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Abstract
Motivation: In time-critical clinical settings, such as precision medicine, genomic data needs to be processed as fast as possible to arrive at
data-informed treatment decisions in a timely fashion. While sequencing throughput has dramatically increased over the past decade,
bioinformatics analysis throughput has not been able to keep up with the pace of computer hardware improvement, and consequently has now
turned into the primary bottleneck. Modern computer hardware today is capable of much higher performance than current genomic informatics
algorithms can typically utilize, therefore presenting opportunities for significant improvement of performance. Accessing the raw sequencing
data from BAM files, e.g. is a necessary and time-consuming step in nearly all sequence analysis tools, however existing programming libraries
for BAM access do not take full advantage of the parallel input/output capabilities of storage devices.

Results: In an effort to stimulate the development of a new generation of faster sequence analysis tools, we developed quickBAM, a software
library to accelerate sequencing data access by exploiting the parallelism in commodity storage hardware currently widely available. We
demonstrate that analysis software ported to quickBAM consistently outperforms their current versions, in some cases finishing an analysis in
under 3min while the original version took 1.5 h, using the same storage solution.

Availability and implementation: Open source and freely available at https://gitlab.com/yiq/quickbam/, we envision that quickBAM will enable
a new generation of high-performance informatics tools, either directly boosting their performance if they are currently data-access bottlenecked,
or allow data-access to keep up with further optimizations in algorithms and compute techniques.

1 Introduction

High-throughput, genome wide next-generation sequencing
(NGS) has revolutionized precision medicine. As an example,
NGS has now been implemented as a routine diagnostic mo-
dality in many pediatric subspecialty clinics for critically ill
children admitted into the neonatal intensive care unit or pe-
diatric intensive care unit (Petrikin et al. 2015, Elliott et al.
2019). And increasingly, genomics-guided precision medicine
is helping advanced cancer patients who have exhausted
standard-of-care options (Schwartzberg et al. 2017). In these
settings, the amount of data analyzed is small compared to
large cohort studies, involving usually one to a few tumor
samples and a paired normal sample from the same patient.
However, fast analysis turnaround is of critical importance.
Furthermore, after the optimal treatment is identified, it still
takes significant time to coordinate treatment access due
to e.g. drug acquisition, compassionate care approval,
clinical trial enrollment, or insurance authorization. It is
therefore significant that the informatics analysis tasks,
which have surpassed sequencing as the primary bottleneck,
are to be as fast as current computer hardware can make
possible.

The BAM file format (Li et al. 2009) is the current de facto
standard for storing sequencing data generated from NGS

experiments. BAM files are the most common starting place
for various downstream analyses. The BAM format is the
compressed, binary version of the SAM format, which we
designed as part of the 1000 Genomes Project (1000
Genomes Project Consortium et al. 2015) to reconcile the
once many different formats of storing sequencing data.
Subsequently, software libraries are created to provide APIs
to access the sequencing reads contained in a BAM file.
HTSLIB (Bonfield et al. 2021) is the file access layer from
Samtools (Li et al. 2009), the software developed to perform
many SAM/BAM file related operations. The main focus of
HTSLIB is to provide high level abstractions so that the pro-
gramming interfaces stay the same regardless of the underly-
ing file format (be it SAM, BAM, or CRAM) or storage and
transport media (local files, HTTP URLs, or cloud storage).
BamTools (Barnett et al. 2011) and SeqLib (Wala and
Beroukhim 2017) focus on modern Cþþ API designs for ease
of programming. While BamTools implements its own BAM
parsing logic, SeqLib integrates HTSLIB as the access layer.
These libraries perform file access in a single-threaded manner
(HTSLIB does support multi-threaded decompression, but not
file reading), which is a reasonable design choice when (i) in-
formatics analysis is compute bottlenecked, and therefore can-
not benefit from faster data access; or (ii) the file storage and
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transport media are incapable of high performance, e.g. when
the files are served over low-bandwidth network attached sto-
rages. However, these tools cannot take advantage of storage
technologies that are capable of much higher levels of file I/O
parallelization and data bus bandwidth.

Specifically, we are concerned with two generally available
storage technologies. On premise, the Lustre distributed file
system is capable of achieving very high aggregated band-
width by striping files onto different computer nodes and
hard drives. And on the cloud such as the commercial
Amazon Web Services (AWS), it is already commonplace to
instantiate nonvolatile memory express solid state drives
(NVMe SSDs) as the primary storage media. These two types
of storage solutions cover the majority of high-performance
computing facilities, and both provide enough parallelism to
support much higher analysis throughput than currently
utilized.

