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Abstract

Aims Little is known about associations of trimethylamine N-oxide (TMAO), a novel gut microbiota-generated metabolite of dietary 
phosphatidylcholine and carnitine, and its changes over time with all-cause and cause-specific mortality in the general population 
or in different race/ethnicity groups. The study aimed to investigate associations of serially measured plasma TMAO levels and 
changes in TMAO over time with all-cause and cause-specific mortality in a multi-ethnic community-based cohort.

Methods 
and results

The study included 6,785 adults from the Multi-Ethnic Study of Atherosclerosis. TMAO was measured at baseline and year 5 
using mass spectrometry. Primary outcomes were adjudicated all-cause mortality and cardiovascular disease (CVD) mor-
tality. Secondary outcomes were deaths due to kidney failure, cancer, or dementia obtained from death certificates. Cox 
proportional hazards models with time-varying TMAO and covariates assessed the associations with adjustment for socio-
demographics, lifestyles, diet, metabolic factors, and comorbidities. During a median follow-up of 16.9 years, 1704 partici-
pants died and 411 from CVD. Higher TMAO levels associated with higher risk of all-cause mortality [hazard ratio (HR): 
1.12, 95% confidence interval (CI): 1.08–1.17], CVD mortality (HR: 1.09, 95% CI: 1.00–1.09), and death due to kidney failure 
(HR: 1.44, 95% CI: 1.25–1.66) per inter-quintile range, but not deaths due to cancer or dementia. Annualized changes in 
TMAO levels associated with higher risk of all-cause mortality (HR: 1.10, 95% CI: 1.05–1.14) and death due to kidney failure 
(HR: 1.54, 95% CI: 1.26–1.89) but not other deaths.

Conclusion Plasma TMAO levels were positively associated with mortality, especially deaths due to cardiovascular and renal disease, in a 
multi-ethnic US cohort.
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Structured Graphical Abstract

Higher TMAO levels were associated with higher risk of all-cause mortality in White, Black, Hispanic, and Chinese American
adults. TMAO was also positively associated with cardiovascular mortality and death due to kidney failure, but not death due to
cancer or dementia.

TMAO is positively associated with mortality, especially due to cardiovascular and renal disease in a diverse multi-ethnic population.
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Introduction
Human gut microbiota are now acknowledged as a novel contributor 
to host metabolism and health.1,2 Among emerging pathways, trimethy-
lamine N-oxide (TMAO), a gut microbiota-derived metabolite of diet-
ary phosphatidylcholine, choline, and carnitine, rich in animal source 

foods, may play a role in the pathogenesis of multiple diseases.3–7

Plasma TMAO has been associated with cardiovascular disease 
(CVD) in clinical and population-based studies,8–14 and enhances 
atherogenesis and thrombosis in several,3–5,15–17 although not all,18

mechanistic studies. TMAO also appears to contribute to renal tubu-
lointerstitial fibrosis and dysfunction6,19 and hyperglycemia and glucose 
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intolerance.20,21 Elevated TMAO levels have also been hypothesized to 
contribute to aging-related cognitive dysfunction22 and promote car-
cinogenesis via inflammatory and oxidative stress pathways.23

In clinical samples of patients with prevalent cardiometabolic and 
chronic kidney diseases, higher plasma TMAO associates with all-cause 
mortality.12–14,24 However, to our knowledge, no studies have exam-
ined whether TMAO relates to all-cause and cause-specific mortality 
in well-characterized community-based cohorts using serial TMAO 
measures. Such studies can provide critical new evidence and address 
potential bias in prior studies. For example, prevalent diseases can influ-
ence dietary and other lifestyle behaviors as well as biologic pathways 
that alter circulating TMAO levels, leading to reverse causation. Lack 
of information on sociodemographic, dietary, and other lifestyle factors 
in prior clinical studies also raises the possibility that observed associa-
tions are subject to meaningful residual confounding, especially by edu-
cation, income, diet, and physical activity. Prior studies also evaluated 
only a single measure of TMAO at baseline, but TMAO levels are 
known to vary over time due to changes in diet, microbial composition, 
and renal clearance.25 Finally, prior findings are based on samples of pri-
marily White participants, and assessment of TMAO and mortality in 
other races and ethnicities is a priority.

