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Abstract

DNA-encoded libraries have proven their tremendous value in the identification of new lead 

compounds for drug discovery. To access libraries in new chemical space, many methods have 

emerged to transpose traditional mol-scale reactivity to nmol-scale, on-DNA chemistry. However, 

procedures to access libraries with a greater fraction of C(sp3) content are still limited, and the 

need to “escape from flatland” more readily on-DNA remains. Herein, we report a Giese addition 

to install highly functionalized bicyclo[1.1.1]pentanes (BCPs) using tricyclo[1.1.1.01,3]pentane 

(TCP) as a radical linchpin, as well as other diverse alkyl groups, on-DNA from the corresponding 

organohalides as non-stabilized radical precursors. Telescoped procedures allow extension of 

the substrate pool by at least an order of magnitude to ubiquitous alcohols and carboxylic 

acids, allowing us to “upcycle” these abundant feedstocks to afford non-traditional libraries with 

different physicochemical properties for the small-molecule products (i.e., non-peptide libraries 

with acids). This approach is amenable to library production, as a DNA damage assessment 

revealed good PCR amplifiability and only 6% mutated sequences for a full-length DNA tag.
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Graphical Abstract

INTRODUCTION

DNA-encoded library (DEL) platforms have emerged as powerful tools for drug 

discovery.1–10 They offer the advantage of requiring extremely small quantities of both 

the libraries and protein targets to reveal selective and potent small molecule binders, 

resulting in diminished costs for research and discovery efforts.5 In creating these libraries, 

standard organic reactions have been adapted to fit the constraints of this noncanonical 

and demanding discovery platform. Executing small molecule transformations in the 

presence of a DNA tag introduces several method limitations. Reaction requirements 

include chemoselectivity for the desired transformation, functional group compatibility with 

the encoding DNA, and being amenable to aqueous conditions at low concentrations.11 

Furthermore, the DNA sequences must be conserved to be able to identify the attached small 

molecule binders following a DEL screen. The development of methods that operate within 

these allowances and also install the broadest diversity of scaffolds is of high interest to the 

DEL community.9

Within the DNA chemistry tool set, photoredox chemistry has demonstrated its usefulness 

to expand chemical space under extremely mild conditions,12–14 creating both carbon–

carbon and carbon–heteroatom bonds. Among these, C(sp3)-C(sp3) bond formation has 

been of specific interest.7,14–19 Along these lines, Flanagan and coworkers developed a 

decarboxylative Giese-addition to introduce stabilized α-amino- or α-oxy radicals on-DNA 

(Figure 1).20,21

Following this report, Liu22 and Lu23 independently reported methods for α-amino radical 

addition to on-DNA alkenes, providing amino-alkylated products. Although accessing new, 

sp3-rich chemical space on-DNA, these methods and others24,25 are limited to stabilized 

radicals, while non-stabilized radical precursors react with low efficiency.

To improve the three-dimensionality and physicochemical properties of lead compounds, 

drug discovery chemists have long endeavored to replace the venerable arene ring in an 

effort to “escape from flatland”.26,27 Thus, arene bioisosteres such as bicyclo[1.1.1]pentanes 
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(BCPs), bicyclo[2.2.2]octanes, or cubanes have been of interest to the synthesis 

community.28,29 Recent advances include efficient preparations of diversely substituted 

BCPs, or the Giese-type additions of non-stabilized BCP radical intermediates to alkene 

coupling partners, delivering sp3-rich products.30 Likewise, the ability to install arene 

bioisosteres on-DNA is of significant interest to the DEL field, but there exist only a few 

examples under DNA-compatible reaction conditions.31–33 In 2018, Baran and coworkers34 

applied a bicyclo[2.2.2]octane N-hydroxyphthalimide (NHPI) redox active ester in an on-

DNA Giese reaction with zinc nanopowder as a reductant, but BCP or cubane examples 

were not included. To the best of our knowledge, there has only been one example of a BCP 

radical addition on-DNA, likely because of the difficulty of generating the corresponding 

non-stabilized radical intermediate.30 Thus, there exists a gap of general methods to 

introduce diversely substituted arene bioisosteres on-DNA.