2 Materials and methods

We developed quickBAM (Fig. 1), which uses two strategies
to parallelize BAM file access. First, when the bam file index
(BAI) is available, we utilize the “fixed-bin” indices which
contain the starting file offset of each 16-kb genomic window.
Second, when the BAI is not available (unsorted/unindexed
BAMs or the unmapped region in indexed BAMs), we use a
heuristic scanner (see Supplementary Methods) to directly lo-
cate multiple starting locations for parallel parsing. Since the
majority of sequence analysis tasks (e.g. quality control, vari-
ous types of mutation calling) involve reading BAM files,
quickBAM has the potential to significantly shorten end-to-
end analysis turnaround. quickBAM is freely available at

https://gitlab.com/yiq/quickbam/ with extensive accompanying
documentation available at https://yiq.gitlab.io/quickbam/.

3 Results
3.1 Benchmarking of operating system I/O APIs

Since our work is focused on extracting the maximum I/O
performance, we start with benchmarking various operating
system I/O APIs. While the POSIX synchronous I/O APIs like
fread() have been the long-standing standard, newer APIs
such as libaio and io_uring now exist with promises to deliver
better performance. Using the fio benchmarking utility, we
carried out parallel read bandwidth benchmarking on both a
Lustre distributed system available locally in our facility, as
well as a 4-way NVMe SSD raid0 array available via AWS.
We evaluated four APIs on AWS: POSIX synchronous, mem-
ory map, libaio, and io_uring; while dropping io_uring on
our local Lustre because it is not yet supported by the Linux
kernel deployed at our high-performance compute cluster. As
shown in Fig. 2 (raw data available in Supplementary Table
S1), the POSIX synchronous APIs consistently outperform
other APIs on both Lustre and SSD arrays. Therefore, we
chose to use POSIX synchronous APIs for our work.

3.2 Performance evaluation strategies

In the next two sections, we describe performance improve-
ments with example algorithms reimplemented using
quickBAM. Briefly we describe the benchmarking strategies
here with details available in Supplementary Methods. For
each algorithm, we benchmarked its performance using two
whole genome datasets: Genome In A Bottle (Zook et al.
2016) Illumina 2x250 bam files (HG002 and HG004) with a
nominal coverage of 75X; and a tumor normal pair 60x
Illumina sequencing bam files (Bn2 and Germ1) from a pub-
lished study (Huang et al. 2021). The former dataset is to fa-
cilitate result reproduction since it is openly accessible;
whereas the latter is to provide a more appropriate tumor
context, whose genomes can be highly aberrant. The same
tests are carried out separately on Lustre storage at our local

Figure 1. Parallel processing architecture using quickBAM. quickBAM

utilizes the scatter/gather paradigm to parallelize data access and

computation tasks across many genomic regions before combining the

regional results to produce global results.

Figure 2. Benchmarking results of various operating system IO APIs.

Sequential reads of 4k blocks were carried out using POSIX, memory map

(mmap), and libaio on both NVME SSD available on AWS and a Lustre

distributed file system available to our local compute cluster. We in

addition benchmarked io_uring but only on AWS as it is supported by only

recent Linux kernels not yet available at our local facility.
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cluster and NVMe SSDs on AWS. There are 80 and 96 hyper-
threaded cores on our local and AWS servers respectively.
Therefore, our Lustre benchmarks contain run configurations
of 80, 60, 40, 20, 10, and 1 threads; and NVMe SSD bench-
marks contain 96, 72, 48, 24, 12, and 1 threads. For each
test, an effective throughput is calculated as total input file
size divided by measured total time-till-completion. Each test
is repeated three times to account for uncontrollable
variabilities.

3.3 Proof-of-concept implementation of samtools

flagstats and performance evaluation

The first sample program we ported to quickBAM is the util-
ity in samtools called flagstats. Flagstats iterates over the en-
tire BAM file, updating statistics (e.g. number of reads failed
QC) with the flags field of each read, and finally printing the
statistics when all reads are processed. It is a simple algorithm,
however it serves the purpose of demonstrating performance
gain via parallelization. Using quickBAM, it is possible to
compute separate statistics for each 16-kb window across the
entire genome. This 16-kb window is chosen because it di-
rectly maps to the linear indices in the bam index file. Reads
that overlap window boundaries are partitioned into the ear-
lier window to avoid double counting. Since the data struc-
ture of flagstats consists of only integer counters, the “gather”
stage is a simple summation of these counters from all win-
dows. With a single thread, quickBAM based flagstats and
samtools show similar performances (Fig. 3). However, while
samtools benefits little from more than 10 threads,
quickBAM allows for a much better scaling. Full timing

observations are listed in Supplementary Table S2. The
quickBAM version of flagstats produces identical results com-
pared to the samtools version. Other algorithms that can po-
tentially be implemented in a similar fashion include, but are
not limited to, read counting per fixed genome windows for
CNV detection and transcript abundance counting per gene
in RNAseq data analysis.

