gene survival analysis

To study the prognostic value of these hub genes in breast cancer prognosis, survival analyses

were performed using breast cancer patients’ data at the Kaplan- Meier plotter platform. The

curves obtained as shown in Fig 6 indicate that MMP9, MYC and IL8 associate unfavorably

with overall survival (OS) in breast cancer patients, whereas, IL6, TP53, IL1β and CTNNB1
genes associate favorably. Additionally, NOS3 does not show any correlation with overall

survival.

Of these 8 genes, TP53, MYC and IL1β were upregulated in both T2DM and BC samples,

whereas MMP9, CTNNB1, IL6, CXCL8 and NOS3 were all up-regulated in T2DM, but found

to be down-regulated in BC samples.

Pathway enrichment reanalysis for hub genes

The 8 hub genes were re-imported into the EnrichR tool, and the KEGG pathway analysis was

performed along with enrichment analysis for transcription factors. Results are shown in Fig

7A and 7B.

Fig 7A shows that these hub genes were enriched for KEGG pathways such as fluid shear

stress and lipid’s roles in atherosclerosis, human cytomegalovirus infection, hepatitis B and

cancers such as thyroid, bladder and particularly breast cancer (not shown in the top 10 most

Fig 4. Protein- protein interaction network for common DEGs. All disconnected nodes were removed from the

network. The sphere represents node (protein encoded by the gene) and the line depicts interaction. The color of the

line is representative of the source of evidence for interaction, including text mining (light green), gene neighborhood

(dark green), experimentally determined (magenta), and curated databases (blue). The structure within sphere

represents the availability of 3D structure of the protein.

https://doi.org/10.1371/journal.pone.0289839.g004
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significant results- S1 Table), along with other terms such as transcriptional mis-regulation in

cancer and pathways in cancer. These hub genes were also enriched for transcription factors

including EGFR, TFAP2A, FOS, SP1, SMAD3, KAT2A, CEBPA, HIF1A, TFAP2C and EP300,

as depicted in Fig 7B.

Fig 5. Sub-network of hub genes. The blue rectangle represents the gene and the grey line depicts interaction between

a pair of hub genes.

https://doi.org/10.1371/journal.pone.0289839.g005

Fig 6. Kaplan-Meier plots. These high vs. low gene expression curves represent overall survival in breast cancer

patients for each of the hub genes identified.

https://doi.org/10.1371/journal.pone.0289839.g006
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Validation analysis for comorbidity

Sequentially, 60 DEGs from the DEG analysis of diabetes- breast cancer (D+BC) samples com-

pared to BC samples, were imported into the FunRich software, and mapped to 48 (/60) genes.

Venn diagram analysis showed only 1 DEG to be commonly differentially expressed between

all three series- (T2DM, BC and comorbid D+BC, Fig 8A), whereas 8 DEGs overlapped

between T2DM and comorbid state (Fig 8B), and 3 between BC and comorbid D+BC series

(Fig 8C).

These overlapping DEGs are listed in Table 4.

Functional enrichment analysis for each of these sets of common DEGs were performed for

category KEGG pathway. Results showed the singular DEG, SIK1, common to all three dis-

eased states (T2DM, BC and comorbid D+BC) to be significantly implicated in glucagon sig-

naling pathway (Fig 9A). The overlapping DEGs for T2DM-comorbid series were significantly

enriched for KEGG terms IL-17 signaling pathway, osteoclast differentiation and estrogen sig-

naling, amongst others (Fig 9B), whereas the BC-comorbid overlapping DEGs were repre-

sented by KEGG pathways including several types of cancer, central carbon metabolism in

cancer and ErbB signaling (Fig 9C). The prognostic relevance of SIK1, common to all three dis-

eased states was also found out, as described previously for the hub genes (Fig 9D). The gene

was shown to associate favorably with OS in BC patients.