To elucidate whether plasma TMAO levels are associated with inci-
dent mortality risk in a diverse general population during long-term 
follow-up, we examined the relationship between serial measures of 
plasma TMAO and all-cause and cause-specific mortality in the 
Multi-Ethnic Study of Atherosclerosis (MESA), a prospective, 
community-based, multi-racial cohort with deep phenotyping. We hy-
pothesized that higher levels of serially measured plasma TMAO, as well 
as increases in TMAO over time, would be associated with higher all- 
cause mortality and CVD mortality. Other cause-specific mortality out-
comes were explored as secondary outcomes.

Methods
Study population
MESA is an ongoing multi-center, community-based, prospective cohort 
study to investigate characteristics and risk factors for onset and progres-
sion of subclinical CVD in diverse races/ethnicities.26 Briefly, 6814 adults 
aged 45–84 years were recruited in 2000–02 from six study sites 
(Baltimore County, MD; Chicago, IL; Forsyth County, NC; New York, 
NY; Los Angeles County, CA; St Paul, MN), including 38% White, 28% 
Black, 22% Hispanic, and 12% Chinese-American adults. All MESA partici-
pants were free of clinical CVD at cohort entry. The study was approved 
by the institutional review board of each participating university, and all par-
ticipants provided informed written consent. The present study included 
6785 individuals with at least one plasma TMAO measurement and follow- 
up for mortality (99.6% of all enrolled participants).

TMAO measurement
Plasma TMAO concentrations were measured at the Cleveland Clinic 
Lerner Research Institute using stored frozen (−80˚C) fasting blood sam-
ples collected at MESA baseline (2000–02) and exam 4 (2005–07). 
Among the 6785 participants, 5614 had TMAO measured at both visits, 
1162 only at baseline (20% of these patients had died by exam 4), and 9 
only at exam 4. Spearman correlation coefficient of baseline and exam 4 
TMAO levels was 0.32 (P < 0.001). TMAO was quantified by investigators 
blinded to sample outcome using a stable-isotope dilution assay coupled 
with high-performance liquid chromatography, with online electrospray 
ionization tandem mass spectrometry on a Shimadzu 8050 or 8060 mass 
spectrometer.27,28 Laboratory coefficients of variation were <6%.

Mortality assessment
A detailed description of MESA event surveillance and classification has 
been published.26,29 Briefly, participants were contacted by phone every 
9–12 months to inquire about all interim hospital admissions, cardiovascular 
outpatient diagnoses and procedures, and deaths. Copies of relevant re-
cords were requested. In addition, MESA occasionally identified medical en-
counters through cohort clinic visits, participant call-ins, medical record 
abstractions, and obituaries. Primary outcomes for the present analysis 
were all-cause mortality and CVD mortality (death due to coronary heart 
disease, stroke, other atherosclerotic diseases, or other CVD), adjudicated 
through 31 December 2018. Secondary outcomes were deaths due to kid-
ney failure, cancer, dementia, and other causes. CVD deaths were centrally 
adjudicated based on death certificates, hospitalization records, outpatient 
cardiovascular diagnoses and procedures, and next-of-kin interviews. 
Underlying cause of non-CVD deaths was obtained from the 
International Classification of Diseases (ICD)-10 code indicated on the 
death certificate or state/city vital statistics departments.

Covariates
At each cohort exam, information on demographics, lifestyle, diet, an-
thropometrics, medical history, medications, and other risk factor including 
blood biomarkers were collected by questionnaires, physical examinations, 
and fasting blood draw performed by trained personnel following standar-
dized protocols.26 See Text S1 for full details.

Statistical analysis
Cox proportional hazards models with time-varying TMAO and covariates 
and cause-specific hazard functions investigated associations of serial mea-
sures of TMAO with mortality, with follow-up from the first TMAO meas-
urement until last study contact. The proportional hazards assumption was 
examined based on Schoenfeld residuals30 and not violated for either 
TMAO or change in TMAO (see Text S2 and Table S1 for details).

Primary analyses utilized time-varying cumulative averages of serial 
TMAO measures, with the baseline measure (2000–02) related to mortality 
risk until exam 4 (2005–07), and the average of measures at baseline and 
exam 4 related to subsequent risk. For participants with only one TMAO 
measure, that TMAO measure was carried-forward. We analyzed TMAO 
linearly per inter-quintile range (IQR, the difference between the midpoint 
of the first and fifth quintile) and used restricted cubic splines to explore 
potential non-linear associations. In sensitivity analysis, TMAO measures 
were assessed using simple updating (i.e. baseline TMAO was related to 
risk until exam 4; and exam 4 TMAO, to subsequent risk).