3.4 Reimplementation of a real-world, widely used

program and performance evaluation

The second sample program we ported to quickBAM is a util-
ity found in the somatic copy number variant detection algo-
rithm FACETS (Shen and Seshan 2016) called “snp-pileup.”
Snp-pileup takes as input a set of BAM files and a VCF file
[commonly the dbSNP published human common polymor-
phic sites (Sherry et al. 1999)], and iterates over positions in
the VCF file. At each position, it pulls all the reads from the
BAM files overlapping with the position, and extracts the se-
quencing coverage and variant allele fraction information.
Different from the flagstats example which parallelizes over
multiple, nonoverlapping genomic windows, we ported snp-
pileup to parallelize over groups of consecutive variant posi-
tions. As shown in Fig. 4, quickBAM snp-pileup achieved
over 1.5 GiB/s data processing throughput with quickBAM’s
built-in multiple input pileup engine, more than 38 times
faster than the original implementation which does not sup-
port multithreading (HG002 & HG004 on AWS, 1744.51
MiB/s quickBAM versus 46.38 MiB/s stock). Consequently,
using the Genome In A Bottle (Zook et al. 2016) HG002 and
HG004 Illumina 2x250bp BAM files (242 GiB of data

Figure 3. Performance benchmark results of reimplemented flagstats versus stock version. (A) Results using the GIAB HG002 Illumina 2x250 BAM

file with an NVMe SSD array available on AWS. (B) Results using the rapid autopsy Bn2 sample BAM file with an NVMe SSD array available on AWS.

(C) Results using the GIAB HG002 Illumina 2x250 BAM file with a Lustre distributed file system. (D) Results using the rapid autopsy Bn2 sample

BAM file with a Lustre distributed file system.

quickBAM: fast BAM file access API 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad463#supplementary-data


combined), a two samples joint snp-pileup can be finished in
2 min 20 s (quickBAM), compared to 1 h 29 min (original ver-
sion). A similar speedup is observed with the tumor normal
dataset. Full timing observations are listed in Supplementary
Table S3. We note that the quickBAM version of snp-pileup
produces nearly identical results compared to the original ver-
sion, differing at 217 out of 28.6 million positions (GIAB)
and 1879 out of 28.2 million positions (tumor normal). We
discuss this in detail below. Other algorithms that can poten-
tially be implemented in a similar fashion include single cell
sequencing data genotyping and variant calling.

We traced the small differences between the original and
quickBAM snp-pileup to three types of edge cases. The
first, which accounts for 10% of the differences, is due to a
bug in the stock snp-pileup program that would errone-
ously skip over a location when the input VCF file contains
duplicate genomic coordinates, and the first occurrence is
not a bi-allelic SNP site. The second, which accounts for
75% of the differences, is due to the difference between
how the multiple pileup engines in HTSLIB and quickBAM
enforce limits in extremely high coverage regions. HTSLIB
uses a “pileup iterator” to which reads are added until the
limit is reached, and no more reads will be added until one
is removed from the iterator. The pileup engine in
quickBAM, however, tries to use every read to update the
pileup information at each genomic location. The limit
is built into the per-location data structure instead.
This generally results in quickBAM counting more even
coverage. If there is a demand from the community, we will

update the quickBAM multiple pileup engine to behave ex-
actly as HTSLIB in high coverage regions. For the third
type of edge case (15% of the differences), we verified that
quickBAM produced the same results as a third pileup pro-
gram: samtools mpileup. Since the stock snp-pileup uses the
same HTSLIB multiple pileup engine as samtools mpileup
does, the exact reason for these differences cannot be deter-
mined without putting significant debugging efforts into
the original snp-pileup program. We thus conclude that
these differences are unlikely due to mistakes in quickBAM.

