
cfSNV: a software tool for the sensitive detection of somatic 
mutations from cell-free DNA

Shuo Li1, Ran Hu1,2,3, Colin Small3, Ting-Yu Kang4, Chun-Chi Liu1,4, Xianghong Jasmine 
Zhou1,3,4,✉, Wenyuan Li1,4,✉

1Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University 
of California at Los Angeles, Los Angeles, CA, USA.

2Bioinformatics Interdepartmental Graduate Program, University of California at Los Angeles, Los 
Angeles, CA, USA.

3Institute for Quantitative & Computational Biosciences, University of California at Los Angeles, 
Los Angeles, CA, USA.

4EarlyDiagnostics Inc., Los Angeles, CA, USA.

Abstract

Cell-free DNA (cfDNA) in blood, viewed as a surrogate for tumor biopsy, has many clinical 

applications, including diagnosing cancer, guiding cancer treatment and monitoring treatment 

response. All these applications depend on an indispensable, yet underdeveloped task: detecting 

somatic mutations from cfDNA. The task is challenging because of the low tumor fraction 

in cfDNA. Recently, we developed the computational method cfSNV, the first method that 

comprehensively considers the properties of cfDNA for the sensitive detection of mutations from 

cfDNA. cfSNV vastly outperformed the conventional methods that were developed primarily for 

calling mutations from solid tumor tissues. cfSNV can accurately detect mutations in cfDNA 

even with medium-coverage (e.g., ≥200×) sequencing, which makes whole-exome sequencing 

(WES) of cfDNA a viable option for various clinical utilities. Here, we present a user-friendly 

cfSNV package that exhibits fast computation and convenient user options. We also built a Docker 

image of it, which is designed to enable researchers and clinicians with a limited computational 

background to easily carry out analyses on both high-performance computing platforms and local 

computers. Mutation calling from a standard preprocessed WES dataset (~250× and ~70 million 

base pair target size) can be carried out in 3 h on a server with eight virtual CPUs and 32 GB of 

random access memory.

Reprints and permissions information is available at www.nature.com/reprints.
✉ Correspondence and requests for materials should be addressed to Xianghong Jasmine Zhou or Wenyuan Li. 
XJZhou@mednet.ucla.edu; WenyuanLi@mednet.ucla.edu.
Author contributions
S.L., R.H., C.S., T.-Y.K. and C.-C.L. developed the protocol. S.L. and R.H. wrote the manuscript. W.L. and X.J.Z. supervised the 
study. All authors discussed and reviewed the manuscript.

Competing interests
X.J.Z. and W.L. are co-founders of EarlyDiagnostics Inc. C.-C.L. and T.-Y.K. are employees of EarlyDiagnostics Inc. S.L. is a former 
employee of EarlyDiagnostics Inc. The remaining authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Protoc. Author manuscript; available in PMC 2023 August 09.

Published in final edited form as:
Nat Protoc. 2023 May ; 18(5): 1563–1583. doi:10.1038/s41596-023-00807-w.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints


Introduction

Cell-free DNA (cfDNA) in the blood has received growing interest because of its clinical 

utility as a surrogate for tumor biopsy, especially in cases when tumor biopsy is unavailable 

or insufficient1. Compared to a tissue biopsy, cfDNA in the blood can be obtained 

noninvasively and can provide more comprehensive coverage of heterogeneous genetic 

alterations of tumors in a patient1,2. Hence, various applications have emerged on the basis 

of tumor-derived somatic mutations in cfDNA, including detecting cancer3–6, guiding cancer 

treatment7–9 and monitoring cancer10–14.

However, although it has great research and clinical potential, cfDNA contains only a minor 

fraction of tumor-derived cfDNA in an overwhelming amount of normal cfDNA1,15. Despite 

the low fraction, tumor-derived cfDNA shows high heterogeneity, because it comes from the 

entire volume of a tumor and every tumor present in a patient1,2. As a result, tumor-derived 

somatic mutations in cfDNA, including clonal mutations and subclonal mutations, usually 

have a very low variant allele frequency (VAF). This poses a great challenge to conventional 

mutation callers, which are primarily developed for genomic DNA of solid tumors. Without 

consideration of the cfDNA-specific properties, these methods are not well equipped to 

handle the complicated scenarios in cfDNA. Especially in medium-coverage sequencing 

data (e.g., whole-exome sequencing (WES) data), tumor signals can be represented by 

only a few tumor reads; therefore, a powerful tool to distinguish signals from noise is 

needed. Lacking a cfDNA-specific mutation caller, most current applications focus on deep 

sequencing of a small panel of genes3,8,10,11. The profiling of the small genomic range, 

however, severely limits the applications of cfDNA. Computational methods for sensitive 

and accurate mutation calling are paramount for exploiting the great potential of cfDNA and 

can enable a broad range of downstream applications.

Recently, we developed the computational method cfSNV9 as the first method that 

comprehensively addressed the aforementioned challenge. By statistically incorporating 

the biological properties of cfDNA, cfSNV achieves high sensitivity and accuracy in the 

detection of low-frequency mutations (<5% VAF) in cfDNA9. As a result, it not only 

enhances the existing clinical applications of cfDNA (e.g., deep sequencing of gene panels) 

but also enables new applications by making cfDNA WES a viable clinical option. Here, we 

present a comprehensive workflow and a Docker image16 to detect tumor-derived somatic 

mutations and estimate the tumor fraction by using cfSNV. Specifically, we implement the 

cfSNV method in C++ and Python for high computing performance and include all the 

dependencies in the Docker image for facilitating use of the tool. Therefore, this package 

exhibits much faster computation and much easier usage than the original prototype9. 

The package covers the entire workflow from raw paired-end sequencing data of cfDNA 

and matched white blood cells (WBCs) to a biologically interpretable output of somatic 

mutations. In addition, the package includes a parameter recommendation function that 

provides users with parameter-setting options for high-quality mutation detection from the 

input data of different experimental protocols, sequencing coverages and tumor fractions. 

Overall, the package is designed to enable researchers and clinicians with a minimal 

computational background to easily carry out analyses on both high-performance computing 

platforms and local computers.

Li et al. Page 2

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Development of the protocol

Unlike genomic DNA, cfDNA has unique biological properties, including low tumor 

fraction1,15, high heterogeneity in clonal composition1,2, short fragment size17 and 

nonrandom fragmentation18. These properties impair tumor-derived mutation detection in 

three ways. First, the low tumor fraction and high heterogeneity result in the low VAF 

of tumor-derived mutations in cfDNA1,2,15,19. Second, the short fragment size (~166 base 

pairs (bp)) of cfDNA17, which arises from the enzymatic digestion of cfDNA, leads to a 

large fraction (>50%9) of overlapping read mates from the standard paired-end sequencing 

(usually 100 or 150 bp per read). It also causes double-counting in DNA fragments 

and, therefore, biases estimation of allele frequencies. Third, cfDNA is nonrandomly 

fragmented with preferred end sites18. Therefore, true mutations in cfDNA could cluster 

at certain positions on the supporting reads. Conventional methods, which assume random 

fragmentation20, tend to eliminate true mutation candidates in cfDNA as misalignment 

artefacts. Therefore, to achieve sensitive and accurate detection of tumor-derived mutations 

in cfDNA, these cfDNA-specific properties need to be addressed. We developed the cfSNV 

protocol to statistically take these cfDNA properties into consideration in the mutation 

calling in cfDNA9. cfSNV introduces five novel techniques (Fig. 1) to the conventional 

methods, focused on the three major stages schematically outlined in Fig. 1. These stages are 

briefly outlined here and are detailed in our previous work9:

1. Preprocessing of cfDNA sequencing data (Technique 1 and Stage 1). In our 

protocol, the preprocessing step not only processes the raw sequencing FASTQ 

data to analysis-ready BAM files but also removes VAF biases and suppresses 

sequencing errors from overlapping read mates of short cfDNA fragments. By 

comparing the context of the read and its mate, we identify the overlapping read 

mates and combine the two read mates in the overlapping region. If one position 

has inconsistent bases on the two read mates, we correct it to be the base calls 

with higher quality; if one position has consistent bases on the two read mates, 

we increase its base quality. In this way, we avoid double-counting the cfDNA 

fragments and thereby remove the VAF bias. In addition, taking advantage of the 

overlapping read mates, we suppress sequencing errors, providing a solid basis 

for accurate mutation detection (Technique 1 in Fig. 1)9. The bias-corrected and 

error-suppressed FASTQ files are then aligned to the reference genome, followed 

by duplicate removal, indel realignment and base quality score calibration by 

using the standard GATK pipeline21,22.

2. Iterative screening of mutation candidates following the clonal hierarchy 
(Techniques 2–4 and Stage 2). Unlike genomic DNA from a solid tumor sample, 

a blood sample includes DNA fragments from all tumor sites, which covers 

the full range of clonal and subclonal mutations1,2. However, a mutation caller 

that is optimized to detect clonal mutations will inevitably sacrifice accuracy to 

detect subclonal mutations. Therefore, the heterogeneous clonal compositions in 

cfDNA present a considerable challenge in comprehensive mutation detection. 