Changes in TMAO levels were evaluated among 5614 participants with 
two serial measures (see Supplementary data online, Table S2). 
Annualized TMAO changes from baseline to exam 4 were computed and 
related to mortality risk after exam 4, modeled linearly using similar meth-
ods as above.

To minimize confounding, three multivariable models with pre-specified 
covariates were fitted, with Model 3 defined as our primary model for in-
ference on associations: Model 1, adjusted for age, sex, race/ethnicity, and 
study site; Model 2, further adjusted for education, income, total energy in-
take, alternate healthy eating index (AHEI) score, and time-varying smoking 
status, alcohol intake, physical activity, and antibiotic use; and Model 3, add-
itionally adjusted for time-varying metabolic factors including body mass in-
dex, waist circumference, systolic blood pressure, diastolic blood pressure, 
high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, 
triglycerides, C-reactive protein (CRP), and diabetes, and comorbidities 
(for all-cause mortality only). Mediator models further adjusted for factors 
which are experimentally influenced by TMAO and could be mediators (on 
the causal pathway) and/or confounders of TMAO-mortality associa-
tions,1,6,19 including time-varying estimated glomerular filtration rate 
(eGFR) and interim CVD events occurring between baseline and exam 
4. For changes in TMAO, similar multivariable models with exam 4 covari-
ates were used to assess associations with mortality after exam 4, with 

http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehad089#supplementary-data
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further adjustment for baseline TMAO and interim CVD events prior to 
exam 4. In sensitivity analyses, we used annualized changes in continuous 
covariates from baseline to exam 4.

To explore whether associations of time-varying TMAO with the pri-
mary outcomes (all-cause mortality, CVD mortality) varied by baseline 
age, sex, race/ethnicity, dietary pattern (AHEI score < vs. ≥ median), and 
eGFR (< 60 vs. ≥ 60 mL/min/1.73 m2), we included multiplicative inter-
action terms between TMAO and each variable in separate multivariable 
models. Statistical significance of these exploratory interactions was 
Bonferroni adjusted for multiple comparisons (P < 0.005; 5 interaction vari-
ables × 2 primary mortality outcomes = 10 comparisons). Statistical signifi-
cance for other analyses was defined as a two-sided alpha = 0.05. Analyses 
were performed using Stata 16.1 (Stata Corp, College Station, TX).

Results
Participant characteristics
At baseline, mean (SD) age was 62 (10) years, and 47.2% were males 
(Table 1). Proportions of White, Black, Hispanic, and Chinese- 
American adults were 38.5%, 27.7%, 22.0%, and 11.8%, respectively. 
About 13% of participants were current smokers, 13% had diabetes, 
37% were on anti-hypertensive medications, and 16% were on 
lipid-lowering medications. Three percent had taken antibiotics in the 
past two weeks. Participants with higher TMAO levels were more likely 
to be older, male, White, physically inactive, and on anti-hypertensive or 
lipid-lowering medications. Higher TMAO levels were also associated 
with diabetes, higher triglycerides and glucose, and lower eGFR.

Time-varying cumulative averages of 
TMAO measures
During median follow-up of 16.9 years (maximum, 18.5 years), 1704 
deaths occurred, including 411 from CVD. After adjusting for sociode-
mographics, lifestyles, metabolic factors, and self-reported comorbid-
ities (Model 3), higher plasma TMAO levels associated with 12% 
higher all-cause mortality (Table 2) [hazard ratio (HR): 1.12, 95% con-
fidence interval (CI): 1.08–1.17, P < 0.001] and 9% higher CVD mortal-
ity (HR: 1.09, 95% CI: 1.00–1.19, P = 0.042) per IQR. With further 
adjustment for eGFR, which could be both a mediator and confounder, 
the association with all-cause mortality remained statistically significant 
(HR: 1.09, 95% CI: 1.05–1.13, P < 0.001); while the association with 
CVD mortality was attenuated and no longer statistically significant 
(HR: 1.07, 95% CI: 0.98–1.17, P = 0.151). Further adjustment for in-
terim CVD events prior to exam 4 did not change the results appre-
ciably. For both all-cause and CVD mortality, analyses using restricted 
cubic splines revealed no significant departure from a linear dose–re-
sponse relationship (Figure 1).

