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Abstract
Lung cancer is one of the most common and deadly types of cancer worldwide, and the epidermal growth factor receptor 
(EGFR) has emerged as a promising therapeutic target for the treatment of this disease. In this study, we designed a library 
of 1840 benzofuran-1,2,3-triazole hybrids and conducted pharmacophore-based screening to identify potential EGFR inhibi-
tors. The 20 identified compounds were further evaluated using molecular docking and molecular dynamics simulations to 
understand their binding interactions with the EGFR receptor. In-silico ADME and toxicity studies were also performed 
to assess their drug-likeness and safety profiles. The results of this study showed the benzofuran-1,2,3-triazole hybrids 
BENZ-0454, BENZ-0143, BENZ-1292, BENZ-0335, BENZ-0332, and BENZ-1070 dock score of − 10.2, − 10, − 9.9, − 9.8, 
− 9.7, − 9.6, while reference molecule − 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and 
molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of the 
receptor, indicating their potential as inhibitors. The in-silico ADME and toxicity studies suggested that the compounds had 
good pharmacokinetic and safety profiles, further supporting their potential as therapeutic agents. Finally, performed DFT 
studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide 
important insights into the potential of benzofuran-1,2,3-triazole hybrids as promising EGFR inhibitors for the treatment 
of lung cancer. Overall, this study provides a valuable starting point for the development of novel EGFR inhibitors with 
improved efficacy and safety profiles.
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Introduction

According to the World Health Organization (WHO), lung 
cancer is the most common cancer globally, with an esti-
mated 2.2 million new cases in 2023 (Sharma et al. 2022). 
It is also the leading cause of cancer deaths, accounting 
for about 18% of all cancer deaths, or 1.76 million deaths 
(Thandra et al. 2021). The majority of lung cancer cases are 
caused by tobacco smoking, but exposure to other risk fac-
tors such as air pollution, radon, and occupational exposure 
to carcinogens can also increase the risk of developing lung 
cancer (Hofman et al. 2022). Lung cancer is more common 
in men than women, and the incidence rates vary widely 
across different regions of the world (Vaccarella et al. 2022). 
The highest incidence rates are found in North America, 
Europe, and Australia, while the lowest rates are found in 
Africa and Asia (Sharma 2022). WHO emphasizes that lung 
cancer can be prevented by reducing exposure to risk factors, 
such as tobacco smoking, and by increasing access to early 
detection and diagnosis, as well as to effective treatment 
(Kerpel-Fronius et al. 2022). It also highlights that lung can-
cer is a complex disease and there are multiple subtypes of 
lung cancer, with different genetic profiles and mutations, 
therefore the effectiveness of a drug may vary from one 
subtype to another (Rodriguez-Canales et al. 2016). Over-
activation of the epidermal growth factor receptor (EGFR) 
is a common genetic mutation in lung cancer, particularly 
in non-small cell lung cancer (NSCLC) (Sahoo et al. 2011). 
EGFR is a protein that is found on the surface of cells, and 
it plays a critical role in cell growth and division (Yarden 
2001). When mutations occur in the EGFR gene, they can 
lead to the overproduction of the EGFR protein, which can 
cause cells to divide and grow uncontrollably, leading to the 
development of cancer (Sigismund et al. 2018). EGFR muta-
tions are found in about 10–15% of cases of NSCLC (Kumar 
et al. 2023), and are more common in non-smokers and in 
patients of Asian descent (Boch et al. 2013). These muta-
tions are typically found in exons 18–21 of the EGFR gene, 
and they can lead to the overactivation of the receptor (van 
Assche et al. 2014). Overactivation of the EGFR receptor 
can be targeted by specific therapies called EGFR tyrosine 
kinase inhibitors (EGFR-TKIs), which block the activity of 
the receptor and slow or stop the growth of cancer cells 
(Zhong et al. 2022). Examples of these drugs are gefitinib, 
erlotinib, afatinib, and osimertinib. These drugs have been 
approved by the FDA for the treatment of advanced NSCLC 
with specific EGFR mutations (Kumar et al. 2021), and they 
have been shown to improve outcomes in patients with these 
mutations (Cheng et al. 2022).

Benzofuran-1,2,3-triazole hybrids have been investi-
gated as potential agents for the treatment of lung can-
cer, as they have been found to have anticancer properties 

(Gariganti et al. 2023). For example, some studies have 
shown that certain benzofuran-1,2,3-triazoles have the 
ability to inhibit the growth of lung cancer cells and 
induce apoptosis in lung cancer cells (Liang et al. 2021). 
One study showed that a specific benzofuran-1,2,3-triazole 
hybrid compound was able to inhibit the growth of non-
small cell lung cancer cells, and another study found that 
the same compound had an inhibitory effect on lung can-
cer stem cells (Othman et al. 2022). Several studies have 
shown that these compounds have activity against various 
protein kinases, which play an important role in cell pro-
liferation and survival (Sharma et al. 2022), indicating that 
these compounds may have potential as targeted therapy 
for lung cancer (Ihn et al. 2015). Benzofurans have been 
investigated as potential anticancer agents (Napiórkowska 
et al. 2019), but it's important to note that, there are cur-
rently no benzofuran compounds in clinical trials for can-
cer treatment (Qi et al. 2020).

In this study, we designed benzofuran-based 1,2,3-tria-
zole hybrids and pharmacophore modeling, molecular dock-
ing, molecular dynamics (MD) simulation, In-silico ADME, 
and toxicity studies are performed to understand and to 
interpret the binding interactions mechanism between the 
benzofuran-1,2,3-triazole hybrids and the crystallographic 
EGFR receptor. Overall, this study revealed the presence of 
potential EGFR inhibitors that possess favorable pharma-
cokinetic properties. It is anticipated that these results will 
contribute to the development of more potent and effective 
drugs to address the issue of lung cancer in humans.

Materials and methods

Library designing of benzofuran‑1,2,3‑triazole 
compounds

Benzofuran-1,2,3-triazole hybrids are a class of compounds 
that contain both a benzofuran and a 1,2,3-triazole moiety 
in the same molecule. These compounds have a wide range 
of potential applications, including their use as drugs and 
as materials in electronics and optoelectronics. They may 
also be used in organic synthesis as building blocks for the 
construction of more complex molecules. However, more 
research is needed to fully understand their properties and 
potential uses. Benzofurans are a class of compounds that 
have been investigated for their potential as anticancer 
agents. Some studies have shown that certain benzofurans 
can inhibit the growth of cancer cells, while others have 
suggested that they may have the ability to induce apopto-
sis (programmed cell death) in cancer cells. In this study, 
we developed a library of 1840 benzofuran-1,2,3-triazole 
hybrids by introducing various aliphatic and aromatic substi-
tutions at the 10th position of the benzofuran-1,2,3-triazole 
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hybrids using ChemDraw software. The substituents were 
chosen based on their suitability for chemical reactions and 
can be found in (Supporting Table S1) of the supporting 
data. The designed hybrids were found to have exceptional 
synthetic accessibility scores and were successfully syn-
thesized. Our primary objective was to create novel and 
effective anticancer agents that target EGFR in lung cancer. 
To assess the potential of the designed hybrids as antican-
cer agents, they underwent testing and evaluation by using 
in-silico experiments. The findings of this study have the 
potential to contribute to the development of more potent 
and drug-like molecules to combat human lung cancer. The 
strategy presented in (Fig. 1) for identifying EGFR inhibitors 
was effective overall.