To address this challenge, cfSNV takes advantage of the fact that the mutations 

associated with the same clone have similar VAF in cfDNA1. The mutations are 

therefore naturally clustered according to the clonal hierarchy1. This fact allows 

Li et al. Page 3

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



us to automatically cluster mutations on the basis of their allele frequencies 

and then detect clusters of mutations from the highest to the lowest frequencies 

following the clonal hierarchy (Technique 3 in Fig. 1). Specifically, in each 

iteration, we first focus on the most frequent mutation cluster and estimate the 

frequency that represents the mutated tumor DNA fraction of this cluster. To 

obtain a robust estimation of this frequency, we aggregate reads from potential 

mutation loci, which are identified by directly comparing the cfDNA and the 

matched WBC data (Technique 2 and Stage 2a in Fig. 1). Given the estimated 

frequency, we next jointly model the genotypes in the cfDNA and the matched 

WBC to probabilistically tease apart the low-level tumor-derived signal from 

the overwhelming normal cfDNA background and identify mutation candidates 

that can fit into this cluster (Technique 2 and Stage 2b in Fig. 1). This joint 

model enhances the sensitivity of mutation detection by precisely describing the 

mixed nature of cfDNA. Then, the mutation candidates are eliminated according 

to a set of filters that account for the nonrandom fragmentation pattern of 

cfDNA (Technique 4 and Stage 2c in Fig. 1)18. We stratify the remaining 

mutation candidates into two groups (high- and medium-quality groups) on 

the basis of their quality statistics (e.g., base quality, mapping quality and 

allelic bias). The quality of a mutation candidate determines the number of 

variant-supporting reads required in Stage 3 to finally report it as a mutation. 

Note that both the joint genotyping model and the filtration consider the alleles 

in the matched WBC. In this way, cfSNV effectively removes the non-tumor-

related mutations that arise from blood cell expansion (i.e., clonal hematopoiesis 

of indeterminate potential)23. After the filtration, we remove these detected 

mutation candidates and repeatedly perform the same operation to identify 

the next-most-frequent mutation cluster (Technique 3 and Stage 2d in Fig. 1). 

The process repeats, detecting the next-most-frequent mutation cluster at each 

iteration until no more mutations are detected with confidence. The iterative 

process of mutation screening allows comprehensive detection of both clonal and 

subclonal mutations9.

3. Read-level error filtration by a random forest classifier (Technique 5 and Stage 
3). When the tumor fraction is low, sequencing errors impair the specificity 

of mutation detection in cfDNA. Traditional mutation detection methods 

usually use a post-filtration step to improve specificity by using site-level 

statistics19,24,25 such as averaged base quality of all reads at a mutation. Given 

the low tumor fraction in cfDNA, the supporting reads for a tumor-derived 

mutation are limited. Therefore, it is challenging to obtain robust estimates 

of site-level statistics for reliable error filtration. To address this challenge, 

machine learning models have been developed on the basis of sequencing 

context in individual reads26,27. Specifically, we derive a read-level error 

filtration model (a random forest classifier), which distinguishes true variants 

from sequencing errors for individual reads. The model incorporates various 

contextual features (e.g., sequence context and substitution type) and fragment 

features (e.g., fragment size and alignment concordance) to overcome the low 

signal-to-noise ratio for low-VAF mutations. After the iterative screening of 

Li et al. Page 4

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutation candidates, all variant-supporting reads at the mutation candidates are 

filtered by the read-level error filtration model (Technique 5 and Stage 3 in Fig. 

1). Only mutation candidates with adequate, true variant-supporting reads are 

reported. The number of required true variant-supporting reads for a mutation 

is determined by the quality of a mutation candidate: commonly, we suggest a 

higher threshold for mutations in the medium-quality mutation group than those 

in the high-quality mutation group.

cfSNV is implemented in C++ and Python for high computational speed. It is wrapped in R 

and Docker, so users can simply execute it in high-performance computing environments 

(e.g., servers, computer clusters or cloud computing platforms), as well as on local 

computers. To accommodate different sequencing coverages and experimental protocols of 

the input data and the varied tumor fractions in the cfDNA samples, cfSNV comes with 

a parameter-recommendation function to help users understand the features of the input 

sample and the data (e.g., sequencing depth) and provide sample-specific recommendations 

of parameter settings on the basis of these features for high-quality mutation detection. 

The software reports a tumor fraction and a list of somatic mutations in the widely 

acknowledged variant calling format (VCF), which can be easily adopted in the subsequent 

mutation analysis workflows. The reported tumor fraction can be used to track the tumor 

burden changes for cancer patients2,11,14, while the somatic mutations contain a wealth of 

information and can be used to inform cancer treatment decisions6,8,10.

Comparison with other methods

The detection of tumor-derived mutations has been an essential task in cancer research 

and clinical application, for which many methods have been developed. Because a detailed 

description and full comparison of these different methods is beyond the scope of this 

protocol, we refer the readers to recent review articles that outline the features of each 

tool and discuss their advantages and disadvantages in different use cases28–30. Nearly all 

of these tools were not designed for cfDNA. Thus, most of them have only been used on 

genomic DNA sequencing data from solid tumors. Therefore, in our comparison, we focus 

on the tools that have been applied to cfDNA data in previous studies (i.e., MuTect19 and 

Strelka225).

In general, mutation detection methods have three stages, as shown in Fig. 1: preprocessing, 

mutation screening and post-filtration30. cfSNV has unique and specific considerations for 

cfDNA properties in all three stages9.

Preprocessing—In the preprocessing step, MuTect and Strelka2 directly rely on the 

standard preprocessing pipeline, including alignment (e.g., bwa31), deduplication (e.g., 

Picard tools32 or samtools33), optional indel realignment (e.g., GATK21,22) and base 

quality score recalibration (e.g., GATK21,22 and ABRA34)19,25. In addition to this standard 

preprocessing, cfSNV explicitly resolves the overlapping read mates in the paired-end 

sequencing data by identifying and merging the overlapping regions of the read mates. 

It thereby simultaneously corrects the bias in VAF and suppresses the sequencing errors; 

other methods do not use the overlapping read mates for this purpose. With a standard 

read length (100 or 150 bp), the overlapping read mates usually constitute a large fraction 

Li et al. Page 5

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(>50%9) of the paired-end sequencing data of cfDNA. Even with a short read length (75 

bp), overlapping read mates are expected to be observed according to the cfDNA fragment 

size distribution16. Therefore, cfSNV exploits the great potential of sequence redundancy 

naturally in cfDNA data to correct the bias of cfDNA fragment counts and suppress the 

sequencing errors9. Note that given cfDNA’s short-sized nature, using a shorter read length 

may be a cost-efficient strategy for cfDNA sequencing, but it may also potentially affect the 

mappability and the mutation confidence in the repetitive area.

Mutation screening—During the mutation screening step, MuTect and Strelka2 use 

matched tumor-normal samples to detect somatic mutations. The basic idea is to compare 

the likelihoods of models with somatic mutations, wild-type genotypes or germline 

mutations. MuTect uses a likelihood model of genotypes in tumor samples to determine 

mutation candidates19. It selects mutation candidates on the basis of a single log-likelihood 

ratio cutoff between mutation genotypes and wild-type genotypes19. The cutoff retains 

the most likely mutation candidates while removing potential artefacts. Strelka2 predicts 

genotypes in tumor and normal samples25. It considers all positions where a somatic 

genotype has the highest likelihood to be somatic mutation candidates25. However, without 

a hard cutoff, the mutation candidates from Strelka2 may include many false positives. 

cfSNV, like MuTect and Strelka2, uses cfDNA and its matched WBC data for mutation 

screening, but it has a different statistical model and procedure that are tailored to cfDNA-

specific properties. Given the mixed nature of cfDNA and the low tumor fraction, cfSNV 

jointly models the tumor and the normal genotypes in cfDNA and explicitly incorporates 

the tumor fraction and mutation cluster frequency into the likelihood model. As a result, 

it statistically separates the small amount of tumor-derived cfDNA from the pool of 

normal cfDNA to overcome the low tumor fraction and detect low-frequency mutations9. 

Furthermore, to address heterogeneity, cfSNV uses an iterative procedure to screen mutation 

candidates from the highest to the lowest frequency. The iterative procedure explores the 

full clonal hierarchy, which makes cfSNV sensitive to both clonal and subclonal mutations9. 

Meanwhile, cfSNV retains all mutation candidates for filtration. Therefore, it may include 

false-positive candidates at low allele frequencies.

Post-filtration—Sequencing or alignment artefacts may trick the statistical model to pass 

them as real mutations. Most mutation-detection methods apply a set of filters to identify the 

artefacts and improve specificity. In the post-filtration step, MuTect and Strelka2 use site-

level statistics, including strand bias, clustered read position and averaged mapping quality. 