Among other causes of death, higher plasma TMAO associated with 
higher risk of death due to kidney failure (HR 1.44, 95% CI 1.25–1.66, 
P < 0.001) and miscellaneous causes (HR: 1.18, 95% CI: 1.12–1.24, 
P < 0.001) (see Supplementary data online, Table S3 for these other 
causes), but not death due to cancer or dementia.

Annualized changes in TMAO
During a median follow-up of 12.3 years (maximum, 13.3 years) after 
the second TMAO measure at exam 4, 1166 participants died, including 
281 from CVD. Annualized increases in plasma TMAO from baseline to 
exam 4 associated with 10% higher all-cause mortality (Table 3, HR: 
1.10, 95% CI: 1.05–1.14, P < 0.001) per IQR. This association remained 
significant after further adjusting for eGFR (HR: 1.06, 95% CI: 1.01–1.12, 

P = 0.011). Changes in TMAO levels were not significantly associated 
with CVD mortality.

Restricted cubic spline analyses identified departures from a linear 
dose–response relationship for changes in TMAO (see Supplementary 
data online, Figure S1) and mortality, although these deviations from lin-
earity were no longer statistically significant (P-nonlinearity = 0.439 for 
all-cause mortality and 0.123 for CVD mortality) in sensitivity analyses re-
moving observations in the top 1% of the distribution of TMAO changes 
(see Supplementary data online, Figure S2).

Among other causes of death, increases in plasma TMAO over time 
associated with higher risk of death due to kidney failure (HR: 1.54, 95% 
CI: 1.26–1.89, P < 0.001) and miscellaneous causes (HR: 1.13, 95% CI: 
1.07–1.21, P < 0.001), but not deaths due to cancer or dementia 
(Table 3).

Sensitivity analyses
Results for the associations of TMAO levels with all-cause and cause- 
specific mortality were similar but slightly weaker using simple updating 
of TMAO in place of cumulative updating (see Supplementary data 
online, Table S4). Results for annualized changes in TMAO were similar 
when adjusting for changes in continuous covariates from baseline to 
exam 4 in place of exam 4 values (see Supplementary data online, 
Table S5).

Effect modification
Associations of TMAO with all-cause and CVD mortality were not sig-
nificantly modified by differences in age, sex, race/ethnicity, AHEI, or 
eGFR (P-interaction >0.005 each, Figure 2 & Supplementary data 
online, Table S6). However, there were nonsignificant trends toward ef-
fect modification of the TMAO-mortality relationship by eGFR 
(P-interaction = 0.012) and AHEI (alternate health eating index, 
P-interaction = 0.027), with potentially stronger associations among 
those with lower renal function and lower diet quality. The association 
between TMAO and all-cause mortality was statistically significant in 
every race/ethnicity group (Figure 2), including among White (HR: 
1.07, 95% CI: 1.01–1.14), Black (HR: 1.13, 95% CI: 1.02–1.24), 
Hispanic, (HR: 1.19, 95% CI: 1.12–1.28) and Chinese-American (HR: 
1.23, 95% CI: 1.10–1.39) adults.

Discussion
In this large, multi-ethnic, community-based cohort of US adults, higher 
plasma TMAO levels associated with higher risk of all-cause and CVD 
mortality. Increases in TMAO over time also associated with higher 
risk of all-cause, but not CVD, mortality. TMAO and its increases 
over time also each associated with higher risk of death due to kidney 
failure, but not due to cancer or dementia. The positive association be-
tween TMAO and all-cause mortality was observed in every race/eth-
nicity group examined including White, Black, Hispanic, and 
Chinese-American adults (Structured Graphical Abstract). To our knowl-
edge, this is the first study to investigate associations of serial measures 
of plasma TMAO and its changes over time with mortality in a multi- 
ethnic, community-based cohort.