Pharmacophore modelling and validation

A computational method entitled pharmacophore modeling 
is used in drug discovery to determine essential chemical 
characteristics or properties needed for a ligand to interact 
with a receptor (Hu et al. 2019). A crucial phase in phar-
macophore modeling is pharmacophore query creation, and 
for this VLifeMDS (Molecular Design Suite) software was 
employed (VLife Sciences 2023). A group of 10 structur-
ally diverse ligands in their bioactive conformation was sub-
jected to docking and gain multiple conformations of each 
ligand. This step ensures ligand flexibility. A minimum of 
three pharmacophoric features were requested. Erlotinib was 

employed as a reference compound and all 10 compounds 
with 10 conformations (a total of 100) were utilized for 
alignment purposes that aid to find common features which 
contribute to ligand binding with a receptor. The MolSign 
module in VLifeMDS provides tools for aligning small mol-
ecules based on their 3D pharmacophoric features. 30 Å 
tolerance limit was allowed when comparing two features 
across two molecules while 10 Å maximum distance was 
allowed between the two features (Panigrahi et al. 2020). 
The pharmacophore model was generated on the basis of 3 
essential features (HAc:0 HAc:1 HDr:2) identified during 
alignment and further used for virtual screening of prepared 
database of benzofuran-1,2,3-triazole compounds to identify 
novel hits with improved binding affinity. The structures of 
FDA-approved compounds having benzofuran nucleus are 
given in (Supporting Figure S1). Pharmacophore common 
feature identifications in FDA-approved compounds are 
given in (Supporting Table S2). The pharmacophore model 
was validated via AUC curve (area under curve) and Enrich-
ment Factor (EF) before screening to check the model’s abil-
ity to predict active or inactive compounds from a dataset 
of both. For this download the decoy dataset from DUD 
(https:// dud. docki ng. org/), a directory of useful decoys and 
active compounds from DrugBank using smiles of nucleus 
molecule of BENZ and generate a graph depicting AUC 
value and find EF for the top 1% and 20%. The resultant val-
ues are between 0 and 1. Values above 0.80 are considered 
significant as it depicts that the predicted pharmacophore 

Fig. 1  Scheme for Pharmacophore modeling and molecular docking-
based virtual screening of benzofuran-1,2,3-triazole hybrids as poten-
tial inhibitors targeting EGFR in lung cancer

Fig. 2  Pharmacophore validation via ROC curve where values range 
from 0 to 1 and higher values close to 1 considered good. Here blue 
line represented 1 AUC value while black horizontal line depicts 0.5 
value which signifies random classification

https://dud.docking.org/
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model is good enough to further use for virtual screening of 
a prepared library of BENZ derivatives as shown in (Fig. 2).

Molecular docking

Molecular docking is a computational method used in drug 
discovery to predict the binding of small molecules to a tar-
get protein (Stanzione et al. 2021). It is used to predict the 
binding mode, binding energy, and other thermodynamic 
and kinetic parameters of the interaction between a small 
molecule and a protein (Kontoyianni 2017). Molecular dock-
ing can be used in different stages of the drug discovery 
process, including Lead identification (Molecular docking 
can be used to identify new small molecules that have a 
high likelihood of binding to a specific target protein). Lead 
optimization (Molecular docking can be used to optimize the 
binding of a lead compound to a target protein by predicting 
the effects of small changes to the chemical structure of the 
compound on its binding properties) (Li et al. 2021). Virtual 
screening (Molecular docking can be used to screen large 
libraries of compounds to identify those that have the high-
est likelihood of binding to a specific target protein). Drug 
repurposing (Molecular docking can be used to identify new 
potential indications for existing drugs by predicting their 
binding to other target proteins) (Upadhyay et al. 2019). 
Molecular docking is a powerful computational tool that can 
be used to identify new drug candidates and to optimize the 
binding of existing drug candidates to target proteins (Pinzi 
and Rastelli 2019). To find the binding interactions of all the 
benzofuran-1,2,3-triazole hybrids in the active site of EGFR 
crystallographic receptor as anticancer target having (https:// 
www. rcsb. org/ struc ture/ 4HJO) (PDB ID: 4HJO) (Park 
et al. 2012). (Supporting Table S3) contains information 
on mutations, resolution, missing regions, and active state, 
before conducting molecular docking, the retrieved crystal 
structure was pre-processed to remove water and ions, and 
nonpolar hydrogens were combined. Then, the protein was 
processed for minimization and optimization through Auto-
Dock Tool version 1.5.7 (https:// autod ocksu ite. scrip ps. edu/ 
adt) (Cosconati et al. 2010), bundled with the MGLTools 
package (https:// ccsb. scrip ps. edu/ mglto ols) version 1.5.6 to 
add charges, and polar hydrogen atoms (Morris et al. 2009). 
Benzofuran-1,2,3-triazole hybrids were prepared in PyRx 
in which energy of all the ligands were minimised and con-
verted to.pdbqt format (O’Boyle et al. 2011) The molecular 
docking was performed using PyRx virtual screening tool 
free version (https:// sourc eforge. net/ proje cts/ pyrx) (Dal-
lakyan and Olson 2015). After completing the molecular 
docking, the resulting docking scores were saved in a.CSV 
file, indicating the affinity binding (Kcal/mol) of the out-
put. The next step involved using PyMOL (version 2.5.4) 
to analyze the most favorable poses and their interactions 
(http:// www. pymol. org) (Chaudhari and Li 2015). Utilizing 

default docking algorithms, we set up grids with coordinates 
[X = 25.05, Y = 19.53, Z = 6.61] for (PDB ID: 4HJO) within 
the active site pocket. The grids' standard size enabled effec-
tive analysis. Among the benzofuran-1,2,3-triazole hybrids, 
those with the lowest binding energies displayed the most 
favorable interactions.

ADME and drug likeliness analysis

ADME (Absorption, Distribution, Metabolism, and Excre-
tion) in-silico analysis is a computational method for pre-
dicting the pharmacokinetic properties of a drug candidate 
(Paul Gleeson et al. 2011). This includes how well the drug 
is absorbed into the bloodstream, how it is distributed to dif-
ferent parts of the body, how it is metabolized by enzymes in 
the liver, and how it is excreted from the body (Wang et al. 
2015). In-silico analysis is a cost-effective and efficient way 
to predict ADME properties and can help identify potential 
issues early in the drug development process before costly 
animal and human studies are conducted (Honorio et al.). 
A drug-likeness analysis is a computational method used in 
pharmaceutical research to predict the potential of a com-
pound to be developed as a drug (Danielson et al. 2017). 
This analysis is based on the assessment of various chemical 
and physical properties of a compound, such as molecu-
lar weight, lipophilicity, and polar surface area, which are 
known to influence the pharmacokinetics, pharmacodynam-
ics, and safety of a drug (Tian et al. 2015). Drug-likeness 
analysis can help identify compounds that are more likely 
to have favorable pharmacological properties and to be 
drug candidates (Jia et al. 2020). It can be done in-silico by 
using various software and databases that are available to 
predict these properties based on the chemical structure of 
the compound (Kurter et al. 2022). The virtually screened 
benzofuran-1,2,3-triazole hybrids acquired with the use of 
dock scores were then submitted to ADME analysis. Swis-
sADME (http:// www. swiss adme. ch) (Daina et al. 2017) and 
ADMET 2.0 online servers (https:// admet mesh. scbdd. com) 
tools accessed on 10 November 2022 (Xiong et al. 2021) 
were used to estimate drug-likeness and ADME features of 
benzofuran-1,2,3-triazole hybrids (Terstappen and Reggiani 
2001).

Toxicity‐based screening

In-silico toxicity-based screening is a computational method 
for predicting the potential toxicity of a compound before it 
is tested in-vitro or in-vivo (Valerio 2009). It utilizes various 
computational tools, such as molecular docking, molecu-
lar dynamics simulations, and quantitative structure–activ-
ity relationship (QSAR) models, to predict the interactions 
between a compound and a target protein and to estimate the 
toxicity of the compound (Raies and Bajic 2016). In-silico 

https://www.rcsb.org/structure/4HJO
https://www.rcsb.org/structure/4HJO
https://autodocksuite.scripps.edu/adt
https://autodocksuite.scripps.edu/adt
https://ccsb.scripps.edu/mgltools
https://sourceforge.net/projects/pyrx
http://www.pymol.org
http://www.swissadme.ch
https://admetmesh.scbdd.com
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toxicity-based screening can provide a quick and cost-effec-
tive way to identify compounds that may have safety issues 
before they are tested in animal or human studies (Dearden 
2003). This can save time and resources in the drug dis-
covery process by reducing the number of compounds that 
need to be tested in-vivo (Daoud et al. 2021). Additionally, 
in-silico toxicity-based screening can also be used to iden-
tify potential side effects of a compound early on and to 
design safer compounds by predicting the toxicity of the 
compounds. This can help to increase the chances of suc-
cessfully bringing a new drug to market by identifying com-
pounds that are more likely to be safe and effective.

The assessment of benzofuran-1,2,3-triazole hybrids' 
effects and efficacy holds significant relevance in drug 
research and development. Understanding these aspects is 
critical as drug-induced toxicities in key organs, including 
the kidneys, brain, liver, and heart, account for about 75% 
of current drug retention and discontinuation cases (Cooper 
2016). After conducting the ADME and drug likeliness 
analysis, specific benzofuran-1,2,3-triazole hybrids were 
chosen for toxicity prediction using in-silico tools. To assess 
toxicity, the OSIRIS property explorer was employed (http:// 
www. organ ic- chemi stry. org/ prog/ peo) tools accessed on 14 
November 2022 (Sander et al. 2009) and ADMET 2.0 online 
servers (https:// admet mesh. scbdd. com) tools accessed on 16 
November 2022 (Xiong et al. 2021), were used to predict the 
toxicity features of the benzofuran-1,2,3-triazole hybrids.