Fig 7. Functional enrichment re-analysis of hub genes. A- KEGG pathway enrichment B- Transcription factor

enrichment analysis. The most significant results are presented from top to bottom.

https://doi.org/10.1371/journal.pone.0289839.g007
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Discussion

This study aimed at identifying potential molecular markers dysregulated in both T2DM adi-

pose tissue and in breast adenocarcinoma, irrespective of hormone receptor expression status.

The difference in the number of DEGs obtained from the DEG analyses and the number of

DEGs mapped onto FunRich software can be accounted for by the multiple splice variants for

a single gene [17], detected during microarray expression analysis, but mapped to the same

gene in FunRich. Results showed that there were a total of 94 DEGs common between both

the diseases comparing microarray data from a T2DM adipose tissue derived series containing

diseased and healthy control samples and another series composing breast adenocarcinoma

(BC) samples as well healthy adjacent control tissues, Fig 2. These common DEGs consisted of

85 up-regulated and 9 down-regulated genes in T2DM, and 46 up-regulated and 48 down-reg-

ulated genes in breast cancer. These DEGs were consequentially analyzed for functional

enrichment categories such as gene ontology, sub-divided into biological processes (BP),

molecular function (MF) and cellular components (CC), and KEGG pathways. The results

indicated these DEGs were enriched in GO BP terms such as cell proliferation and its negative

regulation, photoperiod’s role in the entrainment of circadian clock and photoperiodism,

response to molecule of bacterial origin, extrinsic apoptotic signaling regulation in the absence

of ligand, transcription from RNA polymerase II promoter’s regulation, DNA-templated tran-

scription’s positive regulation, and negative regulation of programmed cell death, particularly

of apoptosis, as the most significant terms, as shown in Fig 3. These DEGs were involved in

KEGG pathways implicated in bladder, thyroid and prostate cancers, PI3K-AKT signaling

pathway, cellular senescence, human cytomegalovirus infection, Hepatitis B, TNF signaling

pathway, Epstein-Barr virus infection, and IL-17 signaling pathway.

The proteins corresponding to these DEGs were also utilized to construct a PPI network to

study protein-protein interactions and identify the most connected proteins, central to the net-

work, Fig 4. Eight hub genes were identified, including TP53, MYC, IL1β, IL6, IL8, CTNNB1,

MMP9 and NOS3 (Fig 5). All of these genes were found to be up-regulated in T2DM adipose

Fig 8. Venn diagram analysis for diabetes and breast cancer (D+BC) comorbid samples with T2DM -adipose

tissue and breast adenocarcinoma (BC) samples. The yellow circle represents DEGs obtained from DEG analysis on

T2DM samples, pink circle represents DEGs from BC samples, and sea green circle depict DEGs for D+BC samples,

similarly. A- The intersection represents DEGs common to D+BC, T2DM and BC series. B- The intersection

represents DEGs common to D+BC and T2DM diseased conditions. C- The intersection represents DEGs common D

+BC and BC diseased states.

https://doi.org/10.1371/journal.pone.0289839.g008

Table 4. Venn diagram analysis. The DEGs common to the three diseased states in three combinations are listed. The expression of each of the DEGs in diseased state is

also indicated. DEGs: differentially expressed genes; T2DM: type 2 diabetes mellitus, BC: breast adenocarcinoma, D+BC: diabetes and breast cancer comorbid state.

Series Compared No. of Common DEG(s) Expression Pattern in T2DM Expression Pattern in BC Expression Pattern in D+BC

" # " # " #

T2DM- BC-D+BC 1 SIK1 SIK1 SIK1
T2DM- D+BC 8 FOSB

IER2
JUN
ATF3
ADCY1
SIK1
JUND
CSRNP1

FOSB
IER2
JUN
ATF3
ADCY1
SIK1
JUND
CSRNP1

BC- D+BC 3 SIK1
ERBB2

LBP ERBB2
LBP

SIK1

https://doi.org/10.1371/journal.pone.0289839.t004
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tissue samples, but were differentially expressed in BC samples. TP53, MYC and IL1β were up-

regulated, whilst IL6, IL8, CTNNB1, MMP9 and NOS3 were under expressed as compared to

healthy adjacent tissue.