In mechanistic and animal studies, TMAO promotes several path-
ways related to atherosclerosis and thrombosis, including inhibiting re-
verse cholesterol transport,4 impairing endothelial function,16 and 
promoting macrophage cholesterol accumulation,3 platelet hyperreac-
tivity and thrombosis potential,5,17 and vascular inflammation and inflam-
masome activation.15,31 TMAO also induces hyperglycemia by binding to 
endoplasmic reticulum stress kinase PERK and impairs glucose 
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tolerance.20,21 Furthermore, TMAO is bidirectionally associated with re-
nal function. In animal studies, TMAO causally reduces GFR, and elevates 
cystatin C levels, microalbuminuria, and renal tubulointerstitial fibrosis,6

and these renal impairments are reduced by targeted inhibition of gut mi-
crobial TMAO generation.19 Conversely, renal function also directly im-
pacts TMAO levels, given its renal clearance. Thus, TMAO’s cardiorenal 
toxicity could be more pronounced in settings of reduced renal function. 
Evidence for a mechanistic link of TMAO with dementia and cancer is less 
clear than for cardiovascular and renal disease. Limited animal studies sug-
gest that TMAO may promote aging-related cognitive decline via in-
creased neuroinflammation, oxidative stress, synaptic damage, and 
astrocyte activation.22,32 TMAO has also been hypothesized to promote 
carcinogenesis via inflammatory and oxidative stress pathways,23 but dir-
ect evidence from mechanistic studies examining carcinogenesis out-
come is still lacking.

In the present study of a multi-ethnic, community-based cohort free 
of clinical CVD at baseline, we observed a 16% higher risk of all-cause 
mortality per 10 µmol/L of TMAO levels (12% per IQR of 7.5 µmol/L) 
after adjusting for sociodemographic factors, habitual diet, lifestyles, 
traditional CVD risk factors, and comorbidities. The dose–response re-
lationship appeared to be linear with no threshold effect. Furthermore, 
we observed significant associations of TMAO with death due to CVD 
and kidney failure, but not cancer or dementia. The specificity of asso-
ciations for deaths due to CVD and kidney failure, rather than other 

cause-specific deaths, further supports TMAO’s role in atherosclerosis, 
thrombosis, and renal impairment as seen in multiple mechanistic 
studies.7

The association between changes in TMAO levels over time and 
mortality has not been studied. Investigating changes may have implica-
tions for developing intervention strategies to modify TMAO levels. 
We found that annualized changes in TMAO over ∼5-years were posi-
tively associated with all-cause mortality and, among specific causes, 
deaths from kidney failure. In spline analysis, decreases in TMAO levels 
over time also appeared associated with a lower risk of CVD mortality, 
while increases over time were not significantly associated with the risk. 
These novel findings support the hypothesis that reducing TMAO levels 
by lifestyle or pharmacological interventions may influence mortality 
risk. Implications of TMAO increases over time are less clear, due to 
wide CIs at higher levels of positive TMAO changes.

Nearly all previous studies examining associations between plasma 
TMAO levels and mortality have focused on clinical populations with 
prevalent CVD, diabetes, and/or chronic kidney disease, and predomin-
antly White patients.12–14,24 These studies also only measured TMAO 
at baseline and lacked data on major potential confounders including 
sociodemographic, dietary, and other lifestyle factors. Two prior stud-
ies evaluated the risk of all-cause mortality per continuous difference in 
TMAO levels. One among patients with chronic kidney disease found a 
26% (95% CI 13%–40%) higher mortality risk per 10 µmol/L of 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Risk of all-cause and cause-specific mortality associated with time-varying cumulative averages of plasma 
TMAO levels (per IQR) among 6785 adults in MESA

All-cause 
mortality

Adjudicated CVD 
mortalitya

Underlying cause of death from death certificateb

Kidney failure Cancer Dementia Other

ICD code N/A N/A N17-N19 C00-C97 G30, F00, F01, 
F03

N/A

No. of deaths 1704 411 32 496 154 611

Unadjusted 1.18 (1.15–1.22) 1.17 (1.10–1.25) 1.39 (1.26–1.54) 1.10 (1.02–1.19) 1.14 (1.00–1.29) 1.23 (1.18–1.28)

Multivariable:

Model 1 1.12 (1.08–1.16) 1.10 (1.02–1.20) 1.43 (1.27–1.62) 1.02 (0.93–1.12) 0.97 (0.80–1.17) 1.18 (1.12–1.24)

Model 2 1.13 (1.09–1.17) 1.12 (1.03–1.21) 1.46 (1.27–1.67) 1.02 (0.93–1.13) 0.98 (0.82–1.18) 1.19 (1.13–1.25)