Density functional theory

Density Functional Theory (DFT) and similar methodolo-
gies are used to more precisely characterize a system's quan-
tum mechanical properties. As a result, first-principles cal-
culations have matured to the point that they can forecast a 
material's various properties with high accuracy and closely 
resemble experimental results. This theory also accurately 
predicts the nature of the interaction between molecular 
atomic orbitals. In conformity with experimental results, 
DFT theory accurately predicted reactivity and reaction 
process. M. Darvish Ganji and colleagues investigated drug 
release using carbon nanotubes (CNTs) and the DFT theory 
(Darvish Ganji et al. 2017). Using calculations based on fun-
damental principles, the investigation of many various phar-
maceutical administration techniques might be accelerated 
and made more cost-effective. The advantages of the exper-
iments make this a viable option. Scientists can optimize 
and relax their structures into the global minimum energy 
utilizing first-principles calculations and a wide range of 
known quantum mechanical theories, such as DFT, and their 
accompanying exchange–correlation functional basis sets. 
Scientists can now achieve this thanks to first-principles cal-
culations, which is a big step forward. Scientists can learn 
more about the longevity of structures and whether they can 

be found in nature or synthesized intentionally by investi-
gating the imaginary frequencies of the infrared spectrum. 
This information should be available to the investigators. If 
a structure is discovered by theoretical calculations, there is 
an extremely slim possibility that it will ever be discovered 
in nature because naturally existent materials cannot have 
imaginary frequencies.

Computational methodology (CM)

Density functional theory (DFT) was used to determine the 
electronic properties of molecules. The basis set 6-311G (d, 
p) was used with the hybrid correlation functional Becke's 
three-parameter Lee–Yang–Parr (B3LYP) (Gill et al. 1992). 
All computations were carried out using the quantum soft-
ware Gaussian 16, Revision A. 03 (Frisch et al. 2016), simu-
lation package on a high-performance computing cluster, 
and the results were shown using the GaussView 6.0 tool. 
We optimized the geometry of the molecules in order to 
find the lowest possible energy level and to get actual local 
minima at the same theoretical level. We used geometry 
optimization and frequency calculations to check for imagi-
nary frequencies in our compounds, and when we didn't 
find any, it demonstrated that our compounds could be used 
and made in synthetic labs as well. We computed molecular 
electrostatic potential maps (MESPs), frontier molecular 
orbitals (FMOs), and density of state (DOS) at the same 
B3LYP/6-311G** theoretical level. All investigated com-
pound’s chemical structures and ground state geometry opti-
mization are represented in (Fig. 3).

Molecular dynamics simulation

Molecular dynamics (MD) simulation is a computational 
method used in drug discovery to study the dynamics of 
biomolecular systems, such as proteins and small molecules. 
MD simulation involves the use of mathematical models to 
simulate the interactions between the atoms in a biomolecu-
lar system over time. This allows researchers to study the 
behaviour of the system under different conditions, such as 
in the presence of different ligands or under different temper-
atures or pressure. MD simulations can be used to study the 
interactions between different proteins in a complex, which 
can provide insights into how drugs can modulate these 
interactions. The lead compound in contact with the receptor 
and STD complex were carried out for 200 ns MD simula-
tion via Desmond software to analyze in the physiological 
conditions (Shaw Research 2023). Minimize energy of both 
systems (BENZ-0454 and STD complex), solvated by TIP3P 
water model in the orthorhombic box (10 Å × 10 Å × 10 Å) 
(Pandi et al. 2022) while the system was set up by system 
builder tool and neutralized by adding 0.15 M NaCl con-
centration. During MD simulation, the temperature of both 

http://www.organic-chemistry.org/prog/peo
http://www.organic-chemistry.org/prog/peo
https://admetmesh.scbdd.com
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complexes gradually increased from 200 to 250 K and then 
300 K with 1 atm pressure in order to stabilize the system. 
The interaction between protein and ligand was examined 
via the simulation interaction diagram tool (Rasheed et al. 
2021). The MD simulation was successfully conducted using 
an Intel Core i9-12900KF processor, 128 GB of RAM, and 
MSI GeForce RTX 3080 Ti GPU on a custom liquid-cooling 
desktop running Ubuntu 22.04.1 LTS.

MMGBSA analysis

MMGBSA (Molecular Mechanics Generalized Born Sur-
face Area) is a computational method that is used to esti-
mate the binding free energy between a small molecule, 
such as a drug, and a target protein that allows the calcu-
lation of the relative stability of different protein–ligand 
complexes and differentiate binders and non-binders 
(Genheden and Ryde 2015). The energy of the system is 
calculated using molecular mechanics force fields, and 
the interactions between the protein and the ligand are 
taken into account. MMGBSA analysis was executed for 
both BENZ-0454 and STD compounds fit in target protein 
EGFR (PDB ID: 4HJO) by Prime Schrodinger which cal-
culates the energy of optimized free receptors, free ligand, 
and a complex of the ligand fit protein (Jacobson et al. 
2004). The total of the gas-phase energy, solvation-free 
energy, and entropic contributions was computed using 

the MMGB/SA method to get the absolute binding free 
energies of both complexes. By breaking down the total 
binding free energy into its constituent parts including 
coulomb, covalent, lipophilic, H-bond, selfcount (Self 
contact correction), packing (pi-pi packing), Solv GB 
(Generalized Born electrostatic solvation energy), and van 
der Waals. This helps us to understand the complicated 
binding process more thoroughly (Zhang et  al. 2017). 
ΔGbind (binding free energy) of protein–ligand complex 
determined using Eq. (1).

According to this equation, the total binding free energy 
of the complex is ΔGbind. While ΔEvdw, ΔEele, ΔEGB, 
ΔESA, and TΔS represent van der Waals, Coulombic 
energy, generalized born electrostatic solvation free energy 
(polar energy), nonpolar (solvent accessible surface area), 
and conformational entropy respectively.

MMGBSA analysis provides information about the 
binding free energy, which is the difference in energy 
between the bound and unbound states, and the contri-
butions of the different energy components to the over-
all binding free energy. This information can be used to 
identify the key interactions between the protein and the 
ligand and to predict the binding affinity of the ligand to 
the protein.

(1)ΔG
bind

= ΔE
vdw

+ ΔE
ele

+ ΔE
GB

+ ΔE
SA
−TΔS

Fig. 3  Showing ChemDraw chemical structures and ground state geometry optimization at DFT/B3LP/6-311G** level of theory of best six 
benzofuran-1,2,3-triazole hybrids
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Results and discussion

Pharmacophore screening

A comprehensive distance-based pharmacophore model 
was generated via VLifeMDS using a training dataset of 
bioactive compounds known as EGFR tyrosine kinase 
inhibitors. MolSign module uses a robust VLifeEngine 
algorithm to select 3D pharmacophoric features on the 
basis of several flexible alignments of these training data-
set compounds and detect outliers. The selected query 

contains 3 features (2 hydrogen bond acceptors (Hac) and 
01 donor (HDr) shown in blue and green colors respec-
tively) necessary to inhibit the target protein as shown 
in (Fig. 4) while the distance between all three features 
was 6.179 (Hac1–HDr3), 2.410 (Hac1–Hac2) and 5.041 Å 
(Hac2–HDr3) given in (Table 1). Pharmacophore validated 
and display excellent results. AUC value of 1 shows that 
the predicted model is able to select active compounds 
instead inactive and can be further used for screening. 
Figure 2 shows an AUC graph where the blue line shows 
the pharmacophore model’s efficiency. EF for top 1% is 27 
and for top 20% is 4.5 indicating that pharmacophore is 

Fig. 4  (A) Pharmacophore 
modelling hypothesis of FDA 
approved compounds which 
have EGFR kinase inhibitory 
activity along selected features 
(shown in sphere) and distances. 
(B) 20 Hit compounds with 
distance-based Pharmacophore 
features in the benzofuran-1,2,3-
triazole hybrids
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able to immediately selects most of the active compounds 
from a dataset o both active and inactive. Therefore, the 
predicted pharmacophore query was further used to screen 
the library of 1841 Benzofuran-1,2,3-triazole deriva-
tives. Resultantly, 20 hits were obtained that would be 
further used for molecular docking to predict novel lead 
compounds. (Fig. 4B) depicts 20 hit compounds after 
screening with their labeled pharmacophoric features and 
distance. The pharmacophore-based screening results 
of benzofuran-1,2,3-triazole are given in (Supporting 
Table S3). 

