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Abstract
Summary: In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which,
subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplement-
ing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved
the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed
ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria,
E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive
analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which
add orthogonal checks on predicted drivers.

Availability and implementation: Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application
is additionally hosted at http://bioheat.lichtargelab.org/.

1 Introduction

Escherichia coli and Bacillus subtilis are ideal model organisms
for genotype–phenotype studies due to their unique advantages.
They grow fast and benefit from a vast array of genetic editing
techniques (Swings et al. 2018, Choudhury et al. 2020, Csörg}o
et al. 2020, Zhang et al. 2020) and bioinformatics databases
(Keseler et al. 2021, Szklarczyk et al. 2019, Tierrafr�ıa et al.
2022). Increasingly, studies that seek to pinpoint the driver
genes of phenotypes of interest combine adaptive laboratory
experiments (ALEs) with next-generation sequencing (Tenaillon
et al. 2016, Zeigler and Nicholson 2017, van den Bergh et al.
2018, Bruckbauer et al. 2019, Karve and Wagner 2022).
Typically, these studies rank genes based on their relative muta-
tional frequency in parallel streams of replications. This sole use
of mutational frequency ignores additional information on the
functional impact of coding variants, however, and reduces the
power to detect secondary diver genes.

To improve the identification of driver genes, we recently
developed a new EA integration approach (Marciano et al.
2022), which exploits the Evolutionary Action (EA) score
(Katsonis and Lichtarge 2014) for the likely impact of any
missense mutation in any given protein from past evolution-
ary history. EA scores tend to correlate well with experimen-
tal mutagenesis studies in objective, blinded challenges

evaluated by third parties (Katsonis and Lichtarge 2019) and
to predict the harmful effect of mutations in diverse applica-
tions (Katsonis et al. 2022). In a direct test of its potential for
elucidating ALE-induced phenotypes in E.coli, EA integration
improved phenotype driver gene discovery compared with
frequency-based method, especially so in the clinical/environ-
mental datasets (Marciano et al. 2022).

To broaden access to our method, we developed a user-
friendly R Shiny (Chang et al. 2022) package, ShinyBioHEAT
(Biodetection of High Evolutionary Action Targets), using go-
lem framework (Fay et al. 2022) which allows easy installa-
tion across platforms and running locally. The main feature
for ShinyBioHEAT is to identify phenotype driving genes in
E.coli and B.subtilis from sequencing data by combining EA
scores with frequency statistics (Marciano et al. 2022).
Additional modules are developed to allow sequential analysis
through STRING for the top predicted genes and visualiza-
tion of mutational profiles on protein structures.

2 Features
2.1 Driver gene analysis module

This is the main module of ShinyBioHEAT application
(Fig. 1), which allows the identification of driver genes from
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E.coli and B.subtilis sequencing data using EA integration
and a frequency-based method. It currently supports three ref-
erence genomes: E.coli MG1655 (RefSeq: NC_000913.3),
E.coli REL606 (RefSeq: NC_012967.1), and B.subtilis 168
(RefSeq: NC_000964.3). Sequencing data can be uploaded as
variant call format (VCF), amino acid substitutions, or breseq
GenomeDiff (GD) format (Deatherage and Barrick 2014).
The amino acid substitutions will be determined if VCF for-
mat is used. EA scores are then assigned to each missense mu-
tation, which will be compared with a mutation background
to identify the driver genes. Mutation background can be gen-
erated through randomly simulated mutations in the selected
reference genome or a custom set of mutations.

To account for functional impact of mutations in driver
gene prediction, EA integration was implemented with two
different approaches: EA_KS and EA_sum. They compare the
EA distribution of mutations for each gene in the evolve
strains against the mutation background, and then prioritize
genes that accumulate more impactful mutations during the
adaptation. As an orthogonal control, a frequency-based
method is also implemented, which ranks the genes based on
mutation count and gene length.

To further evaluate the top-ranked genes and narrow down
the genes for experimental validation, an interactive Venn dia-
gram is implemented to allow identification of overlapping
predictions by the three approaches. Genes that are
highly ranked by different methods are more likely driver
genes. In addition, driver genes tend to cluster well in protein–
protein interaction networks. We utilize the STRING API

(Szklarczyk et al. 2019) to allow quick STRING PPI enrich-
ment test on the top or overlapping predictions.

2.2 Quick EA search

The Quick EA search module allows user to identify the EA
scores for missense mutations in the selected reference genome
on-the-fly. EA consistently predicts well the protein muta-
tional impact in objective challenges (Katsonis and Lichtarge
2019), which makes it a useful resource.

2.3 Structure viewer

Visualizing mutations on the protein structure provides valu-
able insights on the molecular mechanism of protein function
and can guide mutagenesis studies. The recent advances in
protein structure predictions give access to high-quality pro-
tein structures for nearly all E.coli and B.subtilis proteins
(Jumper et al. 2021). The structure viewer displays the
AlphaFold protein structures using r3dmol library (Rego and
Koes 2015, Su and Johnston 2022) with four different color-
ing schemes: Evolutionary Trace (ET), pLDDT, sumEA, and
number of unique mutations. ET estimates the importance of
a residue position in a protein by examining its evolutionary
history (Lichtarge et al. 1996). Clustering of important ET
residues is a hallmark for protein functional site (Wilkins
et al. 2013; Wang et al. 2021). PLDDT is the structure predic-
tion accuracy score from AlphaFold. SumEA and number of
unique mutations project the evolutionary burden in the
evolved strains. A Pymol session file with the same coloring
scheme is also generated to allow closer examination on
Pymol (Schrödinger LLC 2015).

Figure 1. Graphical overview of the functional modules in ShinyBioHEAT. Data flow is indicated with black arrows.
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An example study case using ShinyBioHEAT is provided in
the Supplementary Data.

3 Conclusion

ShinyBioHEAT is a user-friendly Shiny interface to identify phe-
notype driver genes in adapted E.coli with minimal coding expe-
rience. It also provides downstream analyses through STRING
database and color mapping to AlphaFold protein structures. It
is freely distributed as an R package under the MIT license at
https://github.com/LichtargeLab/ShinyBioHEAT.

Supplementary data

Supplementary data are available at Bioinformatics online.
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