MuTect uses hard thresholds for all site-level statistics to filter artefacts19. Strelka2 builds a 

machine learning model by using these site-level statistics as features to classify mutations 

and artifacts25. These filters have limited power on the cfDNA data. First, none of these 

filters consider nonrandom fragmentation of cfDNA, so they may incorrectly remove true 

mutations. Second, site-level statistics alone may not be robust enough for post-filtration, 

given that limited variant alleles can be observed for a low-frequency mutation in cfDNA. 

Instead, cfSNV uses a two-stage post-filtration at the site level and the read level. For 

site-level filtration, cfSNV adjusts the filters in the existing methods to accommodate 

the nonrandom fragmentation pattern of cfDNA. These adjusted filters avoid incorrect or 

aggressive filtration of mutation candidates in cfDNA to keep more true positives. Note that 

Li et al. Page 6

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



site-level filtration is implemented as a component after identifying a mutation cluster in 

the iterative mutation-screening procedure9. For read-level filtration, cfSNV builds a random 

forest model to distinguish individual reads with true mutations from those with sequencing 

errors, whereby both contextual features and fragmentation features are used in the model. 

This model can effectively remove artefacts without relying on multiple observations of 

variant alleles9. Therefore, the read-level filtration can eliminate false negatives and ensure 

high specificity when the tumor fraction is low9. Note that the read-level filtration is 

performed as an independent step after the iterative mutation-screening procedure.

Overall, in all three stages, cfSNV has considered cfDNA-specific properties for sensitive 

and specific somatic mutation detection in cfDNA. As shown in a series of simulation data 

and real patient data9, cfSNV outperforms MuTect19 and Strelka225 in terms of sensitivity 

and specificity in detecting somatic mutations in cfDNA.

Applications of the protocol

Because of its noninvasiveness, cfDNA in blood has received enormous attention as 

a surrogate for solid tumors. Somatic mutations in cfDNA have been widely used as 

biomarkers in many circumstances. Here, we name a few. (1) Tumor mutation profiling: 

in many cancer cases (e.g., metastatic tumors), a single tumor biopsy is difficult to access or 

is insufficient to represent the tumor1,2,35,36. The sensitive detection of mutations in cfDNA 

can provide a comprehensive somatic mutation profile for the heterogeneous tumor6,9, 

aiding treatment decisions and personalized therapy selection. (2) Cancer monitoring: 

to monitor cancer treatment, repeated evaluation of tumor changes is needed, when 

tumor biopsy is not a viable option. Because cfDNA can be collected noninvasively, 

the tumor-derived mutations in cfDNA can be analyzed in a timely manner and used 

for the detection of recurrence5,14, minimal residual diseases13,14,37, multiple primary 

diseases14,38 and clonal evolution2,14,19. (3) Cancer detection: somatic mutations are stable 

tumorigenesis markers that have been used for cancer detection3–5. Mutation detection is 

key for these applications. With the high sensitivity and accuracy of tumor-derived somatic 

mutation detection in cfDNA, cfSNV can provide a solid basis for these applications. The 

improved mutation-calling performance of cfSNV expands the clinical utility of cfDNA 

from small gene panels (at a deep sequencing coverage) to the whole-exome scale (at a 

medium-coverage sequencing), which further facilitates new applications using exome-wide 

mutation profiles, such as a blood-based truncal tumor mutation burden for immunotherapy 

prognosis9. In addition, cfSNV can easily adapt to the analysis of cfDNA data from other 

organisms (e.g., tumor-bearing mice). Therefore, it will also contribute to general liquid 

biopsy-related basic and translational cancer research.

Limitations

There are several limitations of cfSNV. First, cfSNV has a focus on tumor-derived single-

nucleotide variants (SNVs). To date, cfSNV has not yet supported the detection of somatic 

indels. Second, cfSNV does not consider haplotypes of somatic mutations. Considering the 

short size of cfDNA fragments, it might be difficult to resolve haplotypes from cfDNA. 

Third, the main part of cfSNV (parameter recommendation and mutation detection) can 

be applied to both paired-end and single-end sequencing data. However, some techniques 

Li et al. Page 7

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(e.g., error suppression in the overlapping read mates) at least partly rely on the read mates 

from the paired-end sequencing data. Fourth, unique molecular identifier (UMI)-tagged 

ultra-deep sequencing has been used to profile small gene panels in cfDNA, but cfSNV 

intentionally does not include a module to handle UMI-related preprocessing (e.g., UMI 

trimming and deduplication), because of the often customized UMI design. Therefore, we 

recommend that users separately preprocess UMI-tagged data. Then, cfSNV can use the 

preprocessed data as input and perform mutation detection. Fifth, the error suppression in 

cfSNV specifically addresses the base call errors of the sequencing-by-synthesis method. 

Without additional molecular information (e.g., UMI), it cannot handle the PCR errors 

from the library preparation, but note that the PCR errors are generally not an issue for 

medium-coverage data without UMI because of the limited sequencing depth.

Experimental design

The procedure outlined in this protocol applies cfSNV to detect somatic mutations for a 

simulated patient (test demo) and a real breast cancer patient (example data36). In both 

cases, the input data are the WES data of cfDNA and of its matched WBC. The test 

demo contains only simulated sequencing reads generated from a prostate cancer patient39 

on chromosome 22 for quick testing and troubleshooting. The example data contain raw 

sequencing reads from a standard WES dataset. We recommend that users who are not 

familiar with next-generation sequencing data first follow our test demo data and the 

example data before applying cfSNV to their own datasets.

The input files for cfSNV are described in Box 1; these files are user data files (raw 

FASTQ files from cfDNA and the matched WBC) and reference files tailored to the 

users’ experimental protocols. The reference files include a FASTA-format file (genome) 

of the reference genome; a browser extendable data (BED)-format file (target) that contains 

targeted genomic regions in the sequencing, such as a targeted panel; and a VCF-format 

file (database) that contains genomic positions to be blocked from mutation detection. The 

mutation detection will be performed in the genomic regions in the input BED file target.

The cfSNV package consists of four major modules (Fig. 2): (i) index generation, (ii) data 

preprocessing, (iii) parameter recommendation and (iv) mutation detection. Note that these 

are not the same as the three stages outlined in Development of the protocol.

Index generation—The input reference files need to be indexed before use. Although 

the index files are not explicitly used in the cfSNV protocol, they are required by bwa31, 

GATK21,22 and Picard tools32 for efficient random searching of genomic coordinates. 

cfSNV provides a command (GenerateIndex) to generate all index files required in the 

subsequent analysis. The users can directly use this command to process their reference 

files.

Data preprocessing 4—Data preprocessing contains the first major stage of cfSNV 

(i.e., preprocessing of cfDNA sequencing data (Stage 1 in Fig. 1)). cfSNV provides 

two commands to process raw sequencing FASTQ files of cfDNA and WBC genomic 

DNA into analysis-ready BAM files. One command (STDprep) is for the standard 

preprocessing of both WBC and cfDNA data. The raw sequencing data are checked for 

Li et al. Page 8

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data quality and processed with a standard preprocessing pipeline, including alignment 

(bwa31), deduplication (Picard tools32), indel realignment (GATK21,22) and base quality 

score recalibration (GATK21,22). The other command (cfDNAprep) is only for cfDNA to 

deal with the overlapping read mates. The overlapping read mates are first identified and 

merged by using FLASH240. The merged read pairs are processed as single-ended data by 

the standard preprocessing pipeline. The read pairs without any overlap remain as paired-end 

data and are processed by the standard preprocessing pipeline. For a pair of cfDNA and 

WBC samples, the raw data of cfDNA are processed with both STDprep and cfDNAprep, 

whereas the raw data of the WBC are processed only with STDprep.

Parameter recommendation—As aforementioned, cfSNV groups the mutation 

candidates into high- and medium-quality groups. The mutation candidates in different 

groups require different numbers of true variant-supporting reads to be reported. Thus, 

there are two key parameters: minPass and minHold (i.e., the minimum number of required 

true supporting reads for mutation candidates in the high- and medium-quality groups, 

respectively). These parameters need to be tailored to specific datasets. The parameter-

recommendation module inspects the input data, provides users with statistics for their own 

data and offers options for parameter settings. The parameter recommendation module is 

wrapped in a single command, RecParams. For a specific input dataset, RecParams checks 

the sequencing depth and roughly estimates the tumor fraction. The rough estimation of 

tumor fraction requires a longer running time, so we also provide an option to disable 

the tumor fraction estimation in RecParams. Theoretically, the expected detection limit 

is determined by the sequencing depth and the minimum number of required supporting 

reads for a mutation. For example, given a sequencing depth of 200×, if we report 

mutations only with ≥10 variant-supporting reads, the detection limit is ~5%. Following 

this idea, we provide up to three recommendations of parameter settings (i.e., minPass and 

minHold), given the estimated sequencing depth and different detection limit thresholds 

(Fig. 3a,b). In other words, the parameter recommendation tells the users that by using a 

set of recommended minPass and minHold parameters, they can achieve the corresponding 

detection limit (i.e. the lowest VAF of detectable mutations) from the input data. Then, the 

users can select parameters that suit their data and meet their expected detection limit. The 

selection of parameters is not limited to the recommendations.