To assess the prognostic significance of each of these hub genes, Kaplan-Meier plots were

generated and showed that the overexpression of TP53, IL1β, IL6 and CTNNB1 associated

favorably with OS (Fig 6). So, while the up-regulation of TP53 and IL1β indicate favorable

prognosis for these BC patients, the down-regulation of IL6 and CTNNB1 reflected the oppo-

site. Additionally, IL8, MMP9 and MYC associated unfavorably with OS, and hence, the over-

expression of MYC may correspond to a poorer outcome, whereas the down-regulation of IL8
and MMP9 may translate into a better prognosis. NOS3, was shown to not be associated with

prognosis.

Disease pathogenesis is the outcome of a multifactorial, complex series of metabolic and

other molecular changes, and hence its prognosis prediction is inevitably a challenge. At the

crux of this, it is important to understand that the expression of a single gene may not be suffi-

cient to determine the prognosis of a breast cancer patient, let alone a case that is further com-

plicated with diabetes. Signature molecular profiling based approach may need to be employed

for determining the prognostic outcome of T2DM and breast cancer in a patient. In case of the

breast adenocarcinoma samples under study, the expressional status of TP53, IL1β, IL8 and

MMP9 indicate an expressional advantage for the patients’ prognosis, while on the other hand

the IL6, CTNNB1 and MYC’s expression patterns may prove as a disadvantage. The clinically

relevant question that arises is on the extent of influence each of these genes have on disease

pathogenesis, T2DM-BC crosstalk and hence on the patient prognosis. Their expression profil-

ing in comorbid condition and correlation with clinico-pathological features may provide fur-

ther insight into their prognostic relevance.

The reanalysis of these hub genes for functional pathway enrichment, highlighted their role

in cancer specific pathways, including breast cancer (a significant enrichment, however not

Fig 9. Pathway enrichment and survival analyses. A-C The most significant KEGG pathway results are presented

from top to bottom for A- All three series, B- D+BC and T2DM series C- D+BC and BC series. D- Kaplan-Meier Plot

for SIK1 gene. These high vs. low gene expression curves represent overall survival in breast cancer patients for the key

gene identified.

https://doi.org/10.1371/journal.pone.0289839.g009
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amongst the top 10 most significant results), involving TP53, MYC and CTNNB1, in particular,

insulin resistance (IL6 and NOS3), HIF1 signaling pathway (IL6 and NOS3), AGE-RAGE sig-

naling (IL6, NOS3, IL1B), and PI3K-Akt pathway (IL6, NOS3, MYC, TP53), as shown in S1

Table. Breast cancer sub type specific signaling pathways such as those mediated by estrogen
and ErBb are also enlisted. Additionally, microRNAs in cancer pathway is also amongst the

significant results. Previously, regulatory microRNA overlap between T2DM and BC has been

highlighted [18]. Furthermore, these hub genes may have common transcription factors,

highlighting an overlap in their regulation and the potential for a molecular crosstalk.

Amongst the enriched transcription factor terms, hypoxia inducible factor 1 alpha (HIF1A
-enriched for TP53, CTNNB1 and MYC), as shown in Fig 7, has previously been reviewed as

pivotal for T2DM-BC association [8].

Since, TP53, MYC and IL1β have a similar expression pattern in both diseases, these may

serve as common (diagnostic) biomarkers, hence further study on their potential as molecular

switches between T2DM and BC is warranted. Furthermore, the under-expression of TP53
and IL1β and overexpression of MYC in comorbid patients may translate into a poorer prog-

nosis and overall survival outcome. However, the potential prognostic relevance of these hub

genes also needs to be validated in a wet lab, before any molecular signature gene sets are

designed for the early diagnosis, prognostic determination and therapeutic intervention for

T2DM induced breast cancer and breast cancer complicated with diabetes.