Docking based virtual screening

A molecular docking process was performed for the 
designed benzofuran-1,2,3-triazole hybrids to investigate 
and compare the binding energies and interactions with the 
selected EGFR target protein. EGFR consists of a conserved 
catalytic kinase domain consisting of a smaller N-lobe (com-
prising 5 beta strands and conserved alpha helix) and a larger 
C-loob (comprising 5 alpha helices) (Kumar et al. 2008) 
(Martin-Fernandez et al. 2019). The affinity scores of the top 

six benzofuran-1,2,3-triazole hybrids BENZ-0454, BENZ-
0143, BENZ-1292, BENZ-0335, BENZ-0332, and BENZ-
1070 for (PDB ID: 4HJO) was observed as − 10.2, − 10, 
− 9.9, − 9.8, − 9.7, − 9.6, while for reference molecule affin-
ity score − 7.9 kcal/mol respectively. Ligand efficiency (LE) 
for BENZ-0454, BENZ-0143, BENZ-1292, BENZ-0335, 
BENZ-0332, BENZ-1070, and reference ligand (erlotinib) 
was found to be, 0.635, 0.622, 0.645, 0.61, 0.604, 0.626, 
and 0.373 respectively. Ligand Lipophilic Efficiency (LLE) 
ranged between 5 to 8.7 while Ligand Efficiency Lipophilic 
Price (LELP) are in between 1.6 and 8.0. BENZ-0454 dem-
onstrated the lowest binding affinity as compared to other 
benzofuran-1,2,3-triazole hybrids. The docking poses of 
the BENZ-0454 with the selected target (PDB ID: 4HJO) 
were analyzed with 2D interactions as shown in (Fig. 5). The 
residues Thr766 and Asp831 were observed to be forming 
hydrogen bonds with BENZ-0454. It was observed that the 
residues Asp831 and Thr766 were forming hydrogen bonds 
with BENZ-0143. BENZ-1292 was observed to exhibit 
hydrogen bonding with residues Asp831 and Thr766. The 
presence of hydrogen bonds between BENZ-0335 and resi-
dues Asp831, and Thr766 was detected. It was observed 
that BENZ-0332 was forming hydrogen bonds with residue 
Asp831. The residues Asp831 and Arg817 were observed to 
be forming hydrogen bonds with BENZ-1070. The hydrogen 
bonding between the reference ligand and residues Asp831, 
Cys773, and Met769 of the EGFR-TKD receptor (PDB ID: 
4HJO) was observed with a binding energy of − 7.9 kcal/
mol. The hydrogen bonding interaction plays a critical role 
in improving the interaction with the active sites of the 
receptor. In the reference molecule, only three hydrogen 

Table 1  Benzofuran-1,2,3-triazole hybrid’s pharmacophoric features 
along their distances in angstrom

Sr.no Pharmacophore features Distance (Å)

1 Hac1–HDr3 6.179
2 Hac1–Hac2 2.410
3 Hac2–HDr3 5.041

Fig. 5  (A) Surface mapping 
of benzofuran-1,2,3-triazole 
hybrid BENZ-0454 blue color 
in the receptor cavity of EGFR 
(PDB ID:4HJO) (B) Showing 
2D interaction view of ben-
zofuran-1,2,3-triazole hybrid 
BENZ-0454 with the EGFR 
receptor (PDB ID:4HJO). (C) 
Representing superimposed 
view of reference ligand in red 
color and benzofuran-1,2,3-
triazole hybrids BENZI-0660 
blue color in the receptor cavity 
of EGFR (D) Benzofuran-1,2,3-
triazole hybrid BENZ-0454 in 
the blue color showing polar 
contacts with the residues of 
EGFR (PDB ID:4HJO)
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bonding interactions are formed with the residues Asp831, 
Cys773, and Met769. In the designed ligand BENZ-0454 
there are two hydrogen bonding interactions found with the 
following residues like Thr766, and Asp831. To check the 
target selectivity of the best hit compound (BENZ-0454), 
docked with inactive state of EGFR (PDB ID: 3W32, 5Y9T) 
and results depict that the hit compound didn’t make interac-
tion with active site residues as claimed with active EGFR 
binding. Figure 6 depicts the correlation between binding 
affinity and ligand efficiency. Ligand interaction with resi-
dues Thr766 is found to be new when it is compared with 
the reference molecule interactions as shown in Table 2. The 
docking results of all the screened ligands can be seen in the 
supporting (Supporting Table S4).  

ADME analysis initial of the hit compounds

After conducting docking-based virtual screening, the 
ligands BENZ-0454, BENZ-0143, BENZ-1292, BENZ-
0335, BENZ-0332, and BENZ-1070 were shortlisted 
for ADME analysis. The selection criteria were their top 
dock scores with the EGFR-TKD receptor, a crucial anti-
cancer target (PDB ID: 4HJO). The molecular structure of 
BENZ-0454 includes three rotatable bonds, five H-bond 
acceptors, and one H-bond donor. Moreover, it scored a 
synthetic accessibility value of 3.18 and a bioavailability 
score of 0.55. Interestingly, the ligand demonstrated high 

GI absorption while showing no permeation through the 
blood–brain barrier (BBB). In the case of BENZ-0143, there 
are three rotatable bonds, along with six H-bond acceptors 
and one H-bond donor. The ligand's synthetic accessibil-
ity score is 3.14, and it has a bioavailability score of 0.55. 
Remarkably, BENZ-0143 displays high GI absorption and 
does not permeate the BBB. The analysis of BENZ-1292 
reveals the presence of three rotatable bonds, six H-bond 
acceptors, and one H-bond donor. Furthermore, the ligand's 
synthetic accessibility score is 3.16, and it has a bioavailabil-
ity score of 0.55. Interestingly, BENZ-1292 demonstrates 
high GI absorption and does not permeate the BBB. In the 
case of BENZ-0335, there are three rotatable bonds, along 
with five H-bond acceptors and two H-bond donors. The 
ligand's synthetic accessibility score is 3.15, and it has a 
bioavailability score of 0.55. Remarkably, BENZ-0335 dis-
plays high GI absorption and does not permeate the BBB. 
BENZ-0332 was found to have three rotatable bonds, five 
H-bond acceptors, and two H-bond donors in its structure. 
The ligand's synthetic accessibility score is 3.26, and it has 
a bioavailability score of 0.55. Notably, it demonstrates 
high GI absorption and does not permeate the BBB. BENZ-
1070 exhibits three rotatable bonds, six H-bond acceptors, 
and one H-bond donor. It received a synthetic accessibility 
score of 3.1 and a bioavailability score of 0.55. Notably, 
the ligand demonstrates high GI absorption while showing 
no permeation through the BBB. The reference ligand was 

Fig. 6  (A) Showing comparison of Binding affinity and Ligand effi-
ciency (LE) of best six benzofuran-1,2,3-triazole hybrids with the 
reference ligand on the basis of docking score with the EGFR (PDB 

ID: 4HJO) (B) Representing correlation between Binding affinity and 
Ligand efficiency (LE) of best hit benzofuran-1,2,3-triazole hybrid 
BENZ-0454
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Table 2  Molecular docking analysis of the best six benzofuran-1,2,3-triazole hybrids with epidermal growth factor receptor tyrosine kinase 
domain (PDB ID: 4HJO)

Ligand Designed 
ligand

ΔG 
(kcal/mol)

Ligand 
efficiency 

(LE) 
(kcal/mol)

Ligand 
Lipophilic 
Efficiency 

(LLE)

Ligand 
Efficiency 

Lipophilic Price 
(LELP)

H-Bond 
interaction 

residues (Distance 
in Å and angle in 

degree)

Vander Waal’s
interacting 

residues

Pi-Alkyl/Pi-Pi 
interacting residues

(Å)

BENZ-0454
-10.2 0.635 7.3 4.5

Thr 766 (2.4) 

(111.5°), Asp 831

(2.3) (103.3°)

Met 769, Leu 

768, Gly 772, 

Thr 830, Leu 

834, Phe 832, 

Cys 751

Met 742 (4.8), Leu 

753 (4.7), Leu 764

(5.4), Lys 721 (5.1),

Leu 820 (5.2), Ala 

719 (4.3), Val 702

(4.9)

BENZ-0143

-10 0.622 7.08 4.6

Asp 831 (2.2) 

(103.4°), Thr 766

(2.5) (108.8°)

Thr 830, Leu 

834, Cys 751, 

Phe 832, Leu 

764, Met 769, 

Gly 772, Cys 

773

Leu 694 (5.1), Leu 

820 (3.7, 5.3), Val 

702 (4.6, 4.8), Ala 

719 (4.4, 4.8), Lys 

721 (5.2), Met 742

(4.7), Leu 753 (4.7)