Mutation detection—Mutation detection consists of two major stages of cfSNV: iterative 

mutation screening (Stage 2 in Fig. 1) and read-level filtration (Stage 3 in Fig. 1). The details 

of these two stages have been described in our previous work9 and are briefly discussed in 

Development of the protocol, Stages 2 and 3. The mutation-detection module is wrapped 

in a single command, DetectMuts. This command generates the final output of cfSNV, 

including a list of somatic mutations (Fig. 4a) and a numeric value of the estimated tumor 

fraction in the cfDNA (Fig. 4b).

Expertise needed to implement the protocol

We built a Docker image of cfSNV, which contains all dependencies required to run the 

pipeline. To use the Docker image, only some basic knowledge of the Bash command-line 

interface is needed. Following the steps of this protocol, users only need to execute a 

Li et al. Page 9

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



few command lines in the terminal. The parameter recommendation module automatically 

detects the statistics of the users’ own input dataset and recommends a few parameter 

settings that are tailored to the specific experimental protocol, sequencing coverage and 

tumor fraction of the dataset. Therefore, users with limited experience in sequencing data 

and mutation detection can still execute the pipeline and carry out high-quality analyses. The 

output format is in the standard VCF and thus requires minimal prior experience to interpret 

the results, fit into the existing workflow and perform downstream analysis.

Materials

Equipment

Software

• Operating system: Windows, MacOS or Linux distributions

• Docker41 (http://www.docker.com/). With the cfSNV Docker image as a 

template, containers can be built and run on most operating systems. ▲ 
CRITICAL All dependencies of cfSNV are packed into the Docker container, 

so the user does not need to install any specific tools separately. Versions of 

software tools and package dependencies are listed as they are packed in the 

container.

• bedtools42 v2.30.0 (https://github.com/arq5x/bedtools2/releases/tag/v2.30.0)

• bwa31 v0.7.17 (http://bio-bwa.sourceforge.net/)

• FLASH40 v2 (https://github.com/dstreett/FLASH2)

• GATK21,22 v3.8.0 (https://github.com/broadgsa/gatk/releases/tag/3.8)

• Java43 v1.8 (https://java.com/download)

• Picard32 v2.18.4 (https://github.com/broadinstitute/picard/releases/tag/2.18.4)

• Python44 v3.6 (https://www.python.org/downloads/)

• Python library: numpy45 v1.13.3 (https://numpy.org)

• Python library: pandas46 v0.20.3 (https://pandas.pydata.org)

• Python library: scikit-learn47 v0.24.1 (https://scikit-learn.org/stable/)

• Python library: scipy48 v1.1.0 (https://scipy.org)

• R49 v4.0.2 (https://www.r-project.org)

• R package: Rcpp50 (https://www.rcpp.org)

• samtools33 v1.11 (https://sourceforge.net/projects/samtools/files/samtools/)

Hardware

• Computer. cfSNV can be used on laptops, workstations, computer clusters 

or cloud computing platforms. ▲ CRITICAL We recommend an eight-core 

processor and 16 GB of random access memory (RAM), but it is not a hard 

Li et al. Page 10

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.docker.com/
https://github.com/arq5x/bedtools2/releases/tag/v2.30.0
http://bio-bwa.sourceforge.net/
https://github.com/dstreett/FLASH2
https://github.com/broadgsa/gatk/releases/tag/3.8
https://java.com/download
https://github.com/broadinstitute/picard/releases/tag/2.18.4
https://www.python.org/downloads/
https://numpy.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://scipy.org/
https://www.r-project.org/
https://www.rcpp.org/
https://sourceforge.net/projects/samtools/files/samtools/


minimum. The required disk storage is determined by the amount of input 

data. We recommend 20 GB of disk storage for reference files, including the 

reference genome, the index files and the single-nucleotide polymorphism (SNP) 

databases. For the WES data of cfDNA (~300 million 100-bp reads, ~250× on 

target regions of size ~70 million bp) and the matched WBC (~300 million 

100-bp reads, ~250× on target regions of size ~70 million bp), ~250 GB of disk 

storage is needed for temporary files. The complete results of a cfDNA sample 

use the minimum disk storage (<10 MB).

Equipment setup

In this protocol, we use the test demo data and example data to describe each step in the 

pipeline. The steps (Fig. 2) are interactively performed inside the Docker container through 

Bash commands and executable scripts.

Initial setup—Start the Docker software and open the command terminal on the host 

machine. In the Windows system, the terminal can be found as the Command Prompt from 

the Start menu. In Linux system, the terminal can be found as a pre-installed application 

Terminal. In MacOS, the terminal can be found as the Terminal in the Applications list.

Through the terminal, create a working directory called ‘working_directory’, which is used 

to place the Docker image. Enter the working_directory and download the latest Docker 

image from https://github.com/jasminezhoulab/cfSNV_docker/releases. For example:

cd <working_directory> && wget

https://github.com/jasminezhoulab/cfSNV_docker/releases/download/v2.0.1/

cfsnv_image.tar.gz Load the Docker image:

docker load < cfsnv_image.tar.gz

The Docker image called ‘cfsnv_docker’ will be loaded.

By default, the Docker container cannot access files located on the host machine. Therefore, 

users need to create a Docker container with a directory on the host machine mounted into 

the Docker container or copy files from the host machine to the Docker container.

Here, we provide the instructions for mounting a directory inside the container. Specifically, 

the users need to specify two directory paths for mounting: (i) a local_directory on the host 

machine, where all input data are located and (ii) a container_directory, through which the 

data on the host machine can be accessed. ! CAUTION The container_directory cannot be 

set to /home/cfSNV or /home; otherwise, the executable commands will be removed.

Then, create the Docker container and mount the data directory, with the following 

command:

Li et al. Page 11

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jasminezhoulab/cfSNV_docker/releases
https://github.com/jasminezhoulab/cfSNV_docker/releases/download/v2.0.1/cfsnv_image.tar.gz
https://github.com/jasminezhoulab/cfSNV_docker/releases/download/v2.0.1/cfsnv_image.tar.gz


docker run -it -d -v <local_directory>:<container_directory> --name 

<cfsnv_container> cfsnv_docker bash

In this command, please replace local_directory with a local directory in the host machine, 

replace container_directory with the directory in the Docker (a path name in Linux; e.g., /
home/cfSNV/demo) and replace cfsnv_container with a name as the container’s name. ! 
CAUTION The command in general applies to different operating systems (Windows, 

Linux and MacOS), but users need to follow the syntax of path names on their host machine. 

An example path name in Windows is C:\Documents\cfSNV\demo, and an example path 

name in Linux or MacOS is /home/users/cfSNV/demo.

Run the Docker container:

docker exec -it <cfsnv_container> bash

After the above steps, users will enter the cfSNV Docker container directory “/home/

cfSNV”, where the pipeline can be executed by using interactive bash commands. See 

Troubleshooting section.

Reference files—The pipeline requires several reference files as input (Box 1), including 

the reference genome sequence in FASTA format, the genomic coordinate of the targeted 

regions in BED format and a list of genomic positions in VCF format to be blocked 

in the mutation detection (e.g., dbSNP common SNP database51). The required reference 

files for the example data and the test demo data are available at https://zenodo.org/

record/7191202/files/example_reference_files.tar.gz and https://zenodo.org/record/7191202/

files/demo_reference_files.tar.gz. Users can download the reference files after starting the 

container. ▲ CRITICAL The reference files need to be consistently referred to the same 

genome build and need to be downloaded into the container_directory before users start the 

analysis procedures:

Inside the container, users can set the variable container_directory as the container directory 

path used when building the container:

container_directory=/CONTAINER_PATH/TO/INPUT

cd ${container_directory}\

&& wget https://zenodo.org/record/7191202/files/example_reference_files. 

tar.gz \

&& tar -xzvf example_reference_files.tar.gz \

&& rm example_reference_files.tar.gz

cd ${container_directory} \

&& wget https://zenodo.org/record/7191202/files/demo_reference_files. tar.gz 

\

Li et al. Page 12

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/7191202/files/example_reference_files.tar.gz
https://zenodo.org/record/7191202/files/example_reference_files.tar.gz
https://zenodo.org/record/7191202/files/demo_reference_files.tar.gz
https://zenodo.org/record/7191202/files/demo_reference_files.tar.gz
https://zenodo.org/record/7191202/files/example_reference_files
https://zenodo.org/record/7191202/files/demo_reference_files


&& tar -xzvf demo_reference_files.tar.gz \

&& rm demo_reference_files.tar.gz

The above commands download the reference files for the example data and the demo data 

to folders named ‘example_reference_files’ and ‘demo_reference_files’, respectively, in the 

container_directory. Users can prepare their own reference files based on their needs.