4 Discussion

In this manuscript, we present quickBAM, a software library
for accessing sequence alignments in BAM files with a high de-
gree of parallelization and performance. We achieve this by tak-
ing advantage of parallel file access supported by modern
storage hardware. As a demonstration of quickBAM’s utility,
we ported various types of sequence analysis algorithms, which
have shown consistently higher performance than their original
implementations. Performance gain is observed with both com-
mon on-premise storage solutions such as Lustre, and with new
storage hardware such as NVMe SSDs available commonly on
the cloud. Porting algorithms to quickBAM offers significant
analysis time reduction. As demonstrated by the snp-pileup
benchmark results, a tumor-normal pair 60X WGS dataset,
which took 1.5 h to process using the original version, can be
finished in just under 2.5 min with a quickBAM implementation
on the same hardware. While not being the primary focus of

Figure 4. Performance benchmark results of reimplemented snp-pileup versus stock version. Note that the stock implementation of snp-pileup does not

support multi-threading. (A) Results using the GIAB HG002 and HG004 Illumina 2x250 BAM files with an NVMe SSD array available on AWS. (B) Results

using the rapid autopsy Bn2 and Germ1 BAM files with an NVMe SSD array available on AWS. (C) Results using the GIAB HG002 and HG004 Illumina

2x250 BAM file with a Lustre distributed file system. (D) Results using the rapid autopsy Bn2 and Germ1 BAM file with a Lustre distributed file system.
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this manuscript, we further benchmarked quickBAM’s perfor-
mance on slow storage media (Supplementary Table S4). While
quickBAM and samtools can both easily saturate the storage
bandwidth with a moderate number of threads, quickBAM
showed a performance advantage with as few as two threads.

Interestingly, our results show that, while quickBAM allows
much higher performance scalability with respect to increasing
parallelism, the performance eventually starts to decline as the
number of threads approaches the total number of hyper-
threaded cores (with the exception of flagstats on Lustre). This
is likely due to oversubscribing system resources, and resulting
in software and hardware scheduling overhead exceeding the
benefit of increased parallelism. Therefore, it suggests that
“sweet-spots” exist for specific hardware/software combina-
tions, and should be determined with trial runs. We should
point out that our benchmarking results are focused on high-
quality human sequencing data. In other situations, such as
highly fragmented plant genomes or low mean coverage se-
quencing technologies like ChIP-seq, the observed performance
gain may or may not generalize. Special care on how work tasks
are partitioned are likely needed to maximize parallel efficiency.

Our framework encourages “internal parallelism” i.e.
one copy of the analysis program is launched which per-
forms job division and coordinates multi-threading, as op-
posed to “external parallelism” i.e. many copies of the
same analysis programs are launched with each one config-
ured to perform a subset of the total work. There are two
benefits of internal parallelism we recognize. First, it is gen-
erally easier to program the job division/results gathering
processes within the same program space as the actual
work routines. We took advantage of this in snp-pileup to
partition jobs roughly according to the size of data each job
spans using the BAM index. And second, since the number
of jobs created is independent of the number of threads
(with the help of thread pools), it is easier to avoid hard-
ware oversubscription while at the same time benefit from
load balancing via job stealing i.e. an idling thread can take
jobs from a busy thread to maximize hardware utilization.
The trade-off, however, is that internal parallel programs
are great at scaling up, but not at scaling out. In future
work, we plan to incorporate external parallelism mecha-
nisms such as the OpenMPI software library (Gabriel et al.
2004) to make quickBAM even more scalable. Other fea-
tures planned for future updates after our initial release are
CRAM support and remote URL access support.

Our work enables many types of sequence analysis soft-
ware to be accelerated significantly, which in turn benefit time
sensitive clinical/research applications such as precision medi-
cine. Our code is open source and publicly available with ex-
tensive documentation and sample programs. We plan to
actively maintain the project, incorporating further improve-
ments and developing new features according to feedback
from the user community.
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Data availability

GIAB Ashkenazim Trio HG002 and HG004 Illumina
2x250bp novoalign GRCh38 BAM files are available at

• https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/
data/AshkenazimTrio/HG002_NA24385_son/NIST_
Illumina_2x250bps/novoalign_bams/.

• https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/
data/AshkenazimTrio/HG004_NA24143_mother/NIST_
Illumina_2x250bps/novoalign_bams/.

The rapid autopsy tumor normal sample dataset was from
a published study (Huang et al., 2021).

Known polymorphism sites VCF used for the snp-pileup
benchmark experiments are available at

• ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/
VCF/00-common_all.vcf.gz.
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