BENZ-1292
-9.9 0.645 7.5 3.6

Asp 831 (2.1) 

(73.2°), Thr 766

(2.5) (113.8°)

Cys 773, Leu 

694, Gly 772, 

Leu 768, Met 

769, Thr 830, 

Cys 751, Phe 

832

Met 742 (4.7), Leu 

764 (5.3), Lys 721

(5.2), Leu 834 (5.4),

Leu 753 (4.6), Val 

702 (5), Ala 719

(4.5), Leu 820 (5.2)

BENZ-0335
-9.8 0.61 7.45 3.8

Asp 831 (2.2) 

(102.7°), Thr 766

(2.4) (132.1°)

Cys 773, Leu 

694, Met 769, 

Leu 768, Gly 

772, Thr 830, 

Leu 834, Phe 

832,

Ala 719 (4.7), Val 

702 (4.8), Leu 820

(5.1), Lys 721 (5.1),

Met 742 (4.8)

BENZ-0332 -9.7 0.604 8.7 1.65
Asp 831 (2.1, 2.6) 

(110.1°, 96.5°)

Gly 772, Leu 

694, Ala 719, 

Thr 766, Cys 

751, Phe 832, 

Cys 773, Arg 

817, Thr 830, 

Leu 764

Lys 721 (4.9, 5.2), 

Val 702 (4.7), Leu 

820 (5.4), Met 742

(4.8), Leu 834 (5.3), 

Leu 753 (4.7)

BENZ-1070

-9.6 0.626 7.39 3.5

Asp 831 (2.9) 

(100.9°), Arg 817

(2.2) (132.2°)

Cys 773, Asn 

818, Leu 764, 

Phe 832, Cys 

751, Thr 830

Val 702 (4.7), Leu 

820 (5.4), Lys 721

(5), Leu 834 (5.3),

Met 742 (4.9), Leu 

753 (4.8)

Reference ligand
-7.9 0.373 5.0 8.0

Asp 831 (2.2) 

(145.8°), Met 769

(1.90) (124.6°)

Thr 830, Thr 

766 Leu 753, 

Leu 768, Leu 

694, Gly 772,

Asp 776, Gly 

695,

Leu 820, Gln 

767,

Leu 834 (4.4), Lys 

721 (4.2), Val 702

(4, 4.8), Ala 719

(4.8), Leu 764 (5.2)
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found to have ten rotatable bonds, six H-bond acceptors, and 
one H-bond donor in its structure. The ligand's synthetic 
accessibility score is 3.19, and it has a bioavailability score 
of 0.55. Notably, it illustrates high GI absorption and perme-
ates the BBB.

BENZ-0454's ADME profiles were found to be satisfac-
tory, characterized by three rotatable bonds, five H-bond 
acceptors, and one H-bond donor. The ligand's synthetic 
accessibility score is 3.18, and it has a bioavailability score 
of 0.55. Notably, it exhibited high GI absorption and did not 
permeate the BBB. Figure 7 displays the results of ADME 
analysis conducted on the best six ligands. The compounds 
that satisfied Lipinski's rule of five, had high gastrointestinal 
retention, and exhibited zero PAINS alerts were shortlisted 
for further screening. The compounds listed in Table 3 met 
these requirements and had synthetic accessibility scores of 
less than five. 

Toxicity‐based screening

After performing the ADME analysis, the subsequent step 
was to analyse the toxicity profile of the ligands that under-
went virtual screening. The designed ligands BENZ-0454, 
BENZ-0143, BENZ-1292, BENZ-0335, BENZ-0332, and 
BENZ-1070 were selected for toxicity profile prediction on 
the basis of docking score with EGFR-TKD receptor as anti-
cancer target (PDB ID: 4HJO). BENZ-0454 did not demon-
strate any tumorigenic risk, mutagenic potential, or irritancy. 
However, mild reproductive effects were observed. There is 
no evidence of tumorigenicity or irritancy associated with 

BENZ-0143. However, a mild risk of mutagenic indication 
was observed, and no adverse effects on reproduction were 
noted. There is no risk of tumorigenicity, mutagenicity, or 
reproductive toxicity associated with BENZ-1292, but it 
has a mild irritant property. BENZ-0335 showed no tumo-
rigenic potential, mutagenic activity, or adverse effects on 
reproduction, and it is non-irritating. There is a mild risk of 
tumorigenicity associated with BENZ-0332, but no indica-
tions of mutagenicity or adverse effects on reproduction or 
irritancy were observed. There is no evidence of tumori-
genicity, mutagenicity, or irritancy associated with BENZ-
1070, and no effects on reproduction were noted. The use 
of erlotinib as a reference ligand has been connected with 
various side effects and toxicities, including stabbing chest 
pain, a sensation of pins and needles, numbness, or pain in 
the hands, arms, feet, or legs, tingling, burning, rash, fever, 
difficulty breathing, diarrhea, and coughing. The reference 
ligand was compared with the designed ligands and finally, 
BENZI-0660 had acceptable toxicity profiles for all of them, 
and therefore was chosen as the final hit compound. The 
toxicity profile of the best six ligands is presented in (Fig. 8). 
Six symbols are used to represent the prediction probabil-
ity values, with ranges assigned as follows: '–' (0–0.1), '–' 
(0.1–0.3), '–' (0.3–0.5), ' + ' (0.5–0.7), ' +  + ' (0.7–0.9), and 
' +  +  + ' (0.9–1.0) as shown in Table 4. 

Fig. 7  Showing ADME analysis for the best six benzofuran-1,2,3-triazole hybrids and comparison with reference ligand selected on the basis of 
docking score
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Table 3  Chemical absorption, distribution, metabolism, and excretion (ADME) properties of the benzofuran-1,2,3-triazole hybrids

Ligand BENZ-0143 BENZ-0332 BENZ-1070 BENZ-0335 BENZ-0454 BENZ-1292 Reference ligand

MW 293.28 294.27 279.26 294.27 292.3 279.26 393.44
Heavy atoms 22 22 21 22 22 21 29
Aromatic heavy 

atoms
20 20 20 20 20 20 16

Fraction Csp3 0.07 0 0 0 0.07 0 0.27
Rotatable bonds 3 3 3 3 3 3 10
H-bond accep-

tors
6 5 6 5 5 6 6

H-bond donors 1 2 1 2 1 1 1
MR 79.03 79.09 74.06 79.09 81.23 74.06 111.4
TPSA 94.55 101.63 94.55 101.63 81.66 94.55 74.73
iLOGP 2.54 0.8 2.19 1.8 2.34 2.04 3.67
XLOGP3 2.07 1.53 1.67 1.74 2.97 2.34 3.31
WLOGP 2.25 1.84 1.94 1.84 2.86 1.94 3.48
MLOGP 2.25 1.37 1.99 2.04 2.35 1.45 1.48
Silicos-IT Log P 0.92 1.11 0.45 1.11 1.46 0.45 4.06
Consensus 

Log P
2.01 1.33 1.65 1.71 2.39 1.64 3.2

ESOL Log S − 3.44 − 3.1 − 3.13 − 3.24 − 4 − 3.55 − 4.11
ESOL Class Soluble Soluble Soluble Soluble Soluble Soluble Moderately 

soluble
Ali Log S − 3.68 − 3.27 − 3.27 − 3.49 − 4.35 − 3.96 − 4.56
Ali Class Soluble Soluble Soluble Soluble Moderately 

soluble
Soluble Moderately 

soluble
Silicos-IT Log 

Sw
− 5.28 − 5.17 − 4.89 − 5.17 − 5.65 − 4.89 − 7.26

Silicos-IT class Moderately 
soluble

Moderately 
soluble

Moderately 
soluble

Moderately 
soluble

Moderately 
soluble

Moderately 
soluble

Poorly soluble

GI absorption High High High High High High High
BBB permeant No No No No No No Yes
Pgp substrate No No No No No No No
CYP1A2 inhibi-

tor
Yes No Yes No Yes No Yes

CYP2C19 
inhibitor

Yes No Yes No Yes Yes Yes

CYP2C9 inhibi-
tor

No No No No No No Yes

CYP2D6 inhibi-
tor

No No No No No No Yes

CYP3A4 inhibi-
tor

No No No No No No Yes

log Kp (cm/s) − 6.62 − 7.01 − 6.82 − 6.86 − 5.97 − 6.34 − 6.35
Lipinski viola-

tions
0 0 0 0 0 0 0

Ghose viola-
tions

0 0 0 0 0 0 0

Veber violations 0 0 0 0 0 0 0
Egan violations 0 0 0 0 0 0 0
Muegge viola-

tions
0 0 0 0 0 0 0

Bioavailability 
Score

0.55 0.55 0.55 0.55 0.55 0.55 0.55

PAINS alerts 0 0 0 0 0 0 0
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Density functional theory (DFT)‑analysis

Frontier molecular orbitals (FMOs)

The quantum method of density functional theory is com-
monly used in in-silico studies. Understanding the pharma-
cological effect of the chemicals requires an analysis of their 
electronic characteristics. The transition from the ground 
state to the first excited state can be best represented by a 
single excitation of an electron from the highest occupied 
molecular orbital (HOMO) to the lowest unoccupied molec-
ular orbital (LUMO), as evidenced by a study of the wave 
function. The reactive properties of the phytochemicals were 
investigated using DFT analysis (Abbas et al. 2022b). As 
part of the DFT analysis, a code estimated the HOMO and 
LUMO energies of the molecules. Charge transfer within a 
molecule has been studied using HOMO and LUMO lev-
els and their electron density regions are shown in Fig. 9. 