Inspired by the work of the Anderson group,30 we sought to develop radical couplings 

via halogen atom transfer (XAT) to access diverse on-DNA chemical matter (Figure 1). 

Furthermore, by using [1.1.1]propellane as an optional radical linchpin, two completely 

different products can be obtained from the same organic halide. We envisioned utilizing 

what has been historically viewed as limitations of DEL chemistry (low substrate 

concentration, excess of reagents, etc.) to our advantage to achieve desired reactivity and 

incorporate previously unprecedented substrates. As such, readily available and diverse 

alkyl- and (hetero)aryl halide feedstocks would be enabled for library preparation. Even 

further, we sought to upcycle carboxylic acid and alcohol feedstocks by using well-

known methods for functional group interconversions (FG → I), which could then be 

telescoped into the on-DNA hydroalkylation chemistry. As an additional advantage, on-DNA 

photoredox methods have proven to be relatively less damaging to the DNA tag than typical 

DEL chemistry workhorses, such as Suzuki-Miyaura couplings or CuAAC.11,35 Toward this 

end, this approach offers access to more drug-like DEL libraries of higher fidelity with 

superior Fsp3 content.

RESULTS AND DISCUSSION

To initiate our investigation, p-styrene DNA headpiece HP-1 was used as a substrate because 

of its anticipated effectiveness as a radical acceptor (Table 1). The bicyclo[1.1.1]pentane 

derivative 1a was prepared from commercially available 3-iodoalanine in an excellent yield 

via atom transfer radical addition (ATRA).36

The conditions were made amenable to on-DNA synthesis by using: 0.5 equivalent of 

4CzIPN (1 mM in DMSO), 25 equivalents of BCP-I 1a (25 mM in DMSO), 50 equivalents 

of tris(trimethylsilyl)silanol [(TMS)3SiOH] (50 mM in DMSO), and 100 equivalents of 

Na2CO3 (400 mM in H2O), to afford the expected product after 5 min of irradiation using 

an H-150 blue Kessil lamp at room temperature, affording product 2a in a 91% yield 

(entry 1, Table 1). The developed on-DNA reaction requires a photosensitizer (entry 2), 

a radical mediator (entry 3), and light (entry 4) for reactivity. The use of a base led to 

increased reactivity (entry 5). In Anderson’s work, the use of a mediator was reported as 

being crucial to generate the BCP radical.30 Either tris(trimethylsilyl)silane [(TMS)3SiH] 

or (TMS)3SiOH led to the desired product, albeit the two mediators were proposed to 
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function through two distinct mechanistic pathways. In the present case, when (TMS)3SiH 

was used instead of (TMS)3SiOH, the yield dropped to 40% (entry 6). In alignment with 

studies from the MacMillan group, we believe that the observed increased reactivity when 

(TMS)3SiOH is employed as the radical mediator is because of an efficient halogen atom 

transfer reaction (XAT) to generate the requisite BCP radical intermediate.37,38 The use 

of other photocatalysts such as Ir(ppy)3 or [Ir{dF(CF3)2ppy}2(dtbbpy)]PF6 led to DNA 

degradation and a decrease in yield, respectively (entries 7 and 8), in contrast to the off-DNA 

precedent, which proceeded most effectively with an iridium photocatalyst. Employing a 

weaker base gave a 68% yield (entry 9). Interestingly, although the off-DNA reaction 

occurred in a MeOH/H2O mixture,30 the on-DNA reaction gave a much lower yield (33%) 

(entry 10). Overall, this protocol is particularly noteworthy because of the ability to perform 

this reaction within minutes under air without degassing.

We then sought to evaluate the scope of this transformation with HP-1 using a set of BCP 

halides. Among them, a wide range of substrates served as competent partners, including 

those containing bifunctional handles (2a, 2j), a free alcohol (2d), N-Boc-protected amines 

(2f, 2h, 2i), a sugar (2g), and methyl esters (2e, 2o, 2l, 2r), all with moderate to excellent 

yield. The amino-substituted BCP30 (2n) performed well under the developed conditions.