Considering the functional niche of each of these genes in both the diseases may further

highlight their potential reigning capacity on the T2DM-BC crosstalk. Tumor protein TP53
(p53) is a master regulating transcription factor, critically implicated in pivoting a ‘see-saw’

between cell survival and programmed cell death pathways [19]. It responds to oncogenic

stress in a severity scaled manner, and orchestrates tumor suppressing activities impacting cell

growth, DNA repair, metabolism, cell cycle arrest, senescence and cell death [20]. Hypoxia

induces TP53 mediated suppression of glycolysis and promotion of oxidative phosphorylation

[21], supporting its expression mediated favorable prognosis in breast cancer patients. Its regu-

lation of metabolic pathways establishes its role in metabolic diseases beyond cancer, including

diabetes. In T2DM, a metabolic disorder, expressional p53 up-regulation is associated with the

regulation of beta cell function [22–24], and is consistent with its expression in T2DM adipose

tissue. For T2DM pathogenesis, TP53 may contribute through multiple routes such as its role

in the dysregulation of glucose homeostasis and the development of insulin resistance [25]. In

breast cancer, TP53 is a well-established biomarker. It is reported to be mutated in about 20–

40% of all cases and is associated with breast cancer risk and prognosis [26]. However, the up-

regulation of its wild type in breast adenocarcinoma samples under study do not indicate an

overall poorer prognosis in breast cancer patients, as shown by the Kaplan-Meir plot, hence

wet lab validation may be required to fully establish the association of its wild type overexpres-

sion with BC prognosis.

v-Myc, alternatively known as c-Myc, is reported to play a direct role in loss of beta cell

mass and impaired insulin secretion [27]. This supports the up-regulation of c-Myc in T2DM

adipose tissue, as found in this study. Previous studies have shown that c-Myc expression is

induced by hyperglycemic conditions, which leads to decreased insulin gene transcription

[28]. Furthermore, MYC is reportedly amplified in about 15% of breast cancer [29], character-

istic of various breast cancer subtypes, and associated with poorer prognostic outcome [29]. Its

exact role in cancer progression may vary depending on breast cancer molecular subtype, but

is associated with endocrine therapy resistance. Additionally, MYC has been previously identi-

fied as a potential hub gene in diabetes associated complications and their underlying signaling

and is implicated in beta cell’s loss of functionality [27, 30].
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Moreover, the upregulation of pro-inflammatory cytokines such as interleukins IL1β, IL6
and IL8, also known as CXCL8, in the T2DM affected adipose tissue, is in line with published

reports of their elevated levels and role in the development of T2DM, particularly in causing

inflammation and insulin resistance [31]. In particular, IL-1β is secreted by pancreatic beta

cells under high glucose conditions [32, 33], and is associated with inflammation, beta-cell fail-

ure, and its death [34–36]. IL6 plays a major role in the development of insulin resistance, con-

trolling proliferation, differentiation, migration and apoptosis [37]. Previously, it was

identified as a hub gene for T2DM [38]. Similarly, IL8 is associated with increased cell survival

and proliferation, production of matrix metalloproteinases, angiogenesis regulation, and

inflammation [39, 40], and has also been reported as a hub gene for T2DM [41]. These pro-

inflammatory cytokines are also positively associated with breast cancer progression [42–44].

However, the expression pattern of these cytokines in breast adenocarcinoma samples utilized

for this analysis may provide conflict and subsequent research may be necessary to determine

the breast cancer subtype specific role of these hub genes.

Moreover, matrix metalloproteinase 9 (MMP9) is a known regulator of ECM remodeling,

and has been identified as a cancer biomarker associated with poor overall survival [45, 46].