The band energy gaps were used to determine the reactiv-
ity of the compounds. Because of the various LUMO and 
HOMO energies of the ligands, all of the complexes studied 
had varying band energy gaps. The computed gap energies 
were evaluated to determine the reactivity of the compounds. 
When the energy gap of a compound increases, its reactivity 
drops, and vice versa (Mohammadi et al. 2022). The small 
band energy gap range observed in this investigation is sug-
gestive of the compounds' high reactivity (3.238–3.870 eV). 
Among our tailored compounds, BENZ-0143 has the small-
est energy gap while BENZ-0335 has the largest. Reducing 
the BENZ-0143 molecule energy gap boosts its chemical 
activity. Compounds having a lower band energy gap are 
more reactive, as the LUMO and HOMO are critical for 
charge transfer during a chemical reaction, according to the 
literature. The energy level of a molecule can describe both 
its electrophilic and nucleophilic properties (Abbas et al. 
2022a).

Table 3  (continued)

Ligand BENZ-0143 BENZ-0332 BENZ-1070 BENZ-0335 BENZ-0454 BENZ-1292 Reference ligand

Brenk alerts 0 0 0 0 0 0 1
Lead likeness 

violations
0 0 0 0 0 0 2

Synthetic 
Accessibility

3.14 3.26 3.1 3.15 3.18 3.16 3.19

Fig. 8  (A) Showing several toxicity parameters of best six benzofuran-1,2,3-triazole hybrids and comparison with the reference ligand. (B) Rep-
resenting correlation between toxicity parameters of best hit benzofuran-1,2,3-triazole hybrids BENZ-0454 and reference ligand
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Local and global reactivity descriptors

The density-functional theory (DFT) is an essential tool 
for determining the chemical reactivity of compounds by 
using various theories, such as Koopman's theorem regard-
ing HOMO and LUMO energy levels, ionization potential 
(IP), and electron affinity (A) respectively Eqs. (2–7).

As a result, different global reactivity descriptors like 
chemical hardness (ɳ), softness (S), electronegativity (X), 
chemical potential (µ), and electrophilicity index (ɷ) can 
be derived using the Eq. (2).

(2)IP = −E
HOMO

and EA = −E
LUMO

Table 4  Toxicity prediction of the best six benzofuran-1,2,3-triazole hybrids

The prediction probability values are converted into six symbols based on their range: 0–0.1 (represented as '–−'), 0.1–0.3 ('–'), 0.3–0.5 ('-'), 
0.5–0.7 (' + '), 0.7–0.9 (' +  + '), and 0.9–1.0 (' +  +  + ')

Ligand BENZ-0143 BENZ-0332 BENZ-1070 BENZ-0335 BENZ-0454 BENZ-1292

hERG blockers –− – –− – – –−
H-HT – – – – − –
DILI  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  + 
AMES toxicity – –− – –− – –
Rat oral acute toxicity  +  +  +  + – −  + 
FDAMDD  + –  + −  + −
Skin sensitization − − − − –  +  + 
Carcinogenicity  +  + –−  +  +  +  +  +  + 
Eye corrosion –− –− –− –− –− –−
Eye irritation − – − –− –− −
Respiratory toxicity  +  +  +  +  +  +  +  +  +  +  +  + 
Mutagenic Mild risk No indication No indication No indication No indication No indication
Tumorigenic No risk Mild risk No risk No risk No risk No risk
irritant No No No No No Yes
Reproductive effects No effect No risk No effect No risk Mild risk No risk

Fig. 9  HOMO–LUMO distributions of electron density regions at 
B3LYP/6-31G** level of theory. Red and violet show HOMO, while 
red and cyan show LUMO. These colors indicating which areas have 
the most electrons. After discussing about HOMO, LUMO, and 

global reactivity descriptors in detail, it can be concluded that ben-
zofuran-1,2,3-triazole hybrids BENZ-0454 seems to work best as an 
inhibitors because it takes up more space on the HOMO side
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The global hardness (ɳ) of a molecule is defined as 
its resistance to changes in its electron configuration. The 
harness and aromaticity are related to one another in terms 
of the aromaticity of the number of unsubstituted com-
pounds and the molecule's ability to arrange itself as hard 
as possible. Softness (S) is the reverse of global hardness. 
Based on the HOMO–LUMO energy gap, local hardness 
indicates intermolecular reactivity; as the energy gap 
increases, reactivity decreases, and compounds with less 
reactivity are referred to as hard, whereas soft compounds 
have a smaller energy gap and are more polarization due 
to chemical changes. Electrophilicity (ɷ)is affected by two 
factors: the pace of electron transfer, the electrophile's 
ability to gain more electronic charge, and the degree to 
which it is unwilling to exchange electronic charge with its 
environment. The electrophilicity index (ɷ) plays a signifi-
cant role in drug toxicity because it provides an estimation 
of the biological activity of pharmacological compounds 
based on their molecular reactivity and selectivity. More 
electron transport from the donor fragment to the accep-
tor side results in a higher global electrophilic index (ɷ). 
The more negative the chemical potential (µ) values of 
compounds are, the less they decompose into elements. In 
our investigated compounds, chemical potential (µ) vales 
are BENZ-0143 (− 4.060), BENZ-0332 (− 3.693), BENZ-
0333 (− 3.890), BENZ-0335 (− 3.750), BENZ-0335 
(− 3.742), and BENZ-1292 (− 4.014), respectively. Due 
to low polarized, the chemical hardness (ɳ) measured from 
the HOMO–LUMO energy gap exhibits significant resist-
ance to the deformation of the electronic cloud under small 
chemical changes. BENZ-0335 has higher global hard-
ness (ɳ) values in our compounds, which indicates that 
it exhibits the least polarisation upon accepting chemical 
alterations. The global softness (S) values of all tailored 
compounds are given as BENZ-0143 (0.617), BENZ-0332 
(0.534), BENZ-0333 (0.544), BENZ-0335 (0.515), BENZ-
0335 (0.534), and BENZ-1292 (0.616), respectively in 
the Table 5. Due to its high chemical potential (µ), the 

(3)� =
A + IP

2

(4)s =
1

�

(5)� =
A − IP

2

(6)� =
�2

2�

(7)x = −�

compound BENZ-0143 (5.090) exhibits the greatest elec-
trophilicity index (ɷ) value, which is an indication of 
nucleophilicity power.

Molecular electrostatic potential (MEP)

Molecular electrostatic potential maps (MEP) were created 
from the optimized geometry at the B3LYP/6-311G** level 
so that the reactive sites of compounds may be anticipated 
in terms of electrophilic and nucleophilic reactions, how 
the different geometries interact with each other as well as 
the investigation of hydrogen bond interactions. By utiliz-
ing color coding to locate the negative, positive, and neutral 
electrostatic potential maps, these MEP maps are used to 
determine the physicochemical properties of the compounds 
that have been under investigation. They are helpful in locat-
ing the reactive regions where nucleophiles and electrophiles 
can attack and interact with the target molecule. When using 
color coding, the red color represents the electrostatic poten-
tials that are the most negative, blue represents the elec-
trostatic potentials that are the most positive, and green is 
used to highlight the sides of examined compounds that have 
zero potential. Electrophilic reactivity was associated with 
the components that possessed a negative charge, whereas 
nucleophilic reactivity was associated with the components 
that possessed a positive charge. The potential of the colors 
decreases from red to orange to yellow to green to blue. The 
maximum potential is found in the color red. Isosurfaces, 
which are shown in the MEP maps that show where there 
are strong concentrations of electrons, can be found on these 
maps (Fig. 10). A value of 0.002 a.u. can be assigned to each 
of these isosurfaces.