BCP-iodides containing aryl substituents were also accessible under these conditions. 

Notably, arenes could be brought in through either functionalization at the benzylic position 

(2k, 2l, 2m) or through direct substitution of electron-deficient aryl iodides, generating 

C(sp2)-C(sp3) bonds prior to halo-BCP coupling (2p-v). In addition, by increasing the 

number of equivalents, BCP-bromides can also be used, affording products 2e and 2o in 

63% and 46% yields, respectively. To the best of our knowledge, this represents the first 

time that BCP bromides could be leveraged for a Giese-type reaction on- or off-DNA. We 

believe that this result indicates a unique advantage that is available to on-DNA reactivity, as 

the small scale of reactions (nmol scale) and large excess of reagents (20–100 equivs), 

unlock challenging reactivity paradigms that would be prohibitive to investigate with 

canonical mol-scale reaction development conditions. Beyond BCP-containing substrates, 

we also demonstrated the generality of the developed on-DNA reactivity as applied to 

primary-, secondary-, and tertiary alkyl halides (Figure 2).

The reaction accommodates both alkyl bromides and -iodides, albeit using a slightly 

decreased amount of alkyl halides and mediator than for the BCP halides (20 equivalents 

and 40 equivalents, respectively). This adjustment prevented the formation of byproducts 

corresponding to double addition by mass analysis of the alkyl radical (see SI, p S57 

– S61). The unprotected pyrazole 3d afforded the desired product with HP-1 in 85% 

yield. Interestingly, the N-Fmoc-protected substrate 3m demonstrated excellent reactivity, 

with no observed deprotection despite the presence of sodium carbonate base. The tertiary 

adamantyl radical obtained from the brominated substrate gave product 3n in >95% yield. 

The [2.2.2]bicyclooctane 3o performed well in the reaction, with a 56% yield starting from 

the bromide derivative.

Exploration of the scope for on-DNA alkene acceptors (Figure 3) demonstrated that the 

meta-substituted HP-2 delivered the desired products in excellent yields with a secondary 
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radical (4a) and a tertiary radical (4b). However, the addition of BCP-iodide (4c) with 

HP-2 failed to produce the product. ortho-Substituted styrene HP-3 provided moderate 

yields when reacted with substituted BCP-iodide substrates. As 3-alkyl-substituted BCP 

radicals are considered to be electron rich,39–41 they should react preferentially with 

electron-poor alkenes. This hypothesis is in line with our observation of the lack of 

reactivity of HP-2 with the BCP-iodide, as it does not benefit from the electron-withdrawing 

effect of the carboxamide. However, electron-deficient vinyl pyridines HP-4, HP-5 and 

HP-6 reacted smoothly with several BCP-iodides under the developed protocol. meta-

Functionalization can be achieved with HP-5, and it is compatible with a variety of 

substrates: a deprotected piperidine 4j, quinoline- and pyrazole-containing BCPs (4o, 4p), 

and aryl BCPs possessing two useful handles for further post-functionalization (4m-n) 

were obtained in moderate to good yields. The substituted styrene HP-7 behaves as an 

excellent radical acceptor and offers the possibility to achieve further post-functionalization 

using the aryl halide. Methylacrylamide HP-8 required a more concentrated solution but 

was a very accommodating substrate. This activated alkene was of high interest because it 

allowed access to arene-free products (4y, 4z) and demonstrated the potency of the method 

to provide a further increase in Fsp3 in good yields. With the trifluoromethyl-substituted 

styrene (HP-9), the gem-difluoroalkene adduct was observed instead of the Giese-type 

addition product (4aa-ad) (Figure 4). This observed defluorinative alkylation mechanism 

provides access to interesting ketone isosteres on-DNA.42

We then sought to explore whether the scope could be expanded beyond alkyl- and (Het)Ar-

halides to other abundant chemical feedstocks. Toward that end, “telescoped” processes 

for three substrate classes were pursued: activated esters, carboxylic acids, and alcohols. 