Interestingly, increased MMP9 levels are also reported in T2DM [47, 48]. Next, beta–catenin
(CTNNB1) is implicated in beta cell differentiation and function [49], and its pathway’s activa-

tion is reported in breast cancer subtypes, particularly triple negative breast cancer [50]. Lastly,

endothelial nitric oxide synthase (NOS3) is involved in T2DM susceptibility [51], is also impli-

cated in breast cancer, promoting angiogenesis, inflammation, invasion and metastasis [52–

55].

Of particular interest, is the combination of TP53, MYC and IL1β. The trio may be a mod-

ule or sub-network on the molecular map underlying T2DM-BC crosstalk. Although the

potential role of these hub genes in T2DM induced BC is also supported by literature, further

extensive experimental study is required to test this hypothesis and also validate these predic-

tive results over a larger population size. While the small sample size, particularly for T2DM

adipose tissue microarray data is a limiting factor for this study, further availability of freely

accessible microarray data in the future may allow for further analyses on a larger scale in sil-

ico. Subsequent studies may also be carried out to identify potential markers distinctive to

each of BC subtypes, on the road to precision medicine.

Since the nature of this study is focused on in silico approach to explore potential candi-

dates for biomarker discovery associated with T2DM-BC signaling crosstalk, validation of the

results was also conducted in insilico. RNA-seq. data for patients with both diabetes and breast

cancer was retrieved and a DEG analysis was carried out in reference to paired breast cancer

samples. This series with BC samples as control was considered not only because of lack of

availability of other analyzable comorbid samples, but also as it was important to study the pos-

sible molecular changes in mammary tissue during disease development. A total of 60 genes

were differentially expressed in comorbid patients (Fig 8). These included 33 up-regulated

DEGs, represented by KEGG pathways for bile and pancreatic secretions and riboflavin

metabolism (S1A Fig). The remaining 27 DEGs were down-regulated genes, implicated in

KEGG pathways for osteoclast differentiation, IL-17 and TNF signaling (S1B Fig).

Venn diagram analysis to find a common differentially expressed denominator for all three

diseased states showed SIK1, as the overlapping DEG. Salt inducible kinase 1 (SIK1) is an

AMP-activated protein kinase, involved in metabolic homeostasis, particularly in glucose and

lipid metabolism [56]. Interestingly, it has been implicated negatively in tumorigenesis, devel-

opment of insulin resistance and is a known negative regulator of osteoblast differentiation. In

breast cancer, Its low expression is associated with poor prognosis and is shown to exhibit

tumor suppressive properties [57], indicating at the plausible poor prognostic effect of its low

PLOS ONE Bioinformatics analyses in identifying biomarkers for breast cancer and type 2 diabetes mellitus

PLOS ONE | https://doi.org/10.1371/journal.pone.0289839 August 9, 2023 15 / 24

https://doi.org/10.1371/journal.pone.0289839


expression in the comorbid state; it was down-regulated with respect to its expression in BC

samples, analyzed in this study. The prognostic outcome of its low expression is also supported

by survival analysis curve, shown in Fig 9D.

Subsequently, DEGs overlapping between comorbid state and T2DM, and similarly its

overlap with BC diseased state were studied. It is noteworthy, that with the exception of ErbB
expression, which was up-regulated in both comorbid D+BC and BC series, the expression

pattern of other DEGs showed an inverse correlation between comorbid and single disease

T2DM/BC series (Table 4), hinting at possible dysregulations underlying the development of

comorbidity, and subsequently mapped into diseased state specific molecular signature over-

lap, Table 5.

While the hub genes identified in the cross disease analysis were not amongst the 60 DEGs

(adjusted p<0.05) obtained from the comorbid series DEG analysis, it is worth mentioning

that by applying a less stringent cut off criteria for identifying statistically significant DEGs, i.e.

for p< 0.05, 4 out of the 8 hub genes (IL6, CXCL8, IL1B and MYC) identified were found to be

present in the list of 950 DEGs obtained from the DEG analysis and 12 overlapping DEGs

obtained from the Venn diagram analysis (S2 Fig). This may in part be accounted by the small

sample size and, given that in the absence of other analyzable RNA-seq. or microarray for

comorbid patients, the reliance upon the inclusion of series GSE150586, for the validation

became necessary, in hope of achieving as much insight into the potential role of hub and

other key genes identified as possible. While it may elucidate on one side of the story, it by no

means surpass the significance and necessity of further validation and confirmation of the

results of this study in wet lab and on larger study sample size.