Example data and test demo data—The example data are available at the European 

Nucleotide Archive (https://www.ebi.ac.uk/ena) by using the run accession numbers 

ERR850376 (WES WBC) and ERR852106 (WES cfDNA)36.

A command (DownloadEg) for easily downloading the example data (four FASTQ files 

from two samples that are separated into reverse and forward reads) is available in the 

container.

Users can also use the command in the Docker container to download data to an 

example_data folder within the container_directory:

mkdir ${container_directory}/example_data \

&& cd ${container_directory}/example_data \

&& /home/cfSNV/DownloadEg

The demo data are available at https://zenodo.org/record/7191202/files/demo_data.tar.gz. To 

download the demo data to the container_directory folder:

wget https://zenodo.org/record/7191202/files/demo_data.tar.gz

&& tar -xzvf demo_data.tar.gz \

&& rm demo_data.tar.gz \

&& mv demo_data ${container_directory}

▲ CRITICAL The data need to be downloaded and put into the container_directory before 

users start the analysis procedure.

Procedure

Start the Docker container 25CF ● Timing ~1 s

1. 1 Start the Docker container by running:

docker exec -it <cfsnv_container> bash

If a cfSNV Docker container is successfully built by following the Equipment setup, 

Initial setup instructions, users can simply execute the above command to enter the bash 

environment in the container. The command works for different operating systems on 

the host machine (Windows, Linux or MacOS). The executable files in the /home/cfSNV 

Li et al. Page 13

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena/browser/view/ERR850376
https://www.ebi.ac.uk/ena/browser/view/ERR852106
https://zenodo.org/record/7191202/files/demo_data.tar.gz
https://zenodo.org/record/7191202/files/demo_data.tar.gz


folder are used to execute cfSNV pipelines. In the following steps, we assume the working 

directory is /home/cfSNV and that all codes are executed within the directory.

Generate index files for the reference file ● Timing ~1 h

2. Create genome index files by GenerateIndex. To check the usage of the 

command:.

./GenerateIndex -h

Usage:./GenerateIndex –g ${genome}

For instance, to generate index files for the example reference genome:

./GenerateIndex \

-g ${container_directory}/example_reference_files/hg19.fa

To generate index files for the demo reference genome:

./GenerateIndex \

-g ${container_directory}/demo_reference_files/demo_ref_genome.fa

Preprocess the input data ● Timing ~15 h per command

▲ CRITICAL The two preprocessing commands (STDprep and cfDNAprep) are 

independent, so users can easily execute them in parallel (e.g., running them simultaneously 

in the background). For the standard preprocessing, instead of using STDprep, our method 

also allows users to use other preprocessing pipelines and then directly provide the 

processed BAM files as the input for the next two steps.

3. Standard preprocessing of cfDNA and the matched WBC data. cfSNV provides 

a standard preprocessing workflow for paired-end genomic sequencing data 

of cfDNA and the matched WBCs, including sequence alignment, duplicate 

removal, indel local realignment and base quality score recalibration. The 

complete workflow is wrapped in a single command. The input of this command 

includes the raw sequencing reads in the FASTQ format, the reference genome in 

the FASTA format, the database of blocked positions in the VCF format (Box 1), 

the specified sample name called ‘id’ and the output directory called ‘output’.

Preprocess the data by STDprep. To check the usage of the command:

./STDprep -h

Usage:./STDprep -f1 ${fastq1} -f2 ${fastq2} -g ${genome} -d ${database} -i 

${id} -o ${output}

Li et al. Page 14

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This command needs to be applied to the raw sequencing data of both the cfDNA and the 

matched WBC. An analysis-ready BAM file (with suffix .recal.bam) and a corresponding 

index BAI file (with suffix .recal.bai) will be generated for each sample.

Our example data can be preprocessed by using the following specified commands. For the 

example cfDNA data:

./STDprep \

-f1 ${container_directory}/example_data/ERR852106_1.fastq.gz \

-f2 ${container_directory}/example_data/ERR852106_2.fastq.gz \

-g ${container_directory}/example_reference_files/hg19.fa \

-d ${container_directory}/example_reference_files/dbSNP.hg19.vcf \

-i ERR852106_cfDNA \

-o ${container_directory}/example_preprocess

For the example WBC data:

./STDprep \

-f1 ${container_directory}/example_data/ERR850376_1.fastq.gz \

-f2 ${container_directory}/example_data/ERR850376_2.fastq.gz \

-g ${container_directory}/example_reference_files/hg19.fa \

-d ${container_directory}/example_reference_files/dbSNP.hg19.vcf \

-i ERR850376_WBC \

-o ${container_directory}/example_preprocess

The demo cfDNA data can be preprocessed by:

./STDprep \

-f1 ${container_directory}/demo_data/cfDNA_1.fastq.gz \

-f2 ${container_directory}/demo_data/cfDNA_2.fastq.gz \

-g ${container_directory}/demo_reference_files/demo_ref_genome.fa \

-d ${container_directory}/demo_reference_files/demo_snp_db.vcf \

-i demo_cfDNA \

-o ${container_directory}/demo_preprocess

For the demo WBC data:

./STDprep \

-f1 ${container_directory}/demo_data/WBC_1.fastq.gz \

-f2 ${container_directory}/demo_data/WBC_2.fastq.gz \

-g ${container_directory}/demo_reference_files/demo_ref_genome.fa \

-d ${container_directory}/demo_reference_files/demo_snp_db.vcf \

Li et al. Page 15

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



-i demo_WBC \

-o ${container_directory}/demo_preprocess

? TROUBLESHOOTING

4. cfDNA-specific preprocessing. cfSNV especially considers the short fragment 

size of cfDNA in the preprocessing step and provides a special preprocessing 

workflow for cfDNA data. The workflow is wrapped in a single command, 

which includes read mate merging, error suppression, sequence alignment, 

duplicate removal, indel local realignment and base score calibration. The input 

of this command is the same as the standard preprocessing command (Step 3).

Preprocess the data by STDprep. To check the usage of the command:

./cfDNAprep -h

Usage:./cfDNAprep -f1 ${fastq1} -f2 ${fastq2} -g ${genome} -d ${database} -i 

${id} -o ${output}

This command needs to be applied only to the raw sequencing data of 

cfDNA. It generates two analysis-ready BAM files (i.e., extended overlapping 

reads with suffix .extendedFrags.recal.bam and uncombined nonoverlapping reads 

with suffix .notCombined.recal.bam) and two corresponding index BAI files (with 

suffixes .extendedFrags.recal.bai and .notCombined.recal.bai, respectively). The BAM file 

of the extended overlapping reads contains single-end long reads that are merged from the 

overlapping paired-end read mates. The BAM file of the uncombined nonoverlapping reads 

contains paired-end original read mates that do not overlap with each other.

To process the example cfDNA data:

./cfDNAprep \

-f1 ${container_directory}/example_data/ERR852106_1.fastq.gz \

-f2 ${container_directory}/example_data/ERR852106_2.fastq.gz \

-g ${container_directory}/example_reference_files/hg19.fa \

-d ${container_directory}/example_reference_files/dbSNP.hg19.vcf \

-i ERR852106_cfDNA \

-o ${container_directory}/example_preprocess

For the demo cfDNA data,

./cfDNAprep \

-f1 ${container_directory}/demo_data/cfDNA_1.fastq.gz \

-f2 ${container_directory}/demo_data/cfDNA_2.fastq.gz \

-g ${container_directory}/demo_reference_files/demo_ref_genome.fa \

-d ${container_directory}/demo_reference_files/demo_snp_db.vcf \

Li et al. Page 16

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



-i demo_cfDNA \

-o ${container_directory}/demo_preprocess

? TROUBLESHOOTING

(Optional) Recommend parameters based on the input data ● Timing 0.5–3 h

5. To accommodate input data from different experimental protocols and different 

sequencing coverages, cfSNV provides an optional command to help the user 

better understand the input data and provide the user with recommendations of 

parameters for mutation calling. Basically, the command runs through the first 

loop of the mutation screening to provide estimates of the sequencing coverage 

in the targeted regions, the detection limit range and the roughly estimated tumor 

fraction (optional).

Execute RecParams to obtain help for parameter recommendation.

./RecParams -h

Usage:./RecParams -p ${plasma} -n ${normal} -e ${extended} -u ${uncombined} 

-t ${target} -g ${genome} -d ${database} -i ${id} -r ${roughEstimate}

The input of this command includes the standard-preprocessed cfDNA and WBC data 

in the BAM format (outputs from Step 3, including the .recal.bam file for cfDNA and 

WBC), the cfDNA-specific-preprocessed cfDNA data in the BAM format (outputs from 

Step 4, including .extendedFrags.recal.bam and .notCombined.recal.bam files for cfDNA), 

the targeted regions of the experimental protocol in the BED format, the reference genome 

in the FASTA format, the database of blocked positions in the VCF format (Box 1), the 

specified case name id and a Boolean flag roughEstimate indicating whether to estimate the 

tumor fraction.