‘Telescoped’ refers to performing two or more reactions without further purification in 

between (e.g., no chromatography, distillation, or crystallization), thereby streamlining the 

workflow and reducing resource waste. First, the redox active esters were used to form 

alkyl iodides,43 which were then reacted directly with the styrene headpiece. Secondary- (3i) 
and tertiary (3p) alkyl systems provided products in more than 90% yield, while the BCP 

substrate yielded the desired product 2o with only 28% yield under these conditions (Figure 

5). A control experiment using redox active ester (S2a) directly as a radical precursor 

also provided product 3i in a low yield (< 25%), as it is known that a stoichiometric 

metal reducing agent is required for this purpose (see SI for details). The second strategy 

employed carboxylic acids. Previous photo-induced decarboxylative alkylations have been 

reported as shown in Figure 120, by our group44 in 2019. However, the present methods 

(from activated esters and carboxylic acids) allow non-stabilized secondary- and tertiary 

carboxylic acids to be used as precursors for the Giese addition to the less reactive DNA 

styrene, which has not been previously reported. Using this method,45 primary carboxylic 

acids performed smoothly and gave products 3q in 67% yield and 3r in 90% yield. A 

secondary carboxylic acid provided 3i in 76% yield. Iodocubane was generated from the 

corresponding carboxylic acid and reacted with HP-1 to give 3s in 84% yield, enabling the 

introduction of yet another interesting arene bioisostere (Figure 5).

The last strategy employed alcohols in the telescoped reaction, another class of abundant and 

easily accessible building blocks. Using methyltriphenoxyphosphonium iodide to generate 
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the iodide in situ46 allowed the introduction of primary- and secondary radicals with >90% 

yield (3t, 3u, 3i) (Figure 5). Of special note, the N-Fmoc-threonine-iodide derivative was 

successfully generated and added to HP-1 to give 3m in >95% yield.

A critical metric for any new on-DNA chemistry is to ensure that the integrity of the 

encoding tag is maintained well enough to be employed in actual library production, an 

important aspect that is often not fully reported.11,35 It is essential that the encoding DNA 

is able to be amplified and sequenced following a DEL screen such that the corresponding 

small molecule and potential target binder can be revealed. If the dsDNA is significantly 

damaged, then the molecule cannot be identified, contributing to a false negative result.

Toward this end, the p-styrene substrate was prepared on an elongated DNA tag and then 

subjected to the reaction or other control conditions. Upon isolation of the single constructs 

by ethanol precipitation and filtration, a series of ligations were performed, mimicking 

the library production process, followed by quantitative polymerase chain reaction (qPCR) 

and next-generation sequencing (NGS) analysis of the full-length tag (see SI for details). 

Several controls were prepared in the same way. The ligations for all four samples proceeded 

with excellent efficiencies (97 –100%), as confirmed by LC-MS and/or gel. Amplification 

efficiency of the full-length sequence by qPCR was comparable for all four samples (90 – 

92%) and the reaction maintained 63% amplifiable DNA, as compared to the no light, no 

reagents control (entry 1, Table 2). In contrast, some of the most often used, non-photonic 

on-DNA chemistries have only 30 – 50% amplifiable DNA remaining.35 Finally, NGS 

analysis revealed that the reaction sample had only 6% mutated sequences. Notably, the no 

light with reagents control had 7% mutated sequences, while the complementary control 

(light, but no reagents) had 0%. The observation that the reagents and not the irradiation 

were the cause of sequence mutations for the current method supports the hypothesis that 

photonic on-DNA chemistries offer a significant advantage over other protocols, particularly 

those methods that require high temperatures, longer reaction times, and metal-catalysis.