Based on the convergence of differentially expressed genes from each diseased state on

SIK1, as highlighted in Table 4, multifaceted functionality of SIK1 is predicted and outlined to

direct the molecular routes for T2DM induced breast cancer and breast cancer complicated

with diabetic onset, modelled in Fig 10.

As shown in the figure, comorbidity can be approached by two distinct directionalities: i.

T2DM signaling leading to breast carcinogenesis in mammary tissue and, ii. BC signaling

Table 5. Disease specific molecular expression signature patterns. Peach color indicates up-regulation whereas teal

depicts down-regulation. Grey-no differential expression. Darker color intensity significance statistical significance.

DEGs: differentially expressed genes; T2DM: type 2 diabetes mellitus, BC: breast adenocarcinoma, D+BC: diabetes and

breast cancer comorbid state.

Diseased States Compared DEGs Molecular Signature Overlap

T2DM D+BC BC

D +BC -T2DM- BC SIK1
D+BC- T2DM FOSB

IER2
JUN
ATF3
ADCY1
JUND
CSRNP1

D+BC- BC ERRB2
LBP

T2DM- BC IL6
CXCL8
IL1B
MYC

https://doi.org/10.1371/journal.pone.0289839.t005
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promoting hyperglycemia and insulin resistance characteristic of T2DM. Differential pathways

underlying disease pathogenesis may converge at common nodes such as the down-regulation

of SIK1, leading to immune-metabolic changes contributing to the development of comorbid

pathogenic state. In view of the plausible SIK1 molecular connections derived from published

literature, the model could subsequently be implemented and tested in wet lab, to fully eluci-

date on the role of SIK1 in establishing the crosstalk between T2DM-BC diseased states.

Taking into account the potentially relevant IL1B, MYC, IL6 and CXCL8 hub genes, and
additionally, key genes such as FOSB, IER2, JUN(D), ATF3, ADCY1 and CSRNP1 common

between D+BC and T2DM diseased states, and ErbB2 and LBP common for D+BC and BC

states may allow further insights into the molecular interplay between diseased states.

To comprehend their roles in T2DM-BC crosstalk, it is essential to understand the cur-

rently known contributions of these additional key genes identified by validation study, to the

combinatorial and differential T2DM and BC associated signaling pathways. In continuation

with previous discussion on SIK1, as depicted in Fig 10, and as supported by pathway enrich-

ment analysis, it is implicated in fasting/hyperglycemia induced silencing of genes responsible

for gluconeogenesis [58, 59]. It is also reported as a potentially promising therapeutic target

for countering insulin resistance in obesity [60].

Metabolic rewiring is central to not only T2DM but also to breast cancer. SIK1, promotes

oxidative phosphorylation, hence its down-regulation is reported to promote aerobic glycolysis

via p53/mTOR signaling [61]. This is consistent with its elevated levels associating favorably

with breast cancer OS, as shown in Fig 9D. Moreover, loss of SIK1 expression facilitates onco-

genic transcriptional reprogramming and metastasis [57, 62–64]. It is reported to cause epithe-

lial to mesenchymal transition (EMT) via Par3, a polarity protein that regulates tight junctions

[65]. Still, further investigation of SIK1 on T2DM-BC molecular axes may provide greater clar-

ity on the molecular alterations underlying its down-regulation in D+BC phenotype and its

clinical outcome, as a consequence.