Model 3 (primary) 1.12 (1.08–1.17) 1.09 (1.00–1.19) 1.44 (1.25–1.66) 1.01 (0.92–1.12) 0.99 (0.83–1.19) 1.18 (1.12–1.24)

Model 3 + eGFRc 1.09 (1.05–1.13) 1.07 (0.98–1.17) 1.22 (0.99–1.51) 1.00 (0.90–1.11) 1.00 (0.84–1.20) 1.12 (1.06–1.19)

Model 3 + eGFR +  
CVDd

1.09 (1.05–1.14) 1.07 (0.98–1.17) 1.21 (0.97–1.50) 1.00 (0.90–1.11) 1.00 (0.84–1.19) 1.12 (1.06–1.19)

Model 1 adjusted for age, sex, race/ethnicity, and study site. 
Model 2 further adjusted for education (<high school, high school, some college, bachelor’s degree, graduate school), household income (<$20,000, $20,000 − < $50,000, $50,000 − 
< $100,000,  ≥ $100 000), alternate healthy eating index, total energy intake, and time-varying smoking status (never, former, and current), alcohol intake(drinks/week), physical 
activity (MET-MIN per week), and antibiotic use in the past two weeks. 
Model 3 further adjusted for time-varying BMI, waist circumference, systolic blood pressure, diastolic blood pressure, LDL-C, HDL-C, triglycerides, CRP, diabetes, anti-hypertensive 
medication, lipid-lowering mediation, and comorbidities (for all-cause mortality only) including emphysema, liver disease, and cancer (except for non-melanoma skin cancer). 
Time-varying covariates were updated at the same time of TMAO update using the most recent measures (i.e. simple update). 
aCVD deaths included those due to atherosclerotic coronary heart disease (CHD) (with sub-classifications of definite fatal MI, definite fatal CHD, and possible fatal CHD), stroke, 
other atherosclerotic disease, and other cardiovascular disease. 
bFor kidney failure, ICD codes included N17-N19; for cancer, C00-C97; and for dementia, G30, F00, F01, and F03.Other causes of death: deaths due to any causes except for CVD, 
kidney failure, cancer, and dementia. 
ceGFR was included as a continuous linear term (mL/min/1.73 m2). 
dInterim nonfatal CVD events (MI, resuscitated cardiac arrest, angina, stroke) between exam 1 and exam 4, for risk after exam 4. 
IQR: inter-quintile range, comparing the midpoints of the first and fifth quintiles (7.5 µmol/L).
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TMAO;33 and the other among adults from a city in the Netherlands 
found a 56% (3%–131%) higher mortality risk per 10 µmol/L of 
TMAO.34 Neither of these studies adjusted for socioeconomic status 
(e.g. education, income), dietary habits, or physical activity. Three 
dose–response meta-analyses with varying analysis methods and inclu-
sions of different studies estimated the pooled relative risks of all-cause 

mortality, with results ranging from 7.6% to 137% higher risk per 
10 µmol/L of TMAO.12,24,35 Our findings expand upon and greatly ex-
tend these prior results by examining associations in a well- 
characterized, multi-ethnic, community-based cohort free of clinical 
CVD at baseline; evaluating serial TMAO measures and changes in 
TMAO over time; utilizing rigorous control for a range of confounding 

Figure 1 Dose–response relationships of serial measures of plasma TMAO levels with the risk of all-cause mortality (left) and cardiovascular mortality 
(right). Relationships were evaluated using restricted cubic splines with three knots at the 10th, 50th, and 90th percentiles. Dotted vertical lines represent, 
from left to right, the 10th, 25th, 50th, 75th, and 90th percentiles of TMAO levels. Variables adjusted were the same as Model 3 (primary model) in Table 2. 
The top 1% of the TMAO distribution was not shown for better visualization.
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Table 3 Risk of all-cause and cause-specific mortality associated with annualized changes in plasma TMAO levels (per 
IQR) among 5614 adults in MESA with two serial TMAO measures

All-cause 
mortality

Adjudicated CVD 
mortalitya

Underlying cause of death from death certificateb

Kidney failure Cancer Dementia Other

ICD code N/A N/A N17-N19 C00-C97 G30, F00, F01, 
F03

N/A

No. of deaths 1166 281 27 331 112 415

Unadjusted 1.08 (1.03–1.13) 0.99 (0.87–1.12) 1.32 (1.19–1.46) 1.07 (0.97–1.17) 0.94 (0.77–1.15) 1.11 (1.03–1.20)