CONCLUSION

In conclusion, we have capitalized upon what have been considered limitations to on-DNA 

chemistry to develop a convenient, fast, general, and robust method to increase the Fsp3 

content of DNA-encoded libraries with abundant chemical feedstocks. We successfully 

introduced a diverse set of arene bioisosteres, such as BCPs and cubanes, to radical 

acceptors on-DNA. Free alcohol, free amine, N-Fmoc-protected amine, ketone, bromide, 

and chloride functional groups are tolerated, introducing a possibility of further post-

functionalization. A variety of DNA-conjugated olefin substrates are compatible with this 

transformation. Furthermore, the integrity of the DNA tag was preserved under these mild 

photonic reaction conditions, such that this method can be successfully employed to produce 

DNA-encoded libraries that cover previously inaccessible chemical space utilizing a larger 

subset of compatible and diverse building blocks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
State-of-the-art and this work
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Figure 2. 
Top. Scope of radical coupling with 3-iodobicyclo[1.1.1]pentanes. The reaction was 

performed on 10 nmol scale for HP-1 (2 mM in H2O, 1.0 equiv), 4CzIPN (1 mM in 

DMSO, 0.5 equiv), BCP-I (25 mM in DMSO, 25 equiv), (TMS)3SiOH (50 mM in DMSO, 

50 equiv), Na2CO3 (400 mM in H2O, 100 equiv), rt, 5 min, blue Kessil. a) 50 equiv of 

BCP-I (50 mM in DMSO) and 100 equiv of (TMS)3SiOH (100 mM in DMSO). b) 20 equiv 

of BCP-I (20 mM in DMSO) and 40 equiv of (TMS)3SiOH (40 mM in DMSO). Bottom. 

Evaluation of primary, secondary, and tertiary halides. Yields are indicated for alkyl iodides 

unless otherwise stated. HP-1 (2 mM in H2O, 10 nmol, 1 equiv), 4CzIPN (1 mM in DMSO, 
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0.5 equiv), alkyl halide (20 mM in DMSO, 20 equiv), (TMS)3SiOH (40 mM in DMSO, 40 

equiv), Na2CO3 (400 mM in H2O, 100 equiv), rt, 5 min, blue Kessil. c) 40 equiv of alkyl-Br 

(40 mM in DMSO) and 40 equiv of (TMS)3SiOH (40 mM in DMSO)
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Figure 3. 
Scope of the olefin-functionalized DNA headpiece. a) alkyl bromide (20 mM in DMSO, 20 

equiv) and (TMS)3SiOH (40 mM in DMSO, 40 equiv). b) 200 equiv of base, starting from 

the piperidine HBr salt. c) BCP-I (30 mM in DMSO, 15 equiv) and (TMS)3SiOH (60 mM in 

DMSO, 30 equiv).
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Figure 4. 
Defluorinative alkylation of CF3-alkene-functionalized DNA headpiece HP-9. a) BCP-I (20 

mM in DMSO, 20 equiv), (TMS)3SiOH (20 mM in DMSO, 20 equiv)
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Figure 5. 
Telescoped reactions with additional chemical feedstocks. DIH = 1,3-diiodo-5,5’-

dimethylhydantoin. The on-DNA reaction was performed on 10 nmol scale of HP-1 (2 

mM in H2O, 1.0 equiv), 4CzIPN (1 mM in DMSO, 0.5 equiv), Na2CO3 (400 mM in H2O, 

100 equiv), rt, 5 min, blue Kessil. a) 25 equiv of alkyl iodide (25 mM in DMSO) and 40 

equiv of (TMS)3SiOH (40 mM in DMSO); b) 20 equiv of alkyl iodide (20 mM in DMSO) 

and 40 equiv of (TMS)3SiOH (40 mM in DMSO); c) 25 equiv of alkyl iodide (25 mM in 

DMSO) and 50 equiv of (TMS)3SiOH (50 mM in DMSO); d) 40 equiv of alkyl iodide (40 

mM in DMSO) and 40 equiv of (TMS)3SiOH (40 mM in DMSO); e) off-DNA: 3 equiv 

of [(PhO)3PMe]I, overnight. On-DNA: 40 equiv of alkyl iodide (40 mM in DMSO) and 40 

equiv of (TMS)3SiOH (40 mM in DMSO).

Yen-Pon et al. Page 15

J Am Chem Soc. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yen-Pon et al. Page 16

Table 1.

Optimization of on-DNA radical coupling.
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Table 2.

DNA damage assessment.
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