Moreover, proto-oncogene FOSB belongs to the Fos family of transcription factors, previ-

ously implicated in the hyperglycemia and hypoxia induced HIF1A’s modulation of oxidative

Fig 10. Schematic model for SIK1 mediated T2DM-BC crosstalk leading to comorbidity. The figure highlights the

two way relationship between T2DM and BC resulting in T2DM induced BC and BC induced T2DM phenotypes. For

either direction, the molecular mechanisms underlying SIK1 expression regulated crosstalk are depicted, predicting

possible routes to comorbidity.

https://doi.org/10.1371/journal.pone.0289839.g010
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stress and inflammatory pathways [66]. Further study may help elaborate on its role on the

hyperglycemia-hypoxia axis. In breast cancer, FOSB is typically down-regulated, and its role in

anti-cancer drug treatment and ROS accumulation induced FOSB expression mediated cell

death has also been studied, however its functionality is still under explored and requires fur-

ther attention [67]. Interestingly, transcription factor enrichment analysis identified FOS as a

significant transcription factor implicated in the regulation of hub genes, as shown in Fig 7A,

further implying its potential relevance to T2DM-BC crosstalk, worth pursuing for research

and validation.

Immediate early response 2 (IER2) is also a transcription factor, previously reported to pro-

mote metastasis in colon cancer cell lines, and while it is reported to be down-regulated in

combination with FOSB and JUN in breast cancer [68], further to this, its function is not

reported for either breast cancer or T2DM. On the other hand, JUND, another one of the com-

mon DEGs identified between D+BC and T2DM, is a transcription factor belonging to the

JUN family, known to regulate beta cell functionality and its overexpression is associated with

increased lipid accumulation and impaired secretion of insulin in response to glucose [69].

Another study reported its hyperglycemia induced down-regulation and correlation with oxi-

dative stress, elevated NF-KB binding and expression of mediators of inflammation [70]. In

breast cancer research, its anti-proliferative effect in response to anti-cancer drug has been

studied [71].

In addition, activating transcription factor 3 (ATF3), is a crucial for glucolipid metabolism

regulation, maintaining metabolic and immune homeostasis and leading to a protective niche

against metabolic disorders and oncogenesis [72]. However a recent study on ATF3 as an

endoplasmic reticulum stress/injury marker, reported it to induce neuro-inflammation in dia-

betic neuropathy [73], and another studied its role in promoting the expression of tumor met-

astatic genes such as fibronectin and MMP13, amongst others [74]. It is also shown to regulate

cell proliferation and induce resistance against radiation therapy, implicating the PI3K-AKT
pathway. Hence its multi-faceted role may further be explored in context of T2DM-BC

crosstalk.

Moreover, cysteine rich nuclear protein 1 (CSRNP1) another key gene identified, has been

associated with the reduced glomerular filtrate rate, affecting kidney function in diabetes, in a

recently published GWAS study [75]. However its implication on T2DM-BC crosstalk is not

known and requires study. Adenylate cyclase 1 (ADCY1), a reported prognostic marker for

pancreatic and lung cancers [76], may also be pursued for its role in breast cancer, which is

currently underexplored. Previously, it was shown to promote ERK mediated cell death in

response to doxorubicin, in breast cancer cells [77], hence potentiating its relevance as a prog-

nostic marker for breast cancer. Although its expression is found to be up-regulated in this

analysis, its expression showed no correlation with T2DM in a previously published study

[78]. Further investigation into its role in T2DM and comorbid state may elucidate on its

potential as a biomarker for T2DM induced breast cancer, along with other key genes

discussed.