Multivariable

Model 1 1.10 (1.05–1.14) 1.04 (0.93–1.15) 1.43 (1.22–1.68) 1.05 (0.95–1.17) 1.00 (0.82–1.21) 1.13 (1.06–1.20)

Model 2 1.10 (1.05–1.15) 1.04 (0.94–1.16) 1.47 (1.22–1.77) 1.05 (0.95–1.17) 0.98 (0.81–1.19) 1.14 (1.07–1.21)

Model 3 (primary) 1.10 (1.05–1.14) 1.03 (0.93–1.15) 1.54 (1.26–1.89) 1.04 (0.93–1.16) 1.00 (0.84–1.20) 1.13 (1.07–1.21)

Model 3 + eGFRc 1.06 (1.01–1.12) 1.00 (0.89–1.13) 1.23 (0.98–1.55) 1.02 (0.91–1.15) 1.02 (0.86–1.21) 1.09 (1.02–1.17)

Model 1 adjusted for age, sex, race/ethnicity, study site, and exam 1 TMAO. 
Model 2 further adjusted for education (<high school, high school, some college, bachelor’s degree, graduate school), household income (<$20,000, $20,000 − < $50,000, $50,000 − 
< $100,000,  ≥ $100 000), alternate healthy eating index, total energy intake, and exam 4 smoking status (never, former, and current), alcohol intake(drinks/week), physical activity 
(MET-MIN per week), and antibiotics use in the past 2 weeks. 
Model 3 further adjusted for exam 4 BMI, waist circumference, systolic blood pressure, diastolic blood pressure, LDL-C, HDL-C, triglycerides, CRP, diabetes, interim nonfatal 
cardiovascular events (MI, resuscitated cardiac arrest, angina, or stroke prior to exam 4), anti-hypertensive medication, lipid-lowering mediation, and comorbidities (for all-cause 
mortality only) including emphysema, liver disease, and cancer (except for non-melanoma skin cancer). 
aCVD deaths included those due to atherosclerotic coronary heart disease (CHD) (with sub-classifications of definite fatal MI, definite fatal CHD, and possible fatal CHD), stroke, 
other atherosclerotic disease, and other cardiovascular disease. 
bFor kidney failure, ICD codes included N17-N19; for cancer, C00-C97; and for dementia, G30, F00, F01, and F03.Other causes of death: deaths due to any causes except for CVD, 
kidney failure, cancer, and dementia. 
ceGFR was included as a continuous linear term (mL/min/1.73m2). 
IQR, inter-quintile range, comparing the midpoints of the first and fifth quintiles (2.1 µmol/L annualized increase).
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factors including socioeconomic status, dietary habits, and physical ac-
tivity; and examining cause-specific mortality.

The association of TMAO with all-cause mortality remained sig-
nificant following adjustment for eGFR, a measure of renal function. 
This finding is consistent with prior clinical studies where the asso-
ciation between a single measure of TMAO and all-cause mortality 
was independent of traditional CVD risk factors and eGFR.6,8,36–39

However, three other studies found TMAO’s association with mor-
tality to be attenuated and no longer statistically significant after ad-
justment for eGFR or urine albumin.34,40,41 In the present study, 
associations of TMAO with deaths due to CVD and kidney failure 
were attenuated and no longer statistically significant following 
eGFR adjustment. As discussed above, given mechanistically bi- 
directional pathways between TMAO and renal function, renal func-
tion could be both a confounder and an intermediate outcome (i.e. 
mediator) on the causal pathway between TMAO and mortality. 
Thus, differences in findings following renal function adjustment 
might be explained by differing mediation pathways and/or con-
founding structures for specific outcomes in different populations. 
Our findings in this multi-ethnic population of US adults, average 
age 62 years and free of clinical CVD at baseline, suggest that 
TMAO is a risk factor for all-cause mortality independent of renal 
function and other risk factors.