This command prints out the estimation of the sequencing coverage, the tumor fraction 

(optional) and a few recommended parameter settings on the screen. Example outputs are 

shown in Fig. 3a,b.

For the example data, the recommended parameters can be obtained by executing:

./RecParams \

-p ${container_directory}/example_preprocess/ERR852106_cfDNA.recal. bam \

-n ${container_directory}/example_preprocess/ERR850376_WBC.recal.bam \

-e ${container_directory}/example_preprocess/

ERR852106_cfDNA.extendedFrags.recal.bam \

-u ${container_directory}/example_preprocess/ERR852106_cfDNA. 

notCombined.recal.bam \

-t ${container_directory}/example_reference_files/target.bed \

-g ${container_directory}/example_reference_files/hg19.fa \

-d ${container_directory}/example_reference_files/dbSNP.hg19.vcf \

Li et al. Page 17

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



-i ERR852106_cfDNA \

-r FALSE

For the demo data:

./RecParams \

-p ${container_directory}/demo_preprocess/demo_cfDNA.recal.bam \

-n ${container_directory}/demo_preprocess/demo_WBC.recal.bam \

-e ${container_directory}/demo_preprocess/demo_cfDNA.extendedFrags. 

recal.bam \

-u ${container_directory}/demo_preprocess/demo_cfDNA.notCombined. recal.bam \

-t ${container_directory}/demo_reference_files/target.bed \

-g ${container_directory}/demo_reference_files/demo_ref_genome.fa \

-d ${container_directory}/demo_reference_files/demo_snp_db.vcf \

-i demo_cfDNA \

-r TRUE

▲ CRITICAL STEP The reference genome, the blocked positions and the targeted regions 

must be the same as in the preprocessing steps.

Detect mutations with the major functions of cfSNV ● Timing ~3 h

6. Call mutations by using DetectMuts. To check the usage of mutation detection:

./DetectMuts -h

Usage:./DetectMuts -p ${plasma} -n ${normal} -e ${extended} -u ${uncombined} 

-t ${target} -g ${genome} -d ${database} -i ${id} -mh ${minHold} -mp $

{minPass} -o ${output}

The input of this command includes the standard-preprocessed cfDNA and the WBC data 

in the BAM format (outputs from Step 3, including the .recal.bam file for cfDNA and 

WBC), the cfDNA-specific-preprocessed cfDNA data in the BAM format (outputs from 

Step 4, including .extendedFrags.recal.bam and .notCombined.recal.bam files for cfDNA), 

the targeted regions of the experimental protocol in the BED format, the reference genome 

in the FASTA format, the database of blocked positions in the VCF format (as described in 

Box 1), the specified case name id, the output directory called ‘output’ and two parameters, 

minHold and minPass (output from Step 5). These two parameters are the minimum number 

of supporting read pairs that is required for medium-quality mutation candidates (minHold) 

and high-quality mutation candidates (minPass).

The command outputs somatic mutations to a VCF file and writes the estimated tumor 

fraction to a TXT file. The VCF format mutation output can be directly used in many 

downstream analyses (e.g., mutation filtration from mappability and mutation annotation).

For the example data, detect mutations by executing the following command:

Li et al. Page 18

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



./DetectMuts \

-p ${container_directory}/example_preprocess/ERR852106_cfDNA.recal.bam \

-n ${container_directory}/example_preprocess/ERR850376_WBC.recal.bam \

-e ${container_directory}/example_preprocess/

ERR852106_cfDNA.extendedFrags.recal.bam \

-u ${container_directory}/example_preprocess/

ERR852106_cfDNA.notCombined.recal.bam \

-t ${container_directory}/example_reference_files/target.bed \

-g ${container_directory}/example_reference_files/hg19.fa \

-d ${container_directory}/example_reference_files/dbSNP.hg19.vcf \

-i ERR852106_cfDNA \

-mh 12 \

-mp 6 \

-o ${container_directory}/example_cfsnv_run

For the demo data:

./DetectMuts \

-p ${container_directory}/demo_preprocess/demo_cfDNA.recal.bam \

-n ${container_directory}/demo_preprocess/demo_WBC.recal.bam \

-e ${container_directory}/demo_preprocess/demo_cfDNA.extendedFrags. 

recal.bam \

-u ${container_directory}/demo_preprocess/demo_cfDNA.notCombined.recal. bam \

-t ${container_directory}/demo_reference_files/target.bed \

-g ${container_directory}/demo_reference_files/demo_ref_genome.fa \

-d ${container_directory}/demo_reference_files/demo_snp_db.vcf \-i demo_ 

cfDNA \

-mh 9 \

-mp 3 \

-o ${container_directory}/demo_cfsnv_run

▲ CRITICAL STEP The reference genome, the blocked positions and the targeted regions 

must be the same as in the preprocessing steps.

? TROUBLESHOOTING

Troubleshooting

Troubleshooting advice can be found in Table 1. In addition, the GitHub Issues 

page (https://github.com/jasminezhoulab/cfSNV_docker/issues) can be used for unforeseen 

troubleshooting and discussion.

Li et al. Page 19

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jasminezhoulab/cfSNV_docker/issues


Timing

The runtime of the pipeline depends on the computing resources and the input data size. 

Here, we specifically quantified the runtimes for the analysis of a standard WES dataset (i.e., 

the example data) and a small demonstrative dataset (i.e., the test demo data). The running 

time is obtained by using eight virtual CPUs, 32 GB of RAM and 500 GB of solid-state 

drive storage.

Step 1, starting the Docker container: ~1 s

Step 2, the runtime of indexing a genome (GenerateIndex): varies on the basis of the size of 

the reference genome file. For a standard human genome FASTA file (e.g., hg1952), it takes 

~1 h to generate all required index files. The runtime is ~1 h for the example reference file 

and ~1 min for the demo reference file.

Steps 3 and 4, preprocessing steps (STDprep and cfDNAprep): the runtime can vary widely 

depending on the available computing resources and data sizes. Our preprocessing steps 

follow the widely adopted framework21,22, so our runtime is comparable to other mutation-

detection tools in general. For example, it takes ~17 h to process ~300 million 100-bp 

reads but <10 min to process ~2.7 million 100-bp reads by using standard preprocessing 

(STDprep). For the example data, it takes ~16 h and ~10 h to finish the standard 

preprocessing of the cfDNA (285.6 million 100-bp reads) and the matched WBC data 

(181.7 million 100-bp reads), respectively. It takes ~12 h to finish the cfDNA-specific 

preprocessing (cfDNAprep) of the cfDNA (285.6 million 100-bp reads) example data. For 

the demo data, there are 2.7 million and 1.1 million 100-bp reads in the cfDNA and the 

matched WBC data, respectively, which require ~20 min to finish the preprocessing steps. 

Note that the Docker container allows parallel execution of STDprep and cfDNAprep. 

By running these commands in parallel, the total runtime can be greatly reduced for the 

preprocessing of cfDNA and WBC raw data.

Step 5, parameter recommendation (RecParams): the runtime is determined not only by data 

sizes but also by the ‘-r roughEstimate’ option. If the option is set to TRUE, it takes ~2.8 

h and ~1.5 min to finish the parameter recommendation for the example data and the demo 

data, respectively; if the option is set to FALSE, it takes ~20 min and <1 min to finish the 

parameter recommendation for the example data and the demo data, respectively.

Step 6, mutation detection (DetectMuts): the runtime relies on the size of targeted regions 

and the complexity of mutation clonal hierarchies. Because the screening of mutation 

candidates is iteratively performed along the clonal hierarchy, looping through all mutation 

clusters consumes hours at a time. It takes ~3 h and ~2 min to finish the mutation detection 

for the example data and the demo data, respectively.

Anticipated results

The final output of cfSNV is a list of somatic mutations and a numeric value of the 

estimated tumor fraction in the cfDNA. The results are written into two files in the specified 

output folder. ${id}.variant_list.vcf contains the genomic coordinates, the substitution types 

Li et al. Page 20

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the somatic mutations and other information in the VCF format (Box 2 and Fig. 4a). 

${id}.tumor_fraction.txt contains the estimated tumor fraction in the plain text format (Fig. 

4b).

Data availability

No new genomic sequencing data were generated in this study. The datasets used in this 

protocol included (i) the example data, which are available at the European Nucleotide 

Archive under the accession numbers ERR850376 and ERR852106; and (ii) the test demo 

data, which are available at https://zenodo.org/record/7191202/files/demo_data.tar.gz.

Code availability

cfSNV can be obtained at https://github.com/jasminezhoulab/cfSNV_docker. It can 

be freely used for educational and research purposes by nonprofit institutions and 

U.S. government agencies only under the UCLA Academic Software License. For 

information on use for a commercial purpose or by a commercial or for-profit entity, 

please contact Xianghong Jasmine Zhou (XJZhou@mednet.ucla.edu) and Wenyuan Li 

(WenyuanLi@mednet.ucla.edu).

Acknowledgements

This work was supported by National Cancer Institute grant nos. U01CA230705 and R01CA264864 to X.J.Z., 
R01CA246329 to X.J.Z. and W.L. and U01CA237711 to W.L.