Furthermore, the key genes identified for breast cancer with T2DM onset include ErbB2
and LBP. ErbB2, more widely known as human epidermal growth factor receptor 2 (HER2) is a

tyrosine kinase, reportedly overexpressed in 25–30% of breast cancer cases in humans, and

strongly associated with malignancy and invasiveness [79, 80]. Its role in breast cancer is

extensively studied and established it as a diagnostic biomarker for HER2 expressing breast

cancer subtypes, prognostic marker reflecting poor prognosis and recurrence and as a thera-

peutic target for immunotherapy against breast cancer. Hence, its up-regulation in D+BC and

BC series indicate at HER2 positive expression subtype/s. Its role in diabetes has also been

explored. A population based cohort study associated ErbB2 expression with increased
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incidence of diabetes, based on its significant correlation with insulin, glucose and HbA1c lev-

els [81]. This is in line with the results of this study identifying it as a potential biomarker for

BC induced T2DM phenotype. Similarly, Lipopolysaccharide binding protein (LBP) was

reported as a prognostic biomarker for breast cancer, insightful of the effect of radiation ther-

apy on cardiac dysfunction [82]. Interestingly, it is also associated with prognosis in T2DM

patients, particularly with arterial stiffness [83]. Hence, common differentially expressed genes

between two or more diseased state may indicate at their role within the T2DM-BC signaling

converging network, however, whether these key genes are centrally situated within the

T2DM-BC crosstalk and what is the outcome of their differential expression remains to be elu-

cidated, rendering subsequent wet lab studies crucial.

For this study, it is important to note however, that the status of DEGs in D+BC state is sub-

ject to its expression in its BC counterpart samples, hence a down-regulation in SIK1 expres-

sion, for instance is only relative to its expression in breast cancer. The comparison of D+BC

samples with healthy controls and also with T2DM patients is still needed to provide further

insights and to reflect on a completed puzzle, however in the absence of such analyzable data-

sets publically available, this study relies on interpreting the effect of T2DM crosstalk with BC

on mammary tissue from the perspective of altered breast cancer specific expression when

complicated with T2DM. Other factors such as the order of occurrence of the diseases in

comorbidity and the subtype of breast cancer and diabetes may also affect the analysis and pro-

vide further clarity, when taken into account, for further study.

Conclusion

Type 2 diabetes mellitus (T2DM) and breast cancer (BC)’s two-way relationship is multi-fac-

eted, affecting patient diagnosis, prognosis and treatment. The underlying molecular mecha-

nisms may involve an intricately knitted crosstalk of several signaling pathways implicated in

the pathogenesis of both diseases. Epidemiological data till date establishes a moderate yet sig-

nificant association between the two complex diseases, however experimental data is necessary

to validate the association and its underlying molecular mechanisms. This study, reports SIK1
as a potentially crucial gene to T2DM-BC crosstalk, and outlines plausible mechanisms under-

lying its potential role in T2DM-BC association at molecular level. It additionally identifies 8

hub genes common to both T2DM and BC, and of which TP53, MYC and IL1β were found to

exhibit similar expression patterns in both diseases, highlighting their potential as common

biomarkers for T2DM- BC crosstalk.

However, further analysis of larger sample size data collected from patients with both diabe-

tes and breast cancer to identify a conserved signature gene set common to all cases, followed

by wet lab validation is necessary to provide further insights into the interactive network of

molecular players crucially implicated in diabetes-breast cancer crosstalk.

Supporting information

S1 Fig. Pathway enrichment analysis. The most significant KEGG pathway results are pre-

sented from top to bottom for common DEGs between all three series (p<0.05) A- Up-regu-

lated DEGs, B- Down-regulated DEGs.

(TIF)

S2 Fig. Venn diagram analysis for diabetes and breast cancer (D+BC) comorbid samples

with T2DM -adipose tissue and breast adenocarcinoma (BC) samples. The yellow circle

represents DEGs obtained from DEG analysis (p< 0.05) on T2DM samples, pink circle repre-

sents DEGs from BC samples, and sea green circle depict DEGs for D+BC samples, similarly.
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A- The intersection represents DEGs common to D+BC, T2DM and BC series. B- The inter-

section represents DEGs common to D+BC and T2DM diseased conditions. C- The intersec-

tion represents DEGs common D+BC and BC diseased states.

(TIF)

S1 Table. KEGG analysis of hub genes. The table lists the top ten significant terms, along

with other terms potentially relevant to T2DM-BC Crosstalk.
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