Density of state (DOS)

The density of state analysis was performed at DFT/
B3LYP/6-311G** level of theory to investigate the all-
possible states that exist within the specific energy range. 
Density of states (DOS) analysis is the best method for ana-
lyzing fragment interactions and quantifying their effects on 
the compound's molecular orbital (MO) energy level. DOS 
analysis determines which fragment interactions most affect 
MOs energy level. The (DOS) spectra of the drug reveal 
details on the nature of the interactions happening within the 
molecule. Positive and negative energy values on the DOS 
graph shown in (Fig. 11) represent bonding and antibonding 
orbitals, respectively, in charge distribution around the donor 
and acceptor moieties. When the value is zero, whether posi-
tive or negative, it means that the bonding orbitals do not 
interact with one another. All the DFT analysis data can be 
found in (Supporting Table S5).
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Molecular dynamics simulations analysis

200 ns MD simulations were carried out to visualize the 
stability of protein–ligand complexes. The effect of BENZ-
0454 and STD on target protein's stability and vice versa is 
depicted in (Fig. 12A). Protein RMSD remains steady till 
55 ns and then steadily increases till 3.2 ± 0.05 Å because 
of loop/coil region while ligand RMSD depicts a larger peak 
at 40 ns while remaining inside the active side of the target 
protein with 3.2 ± 0.10 Å. (Fig. 12B) protein RMSD of STD 
complex lies within 1.6–3.0 Å with a slight upsurge at 140 ns 
while global changes in ligand RMSD is higher as com-
pared to BENZ-0454 in contact with 4HJO due to 10 rotat-
able bonds while remaining stable inside 3.0–5.6 ± 0.08 Å. 
RMSD values depicted the stability of both complexes.

Local changes in both systems visualize by analyzing 
RMSF plots (Fig. 13). Atom wise RMSF of BENZ-0454 lies 
within 2.00 Å while ligand RMSF of STD contains higher 

peaks and lies within 3.00 Å as BENZ-0454 has 3 rotatable 
bonds while STD contains 10 rotatable bonds (Fig. 13A1) 
and (Fig. 13B1). Residue wise RMSF of BENZ-0454 was 
less than 3.2 ± 0.08 Å with two higher fluctuations while 
STD maintain an average RMSF of less than 3.0 Å exclud-
ing one higher peak near 150–180 residues that goes beyond 
5.4 Å (Fig. 13A2) and (Fig. 13B2). Residue-wise higher 
RMSF values depict flexibility which indicates the presence 
of loop/coil regions. Protein secondary structure elements 
(SSE) visualize during the course of the simulation (Fig. 14). 
The top plot demonstrates protein SSEs of BENZ-0454 and 
STD during simulation while the bottom plot shows SSE 
assignment (alpha-helixes with orange color while beta-
strands with cyan) of each residue with time. According to 
the SSE plot, there are 28.94% alpha-helices and 14.77% 
beta-strands, and a total of 43.71% (Supporting Figure S2).

Figure 15 illustrates the histogram and protein–ligand 
interaction diagram for both BENZ-0454 and STD 

Table 5  Quantum chemical descriptors, including local and global parameters, as well as the HOMO–LUMO energy gap (Eg), were theoreti-
cally estimated for all of the tailored compounds

Compound HOMO LUMO Eg I A

BENZ-0143

-5.679 -2.441 3.238 1.619 4.060 0.617 -4.060 4.121 2.441 5.679

BENZ-0332

-5.563 -1.823 3.740 1.870 3.693 0.534 -3.693 4.132 1.823 5.563

BENZ-1070

-5.728 -2.052 3.676 1.838 3.890 0.544 -3.890 4.139 2.052 5.728

BENZ-0335

-5.690 -1.811 3.870 1.939 3.750 0.515 -3.750 4.133 1.811 5.690

BENZ-0454

-5.612 -1.872 3.740 1.870 3.742 0.534 -3.742 4.000 1.872 5.612

BENZ-1292

-5.664 -2.365 3.299 1.649 4.014 0.606 -4.014 4.142 2.365 5.664

These parameters include HOMO–LUMO energy gap (Eg), global hardness (ɳ), chemical potential (µ), softness (S), electrophilicity index (ɷ), 
and electronegativity (X) at the same level of theory as DFT/B3LP/6-311G**
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systems. The stacked bar chart for the BENZ-0454 sys-
tem reveals the majority of water bridges and hydrogen 
bonds with polar Thr766, Thr830, positively charged 
(Arg817), and negatively charged conserved (Asp831) 

residues. Positively charged Lys721, nonpolar aliphatic 
Leu820, and aromatic Phe832 make hydrophobic inter-
actions (Fig. 15A). STD bar chart depicts water bridges 
and hydrogen bond interactions with polar Thr766, Thr830 

Fig. 10  MEP maps depicts the electrophilic and nucleophilic attack-
ing sites of best six benzofuran-1,2,3-triazole hybrids. The MEP 
maps are color-coded, with blue indicating favorable locations for the 

nucleophilic attack, red representing hostile regions for the electro-
philic attack, and green indicating zero potential sites in the benzo-
furan-1,2,3-triazole hybrids

Fig. 11  Representation of the density of states analysis for the benzofuran-1,2,3-triazole hybrids and their contribution in each fragment is 
shown
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(water bridges with N7 for 77% of the simulation time), 
Cys773, nonpolar aliphatic Met769 (interact with N6 of 
STD for 55% of simulation time), Asp776, positively 
charged Arg817, and negatively charged Asp831 (close 
range water bridge for 82% of simulation) while nonpolar 
aliphatic Ala719, Val702, Leu694, Leu820 make hydro-
phobic interactions (Fig. 15B).

Figure  16 demonstrate a sequential illustration of 
interactions that BENZ-0454 and STD complexes made 

throughout the simulation respectively. The complete list 
of protein–ligand contacts was shown in the upper panel 
(blue color), the individual residues that interact with STD 
and BENZ-0454 were shown in the lower panel (orange 
color and the residues that make more than one contact with 
ligand shown in deep orange color). The presence of deep 
orange bands around Asp831, Thr830, Cys751, Leu820, 
Leu694, Val702, Lys721, Met742, Leu753, Leu764, Ala719, 
Thr766, Met769, Cys773, and Asp776 reveals significant 

Fig. 12  (A) RMSD of the Cα atoms of EGFR and the best selected 
ligand BENZ-0454 with time (B) RMSD of EGFR with reference 
compound overtime. In both images, the left Y-axis showing varia-

tion of protein RMSD (blue line represents results) while right Y-axis 
show ligand variation (red lines) throughout the simulation
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interactions between these residues and BENZ-0454 and 
STD compounds. Timelines support the findings of the his-
togram (Fig. 15).

Figure 17 exhibited ligand torsion profile of BENZ-0454 
and STD across the course of 100 ns simulation. The upper 
panel demonstrates a 2D schematic of both ligands and rotat-
able bonds represented with different colors while the lower 
panel depicts a dial (conformation of torsion) and stacked 
bar charts (potential density of rotatable bonds) which pro-
vide information about ligand’s conformation in the recep-
tor-bound state. (Fig. 17A)depicts 3 rotatable bonds of 
BENZ-0454 near − 90°, 180°, − 180° while three near 1.00° 
and a total of 3 rotatable bonds. STD makes 10 rotatable 

bonds, 5 near 180°, 3 near − 90° and 2 are in between − 90° 
to 90° (Fig. 17B). Table 6 represents ligand properties of 
BENZ-0454 and STD such as RMSD for both systems 
ranging from 0.6–1.8 Å. rGyr for BENZ-0454 ranging from 
4.2–4.6 Å and equilibrated near 4.2 Å. rGyr for STD are in 
between 4.6–5.0 Å and accomplished equilibrium at 4.9 Å. 
BENZ-0454’s molecular surface area (MolSA) varies from 
279 Å2 to 285 Å2 while for STD it varies from 380–410Å2. 
SASA of lead compound and STD-4HJO complex stabilize 
between 25–75Å2 and 50–200Å2 respectively. The polar 
surface area (PSA) for both systems lies within 104–128Å2 
and 60–90Å2 ranges while equilibrated near 125 and 75Å2 
(Supporting Figure S3). 