References

1. VanderLaan PA et al. Success and failure rates of tumor genotyping techniques in routine 
pathological samples with non-small-cell lung cancer. Lung Cancer 84, 39–44 (2014). [PubMed: 
24513263] 

2. Murtaza M et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case 
of metastatic breast cancer. Nat. Commun 6, 8760 (2015). [PubMed: 26530965] 

3. Phallen J et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. 
Med 9, eaan2415 (2017). [PubMed: 28814544] 

4. Newman AM et al. An ultrasensitive method for quantitating circulating tumor DNA with broad 
patient coverage. Nat. Med 20, 548–554 (2014). [PubMed: 24705333] 

5. Ueda M et al. Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal 
squamous cell carcinoma recurrence. Oncotarget 7, 62280–62291 (2016). [PubMed: 27556701] 

6. Adalsteinsson VA et al. Scalable whole-exome sequencing of cell-free DNA reveals high 
concordance with metastatic tumors. Nat. Commun 8, 1324 (2017). [PubMed: 29109393] 

7. Camus V et al. Digital PCR for quantification of recurrent and potentially actionable somatic 
mutations in circulating free DNA from patients with diffuse large B-cell lymphoma. Leuk. 
Lymphoma 57, 2171–2179 (2016). [PubMed: 26883583] 

8. Rothwell DG et al. Utility of ctDNA to support patient selection for early phase clinical trials: the 
TARGET study. Nat. Med 25, 738–743 (2019). [PubMed: 31011204] 

9. Li S et al. Sensitive detection of tumor mutations from blood and its application to immunotherapy 
prognosis. Nat. Commun 12, 1–14 (2021). [PubMed: 33397941] 

10. Goldberg SB et al. Early assessment of lung cancer immunotherapy response via circulating tumor 
DNA. Clin. Cancer Res 24, 1872–1880 (2018). [PubMed: 29330207] 

11. Iwama E et al. Monitoring of somatic mutations in circulating cell-free DNA by digital PCR 
and next-generation sequencing during afatinib treatment in patients with lung adenocarcinoma 
positive for EGFR activating mutations. Ann. Oncol 28, 136–141 (2017). [PubMed: 28177428] 

Li et al. Page 21

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ebi.ac.uk/ena/browser/view/ERR850376
https://www.ebi.ac.uk/ena/browser/view/ERR852106
https://zenodo.org/record/7191202/files/demo_data.tar.gz
https://github.com/jasminezhoulab/cfSNV_docker


12. Fontanilles M et al. Non-invasive detection of somatic mutations using next-generation sequencing 
in primary central nervous system lymphoma. Oncotarget 8, 48157–48168 (2017). [PubMed: 
28636991] 

13. Chaudhuri AA et al. Early detection of molecular residual disease in localized lung cancer by 
circulating tumor DNA profiling. Cancer Discov 7, 1394–1403 (2017). [PubMed: 28899864] 

14. Li S et al. cfTrack, a method of exome-wide mutation analysis of cell-free DNA to simultaneously 
monitor the full spectrum of cancer treatment outcomes including MRD, recurrence, and 
evolution. Clin. Cancer Res 28, 1841–1853 (2022). [PubMed: 35149536] 

15. Choudhury AD et al. Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI 
Insight 3, e122109 (2018). [PubMed: 30385733] 

16. Li S et al. cfSNV: a software tool for the sensitive detection of somatic mutations from cell-
free DNA. Jasminezhoulab/cfSNV_docker: cfSNV docker image. Available at https://github.com/
jasminezhoulab/cfSNV_docker (2022).

17. Jiang P et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. 
Proc. Natl Acad. Sci. USA 112, E1317–E1325 (2015). [PubMed: 25646427] 

18. Jiang P et al. Preferred end coordinates and somatic variants as signatures of circulating tumor 
DNA associated with hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 115, E10925–E10933 
(2018). [PubMed: 30373822] 

19. Abbosh C et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 
545, 446–461 (2017). [PubMed: 28445469] 

20. Cibulskis K et al. Sensitive detection of somatic point mutations in impure and heterogeneous 
cancer samples. Nat. Biotechnol 31, 213–219 (2013). [PubMed: 23396013] 

21. Van der Auwera GA et al. From FastQ data to high‐confidence variant calls: the genome analysis 
toolkit best practices pipeline. Curr. Protoc. Bioinforma 43, 11.10.1–11.10.33 (2013).

22. DePristo MA et al. A framework for variation discovery and genotyping using next-generation 
DNA sequencing data. Nat. Genet 43, 491–498 (2011). [PubMed: 21478889] 

23. Pellini B & Chaudhuri AA Circulating tumor DNA minimal residual disease detection of non–
small-cell lung cancer treated with curative intent. J. Clin. Oncol 40, 567–575 (2022). [PubMed: 
34985936] 

24. Roth A et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations 
in normal/tumour paired next-generation sequencing data. Bioinformatics 28, 907–913 (2012). 
[PubMed: 22285562] 

25. Kim S et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 
591–594 (2018). [PubMed: 30013048] 

26. Kothen-Hill ST et al. Deep learning mutation prediction enables early stage lung cancer detection 
in liquid biopsy. Available at https://openreview.net/forum?id=H1DkN7ZCZ (2018).

27. Zviran A et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer 
monitoring. Nat. Med 26, 1114–1124 (2020). [PubMed: 32483360] 

28. Koboldt DC Best practices for variant calling in clinical sequencing. Genome Med 12, 1–13 
(2020).

29. Chen Z et al. Systematic comparison of somatic variant calling performance among different 
sequencing depth and mutation frequency. Sci. Rep 10, 3501 (2020). [PubMed: 32103116] 

30. Xu C et al. A review of somatic single nucleotide variant calling algorithms for next-generation 
sequencing data. Comput. Struct. Biotechnol. J 16, 15–24 (2018). [PubMed: 29552334] 

31. Li H & Durbin R Fast and accurate short read alignment with Burrows–Wheeler transform. 
Bioinformatics 25, 1754–1760 (2009). [PubMed: 19451168] 

32. Broad Institute. Picard tools. Available at https://broadinstitute.github.io/picard/ (2019).

33. Li H et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 
(2009). [PubMed: 19505943] 

34. Mose LE et al. ABRA: improved coding indel detection via assembly-based realignment. 
Bioinformatics 30, 2813–2815 (2014). [PubMed: 24907369] 

35. Opasic L et al. How many samples are needed to infer truly clonal mutations from heterogenous 
tumours? BMC Cancer 19, 1–11 (2019). [PubMed: 30606139] 

Li et al. Page 22

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jasminezhoulab/cfSNV_docker
https://github.com/jasminezhoulab/cfSNV_docker
https://openreview.net/forum?id=H1DkN7ZCZ
https://broadinstitute.github.io/picard/


36. Butler TM et al. Exome sequencing of cell-free DNA from metastatic cancer patients identifies 
clinically actionable mutations distinct from primary disease. PloS One 10, e0136407 (2015). 
[PubMed: 26317216] 

37. Kurtz DM et al. Enhanced detection of minimal residual disease by targeted sequencing of phased 
variants in circulating tumor DNA. Nat. Biotechnol 39, 1537–1547 (2021). [PubMed: 34294911] 

38. Liebs S et al. Liquid biopsy assessment of synchronous malignancies: a case report and review of 
the literature. ESMO Open 4, e000528 (2019). [PubMed: 31555482] 

39. Ramesh N et al. Decoding the evolutionary response to prostate cancer therapy by plasma genome 
sequencing. Genome Biol 21, 1–22 (2020).

40. Magoč T & Salzberg SL FLASH: fast length adjustment of short reads to improve genome 
assemblies. Bioinformatics 27, 2957–2963 (2011). [PubMed: 21903629] 

41. Merkel D Docker: lightweight linux containers for consistent development and deployment. Linux 
J 2014, 2 (2014).

42. Quinlan AR & Hall IM BEDTools: a flexible suite of utilities for comparing genomic features. 
Bioinformatics 26, 841–842 (2010). [PubMed: 20110278] 

43. Arnold K, Gosling J & Holmes D The Java Programming Language (Addison Wesley Professional, 
2005).

44. Van Rossum G & Drake FL Python 3 Reference Manual (CreateSpace, Scotts Valley, CA, 2009).

45. Harris CR et al. Array programming with NumPy. Nature 585, 357–362 (2020). [PubMed: 
32939066] 

46. McKinney W Data structures for statistical computing in python. In Proceedings of the 9th Python 
in Science Conference, Vol. 445 (SCIPY, 2010).

47. Pedregosa F et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res 12, 2825–2830 
(2011).

48. Virtanen P et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. 
Methods 17, 261–272 (2020). [PubMed: 32015543] 

49. R Core Team. R: a language and environment for statistical computing. Available at https://
www.R-project.org/ (2018).