The positive associations between TMAO and all-cause and cardio-
vascular mortality found in the entire population were also observed 
among those with baseline eGFR < 60 mL/min/1.73 m2, suggesting 

that TMAO is independently associated with mortality risk among 
those with impaired renal function. In exploratory analyses, these asso-
ciations appeared potentially stronger than among those with normal 
renal function. Similar patterns of effect modification were reported 
in the PREVEND study34 and the Cardiovascular Health Study.41

Given that renal function could be a downstream product of the expos-
ure TMAO, analyses stratified by eGFR could potentially induce bias 
(e.g. collider stratification bias) and should be interpreted cautious-
ly.42,43 Our novel findings highlight the need to further investigate the 
interrelationships between renal function, TMAO, and mortality.

In addition to eGFR, we observed a nonsignificant trend toward a po-
tentially stronger TMAO-mortality association among those with lower 
diet quality, compared with those with higher diet quality. A similar pattern 
of effect modification by AHEI was reported in a cohort of mostly White 
US nurses assessing changes in plasma TMAO levels and incident coronary 
heart disease.11 Although exploratory, taken together, these findings sug-
gest that a healthier diet may help mitigate TMAO-associated mortality 
risk.

Notably, we identified significant associations of plasma TMAO with 
all-cause mortality in each race/ethnicity group in this cohort, including 
among White, Black, Hispanic, and Chinese-American adults. The magni-
tude of the association appeared potentially stronger in 
Chinese-American and Hispanic adults, compared to other race/ethnicity 
groups, but these differences were not statistically significant. Our study 
is the first, to our knowledge, to demonstrate positive associations be-
tween TMAO and mortality in diverse US racial and ethnic groups.

Figure 2 Risk of all-cause mortality associated with serial measures of plasma TMAO levels (per IQR): subgroup analysis. Variables adjusted were the 
same as Model 3 (primary model) in Table 2. HRs were obtained from the beta coefficients of TMAO and the interaction terms. After Bonferroni’s 
correction for multiple comparisons, statistical significance was defined as a two-sided P value of <0.005. AHEI was dichotomized based on median 
value at baseline (low: < 40.4, high ≥ 40.4). IQR: inter-quintile range, comparing the midpoints of the first and fifth quintiles (7.5 µmol/L). AHEI, alternate 
healthy eating index, with higher score indicating better diet quality. eGFR, estimated glomerular filtration rate, with higher values indicating better renal 
function.
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Our study has several strengths. It was conducted in a large, 
community-based, multi-ethnic prospective cohort with serial TMAO 
measures, a broad range of well-measured health phenotypes (including 
detailed sociodemographic factors, habitual diet, lifestyles, and traditional 
CVD risk factors and renal function), and a large number of centrally ad-
judicated mortality outcomes during long-term follow-up. Thus, our find-
ings are less subject to reverse causation, measurement errors, and 
residual confounding, and have greater statistical power and generalizabil-
ity than many of the prior studies. Furthermore, the multi-ethnic feature 
of MESA participants allowed us to examine the associations in each race/ 
ethnicity group including White, Black, Hispanic, and Chinese-American 
adults, providing unique race/ethnicity-specific data.

Potential limitations should be considered. The observational design 
cannot exclude residual confounding. However, we adjusted for a 
broad range of well-measured mortality risk factors, and results were 
robust except for additional adjustment for eGFR (which could be 
both a mediator and confounder) for deaths due to CVD and kidney 
failure. Unlike adjudicated CVD mortality that should have minimal out-
come misclassification, other cause-specific mortality outcomes were 
obtained based on the underlying cause of death from death certificates 
which is subject to reporting errors.44 However, the differential asso-
ciations of TMAO with these secondary outcomes consistent with 
mechanistic evidence in part support their relative accuracy. 
Statistical power to detect associations for CVD and other cause- 
specific mortality outcomes may be limited.

Conclusions
In this multi-ethnic, community-based cohort of US adults, higher serial 
measures of plasma TMAO levels were associated with higher risk of 
all-cause mortality, CVD mortality, and death due to kidney failure, 
but not death due to cancer or dementia. Increases in TMAO levels 
over time were associated with higher risk of all-cause mortality and 
death due to kidney failure, but not death due to CVD, cancer, or de-
mentia. The positive association between TMAO and all-cause mortal-
ity was present in every race/ethnicity group examined including White, 
Black, Hispanic, and Chinese-American adults, and remained significant 
after further adjustment for renal function. These findings support the 
need to test whether lifestyle and pharmacologic interventions to low-
er TMAO levels may improve clinical outcomes.
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