Fig. 14  The top plot encapsulates SSE composition during simulation while the bottom plot displays each residue of EGFR receptor (PDB ID: 
4HJO and its SSE assignment over time with BENZ-0454 (A) and reference molecule (B)
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Binding free energy calculations

In order to calculate the binding free energies of both 
complexes more quickly, MMGBSA analysis was used 
(Fig. 18). These computed energy profiles provide compre-
hensive molecular indications that could be very helpful 
for the design and development of a drug. MMGBSA is a 
widely used, highly dynamic, and cost-effective compu-
tational technique as it computes coulombic (− 6.4415, 
− 18.7182 kcal/mol), covalent (3.034, 8.4807 kcal/mol), 
lipophilic (− 12.6161, − 20.7386  kcal/mol), van der 
Waals (− 48.8510, − 54.3601  kcal/mol), strain energy 
(2.2893, 8.3226 kcal/mol), hydrogen bonding (− 2.3107, 
− 1.2375 kcal/mol) and the total binding free energy is 
− 45.6046, − 59.3587 kcal/mol for BENZ-0454 and STD 
complexes. Van der Waals contributes more than others 

and total binding energies (negative values) depict the 
interaction of ligands that point out inhibition phenomena. 
The total binding free energy (ΔGbind) supports BENZ-
0454 to inhibit the EGFR protein.

Discussion

Triazole-based compounds are a promising new class of 
therapeutic agents for the treatment of lung cancer. These 
compounds have been shown to be potent and selective 
inhibitors of the epidermal growth factor receptor (EGFR), 
which is a key driver of lung cancer growth. Yan et al. 
conducted a study where they designed and synthesized 
a novel series of dianilinopyrimidines as inhibitors of 
EGFR. The target compounds were characterized using 

Fig. 15  (A) Histogram represent summary of all contacts between 
EGFR and BENZ-0454 while (B) shows interaction information 
of reference molecule and receptor during MD simulation. As well 

as represented protein–ligand interaction for both systems which 
occur > 30.0% of simulation time
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1H-NMR, 13C-NMR, and HRMS analyses. Subsequently, 
the researchers evaluated the inhibitory effects of these 
compounds against EGFR and tumor cells including 
A549, PC-3, and HepG2. The results revealed that cer-
tain compounds exhibited promising anti-tumor activi-
ties. Notably demonstrated the highest activity against all 
tumor cells, with  IC50 values of 0.56 μM, 2.46 μM, and 
2.21 μM, respectively. Further investigations demonstrated 
that the compounds induced apoptosis in A549 cells and 
arrested A549 cells in the G2/M phase (Yan et al. 2022). 
Chaube, Udit J., et al. investigated the binding interac-
tions of AZD-2014 with the mTOR protein in order to 
identify crucial interactions necessary for designing potent 
mTOR inhibitors. This was complemented by QSAR stud-
ies. Virtual screening studies using pharmacophore-based 
approaches identified a core scaffold, namely THQ (Tet-
rahydro-Quinoline derivatives). Subsequently, 31 THQ 

derivatives were synthesized and characterized based on 
molecular docking interactions. The compounds were then 
subjected to cellular mTOR enzyme assay and evaluated 
for their antiproliferative activity against a panel of cancer-
ous cell lines (Chaube et al. 2021). Zhou, Wenjun, et al. 
designed and synthesized a series of covalent inhibitors 
targeting EGFR-T790M using purine as the base struc-
ture. These inhibitors were then assessed for their anti-
proliferative effects in cellular assays using various cancer 
cell lines. Remarkably, certain compounds demonstrated 
the ability to effectively block the proliferation of EGFR-
T790M PC9 cells, with  EC50 values falling within the 
low nanomolar range (Zhou et al. 2011). Triazole-based 
compounds have also been shown to be effective in inhib-
iting the growth of EGFR-expressing lung cancer cells 
in-vitro and in-vivo (Gariganti et al. 2023). One of the 
most well-known triazole-based compounds is gefitinib, 

Fig. 16  The top plot encapsulates SSE composition during simulation while the bottom plot displays each residue of anticancer target EGFR 
(PDB ID: 4HJO and its SSE assignment over time with BENZ-0454 (A) and reference molecule (B)
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which was approved by the FDA for the treatment of 
lung cancer (Cohen et al. 2004). Gefitinib is a potent and 
selective inhibitor of EGFR, and it has been shown to 
be effective in patients with EGFR-mutant lung cancer 
(Yano et al. 2003). Other triazole-based compounds that 

are currently in clinical development for the treatment of 
lung cancer include osimertinib, afatinib, and rociletinib. 
The compounds have shown promise in clinical trials, and 
they could represent new standard-of-care treatments for 
lung cancer in the future (Singh and Jadhav 2018). The 

Fig. 17  (A) Torsions plot of BENZ-0454 represent conformational 
evolution of ligand’s rotatable bonds throughout the simulation. (B) 
ligand torsion plot with reference molecule. The top panel represent 

2d schematic of BENZ-0454 and reference molecule while bottom 
panel shows dial plot and bar plots. The values of the potential are on 
the left Y-axis of the chart represented in kcal/mol

Table 6  BENZ-0454 and reference ligand (Erlotinib) properties determined via MD simulation i.e., Intramolecular Hydrogen Bonds (intraHB), 
RMSD, Molecular Surface Area (MolSA), Radius of Gyration (rGyr), Polar Surface Area (PSA), Solvent Accessible Surface Area (SASA)

Ligand properties RMSD RGyr intraHB MolSA SASA PSA

BENZ-0454

1.8 4.6 0 285 75 128

Reference molecule

1.8 5.0 0 410 200 90
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development of triazole-based compounds as therapeutic 
agents for lung cancer is an exciting and rapidly advancing 
field. As our knowledge of the molecular intricacies under-
lying lung cancer deepens, we can anticipate the emer-
gence of even more potent and selective triazole-based 
compounds in the future. Ongoing research endeavors are 
dedicated to enhancing the therapeutic efficacy of these 
compounds and addressing resistance mechanisms associ-
ated with EGFR inhibition (Russo et al. 2015). Through 
strategies like structure–activity relationship studies, 
molecular modeling, and rational drug design, with the 
aim to discover novel triazole-based compounds with 
improved pharmacological properties (Zubair and Ban-
dyopadhyay 2023). These advancements hold immense 
potential in expanding the range of targeted therapies 
available and ultimately improving outcomes for patients 
with lung cancer. Continued exploration and innovation in 
this area will undoubtedly shape the future of lung cancer 
treatment.

Conclusion

The outcomes of the study indicate that the designed benzo-
furan-1,2,3-triazole hybrids display a promising interaction 
with EGFR, thus holding potential as therapeutic agents for 
lung cancer treatment. The molecular docking and dynamics 
simulations revealed that the designed molecules bind effec-
tively to the active site of EGFR and have stable interactions. 
The in-silico ADME and toxicity studies indicated that the 

designed compounds have good drug-likeness properties and 
low toxicity potential. The DFT studies provided valuable 
insights into the electronic properties of the selected best 
ligands, which could play a crucial role in their biological 
activity. In conclusion, this study provides useful insights 
into the design and development of novel EGFR inhibitors 
for lung cancer treatment, and the results of this study could 
serve as a foundation for further experimental studies. The 
findings of this study demonstrate the potential of benzo-
furan-1,2,3-triazole hybrids as a new class of EGFR inhibi-
tors with therapeutic potential for the treatment of lung can-
cer. To fully explore the therapeutic potential of the recently 
discovered benzofuran-1,2,3-triazole hybrids BENZ-0454, 
BENZ-0143, BENZ-1292, BENZ-0335, BENZ-0332, and 
BENZ-1070 as treatments for human lung cancer, several 
critical steps must be taken in the future. These compounds 
must be synthesized in adequate quantities to enable exten-
sive testing and further research. Moreover, there is a need 
to explore and develop more efficient and optimized methods 
of synthesis to improve the potency and efficacy of these 
compounds. The effectiveness of these compounds against 
EGFR mutations must be established through thorough in-
vitro and in-vivo experiments. It is essential to test these 
compounds on several cancer cell types and animal models 
to ensure their effectiveness on different types of cancer. 
Finally, detailed in-vitro and in-vivo experiments must be 
conducted to investigate the potential of these compounds 
to target human lung cancer. The mechanisms of action and 
therapeutic potential of BENZ-0454, BENZ-0143, BENZ-
1292, BENZ-0335, BENZ-0332, and BENZ-1070 must be 
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studied in-depth to fully understand their potential as lung 
cancer treatments. The results of this study furnish valuable 
insights into the design and development of novel EGFR 
inhibitors for the treatment of lung cancer, and these findings 
could be the basis for further experimental studies.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40203- 023- 00157-1.
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