50. Eddelbuettel D & Romain F Rcpp: seamless R and C++ integration. J. Stat. Softw 40, 1–18 (2011).

51. Sherry ST, Ward M & Sirotkin K dbSNP—database for single nucleotide polymorphisms and other 
classes of minor genetic variation. Genome Res 9, 677–679 (1999). [PubMed: 10447503] 

52. Lander ES et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 
(2001). [PubMed: 11237011] 

Li et al. Page 23

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.R-project.org/
https://www.R-project.org/


Box 1 |

Input files for cfSNV

cfSNV requires the user to specify data files and reference files as input for analysis. The 

names used in this box are the same as those used throughout the procedure.

• genome: the reference genome sequence in the standard FASTA 

format. Examples of the reference genome file can be found on 

the UCSC Genome Browser52 (https://hgdownload.soe.ucsc.edu/goldenPath/

hg19/bigZips/hg19.fa.gz).

• target: the genomic coordinate of the targeted regions in BED format. The 

targeted regions are the genomic regions that are intended to be captured 

by the sequencing assay (e.g., the target bait of the WES). We recommend 

that users remove low mappability regions to improve the quality of mutation 

detection based on their analysis need. The targeted region file is formatted as 

follows:

– No header

– Column 1: chromosome names (e.g., chr1, chr2, …, chrY; the format 

must be consistent with the chromosome names in the reference 

genome)

– Column 2: start coordinate of the target region on the chromosome

– Column 3: end coordinate of the target region on the chromosome

– Other columns are optional.

• database: a list of genomic positions in the standard VCF format 

to be blocked in mutation detection. The possible reasons to 

block a position from mutation detection include common SNPs, 

repeated elements and low-complexity sequences. The file should 

have a header and the same chromosome name format and 

chromosome order as the reference genome. Examples can be 

found in the dbSNP database51 (https://ftp.ncbi.nlm.nih.gov/snp/organisms/

human_9606_b150_GRCh37p13/VCF/common_all_20170710.vcf.gz).

• (cfDNA) fastq1: the raw read 1 data in the standard FASTQ format from the 

paired-end sequencing of cfDNA.

• (cfDNA) fastq2: the raw read 2 data in the standard FASTQ format from the 

paired-end sequencing of cfDNA.

• (WBC) fastq1: the raw read 1 data in the standard FASTQ format from the 

paired-end sequencing of WBCs.

• (WBC) fastq2: the raw read 2 data in the standard FASTQ format from the 

paired-end sequencing of WBCs.

Li et al. Page 24

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz
https://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b150_GRCh37p13/VCF/common_all_20170710.vcf.gz
https://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b150_GRCh37p13/VCF/common_all_20170710.vcf.gz


Box 2 |

Description of the output variant list

The output variant list follows the VCF format, which contains meta-information lines 

(beginning with ##), a header line (beginning with #) and data lines; each data line 

describes the information of a gene variant. An example output is provided in Fig. 4a.

• CHROM and POS: the genomic position of the mutation.

• ID: this field is unused.

• REF: the reference allele.

• ALT: the alternative allele.

• QUAL: the log likelihood ratio of the position to be a somatic mutation.

• FILTER: a flag indicating whether the mutation passes the post-filtration. The 

value is ‘PASS’ if the mutation passes the filters.

• VAF: the variant allele frequency of the mutation.

Li et al. Page 25

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. 
The cfSNV workflow and its techniques. cfSNV takes cfDNA and the matched WBC 

sequencing data as inputs; no tumor samples are needed. Stage 1 and Technique 1: 

overlapping read pairs in cfDNA sequencing data are first merged, and then standard data 

preprocessing tools are used. Stage 2 and Techniques 2–4: an iterative procedure (Stage 

2d and Technique 3) then detects mutation clusters and estimates their frequencies on the 

basis of multiple, automatically selected potential mutation loci (Stage 2a and Technique 2). 

Each iteration predicts somatic single-nucleotide variant candidates by jointly modeling the 

genotypes in the cfDNA and the matched WBC (Stage 2b and Technique 2) and masks the 

mutation candidates before proceeding (Stage 2c and Technique 4). Stage 3 and Technique 

5: after all clusters and mutation candidates have been detected, a random forest classifier 

identifies raw read pairs with sequencing errors. Finally, somatic single-nucleotide variants 

are reported and detected only if enough variant-supporting read pairs pass the read-level 

filtration. The background colors in different stage boxes correspond to different techniques; 

specific features of cfDNA, which are addressed by different techniques, are underlined. 

Adapted with permission from ref.9 under a Creative Commons licence CC BY 4.0.

Li et al. Page 26

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. 
Four modules in the cfSNV Docker package. cfSNV includes four major modules: index 

generation, data preprocessing, parameter recommendation and mutation detection. The 

index generation module contains one command, GenerateIndex. It generates indices for the 

userspecified reference files (reference genome, target regions and blocked positions), which 

are required for quick search across the genome. We provide two commands, STDprep and 

cfDNAprep, in the data preprocessing module. STDprep processes the raw sequencing reads 

(FASTQ files) of cfDNA and WBC to aligned reads and indices (BAM and BAI files). 

cfDNAprep contains a cfDNA-specific preprocessing pipeline, which accommodates the 

short cfDNA fragments. It generates aligned reads and indices (BAM and BAI files) from 

the raw sequencing reads of cfDNA (FASTQ files). The parameter recommendation module 

contains one command, RecParams. It recommends key parameters for mutation detection 

on the basis of the estimated sequencing depth and tumor fraction (optional). The mutation 

detection module has one command, DetectMuts. It takes the aligned reads generated from 

the data preprocessing module as input, and it outputs a list of somatic mutations and an 

estimation of tumor fraction.

Li et al. Page 27

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3 |. 
Example outputs of the parameter-recommendation module. a,b, The output is generated 

by executing the parameter recommendation module (i.e., the command RecParams) on our 

example data without estimating the tumor fraction (roughEstimate=FALSE) (a) and with 

estimating the tumor fraction (roughEstimate=TRUE) (b). The command RecParams reports 

the estimated per-base coverage of the aligned reads (generated by STDprep in Step 3) of 

the cfDNA sample in the genomic regions included in the target BED file. It also reports a 

roughly estimated tumor fraction if the option roughEstimate is set to TRUE. On the basis 

of the estimated per-base coverage, RecParams provides recommended parameters (minHold 

and minPass) for up to three different detection limits (i.e., the lowest detectable variant 

allele frequency). The users can determine the parameters for the mutation-detection module 

on the basis of the recommendations.

Li et al. Page 28

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4 |. 
An example output of the variant list and the tumor fraction from cfSNV. a, A screenshot 

of the output variant list generated from the example data. The variant list is in the standard 

VCF format. For each mutation, we output the genomic position and the nucleotide change. 

In addition, we provide a quality score, a flag indicating the filter status and the variant allele 

frequency of every mutation. b, A screenshot of the output tumor fraction from the example 

data.

Li et al. Page 29

Nat Protoc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 30

Table 1 |

Troubleshooting table

Step Problem Possible reason Solution

Equipment 
setup

The Docker container 
cannot be created

The specified container name is 
already in use by an existing 
container

Remove or rename the existing Docker container so that the 
name can be reused

The mount fails The link between the local 
directory and the container 
directory is incorrect

Rebuild a new container by using the full absolute path of the 
local directory and the container directory. We recommend 
that users use /home/cfSNV/${user_specified_name} as the 
container_directory

3 and 4 STDprep or 
cfDNAprep stops 
unexpectedly

Step 2 failed to generate index 
files

Run Step 2 to create genome index files

The input files are incorrect Make sure that the input file content and formats are the same 
as described in Box 1. Check the error message to see which 
file is incorrect

The jobs are killed because the 
system runs out of memory or 
space

Enlarge the RAM or the storage

Previous jobs stop unexpectedly 
and leave intermediate files

Go to the directory as shown in the error message where the 
intermediate files are located and remove the files

6 DetectMuts does not 
output any files to the 
designated folder

cfSNV has not finished properly Check if all the input files are correct and if the machine has 
enough free space

Nat Protoc. Author manuscript; available in PMC 2023 August 09.


	Abstract
	Introduction
	Development of the protocol
	Comparison with other methods
	Preprocessing
	Mutation screening
	Post-filtration

	Applications of the protocol
	Limitations
	Experimental design
	Index generation
	Data preprocessing 4
	Parameter recommendation
	Mutation detection

	Expertise needed to implement the protocol

	Materials
	Equipment
	Software
	Hardware

	Equipment setup
	Initial setup
	Reference files
	Example data and test demo data


	Procedure
	Start the Docker container 25CF ● Timing ~1 s
	Generate index files for the reference file ● Timing ~1 h
	Preprocess the input data ● Timing ~15 h per command
	? TROUBLESHOOTING
	? TROUBLESHOOTING
	(Optional) Recommend parameters based on the input data ● Timing 0.5–3 h
	Detect mutations with the major functions of cfSNV ● Timing ~3 h


	Troubleshooting
	Timing
	Anticipated results
	Data availability
	Code availability

	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Table 1 |

