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Abstract
Recently, compelling evidence points to dysbiosis and disruption of the epithelial intestinal barrier as major players in the 
pathophysiology of metabolic disorders, such as obesity. Upon the intestinal barrier disruption, components from bacterial 
metabolism and bacteria itself can reach peripheral tissues through circulation. This has been associated with the low-grade 
inflammation that characterizes obesity and other metabolic diseases. While circulating bacterial DNA has been postulated as 
a common feature of obesity and even type 2 diabetes, almost no focus has been given to the existence and effects of bacteria 
in peripheral tissues, namely the adipose tissue. As a symbiont population, it is expected that gut microbiota modulate the 
immunometabolism of the host, thus influencing energy balance mechanisms and inflammation. Gut inflammatory signals 
cause direct deleterious inflammatory responses in adipose tissue and may also affect key gut neuroendocrine mechanisms 
governing nutrient sensing and energy balance, like incretins and ghrelin, which play a role in the gut-brain-adipose tis-
sue axis. Thus, it is of major importance to disclose how gut microbiota and derived signals modulate neuroendocrine and 
inflammatory pathways, which contribute to the dysfunction of adipose tissue and to the metabolic sequelae of obesity and 
related disorders. This review summarizes the current knowledge regarding these topics and identifies new perspectives in 
this field of research, highlighting new pathways toward the reduction of the inflammatory burden of metabolic diseases.
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Introduction

The gastrointestinal (GI) tract is classically perceived as the 
main responsible for digestion, allowing nutrient absorp-
tion and fluids/electrolytes balance. Nonetheless, the gut 

orchestrates a plethora of other relevant functions, such as 
regulation of energy homeostasis, immune sensing, and pro-
tection from external harmful factors [1].

Energy balance is a delicate process relying on the rhyth-
mic alignment between the central nervous system (CNS) 
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and peripheral informants that sense nutrient arrival and 
scarcity, i.e., the gut, the pancreas, and the adipose tissue 
(AT) [2]. The energetic status, communicated to brain cent-
ers through neuronal and peripheral humoral effectors, will 
determine an appropriate response to adapt food intake, 
nutrient partitioning, and energy expenditure (catabolism 
of stored lipids and thermogenesis) accordingly [2, 3].

The unique anatomy of the GI tract, especially in the 
intestines, allows it to work as an important physical, but 
selective, wall of defense against external pathogens, while 
maintaining neutrality to gut commensals. The intestinal 
mucosal barrier is composed of different layers: the lumen, 
mucus layer, intestinal epithelium, and the lamina propria 
[reviewed by Farré et al. [1] and Vancamelbeke et al. [4]]. 
The outer mucus layer allocates a huge diversity of com-
mensal microorganisms, known as the gut microbiota, and 
respective metabolites, as well as antimicrobial peptides. 
The mucus layer is mainly composed of water and mucins 
(glycosylated proteins secreted by goblet cells) and confers 
a semi-permeable environment, allowing the passage of fac-
tors from the lumen to the epithelial cells, while preventing 
the extravasation of microorganisms. An intricate relation-
ship occurs between gut microbiota and the mucus gel since 
the antimicrobial peptides repel microorganisms that, in 
turn, can influence the gel composition [1, 4, 5]. In fact, the 
mucus phenotype is transmissible through fecal microbiota 
transplantation into germ-free mice, which acquire mucosal 
properties dependent on the microbiota of the donor [5]. Dif-
ferent types of epithelial cells constitute the intestinal epithe-
lium in a single-layer structure that divides the lumen from 
the lamina propria. The enterocytes are the cells responsible 
for maintaining structural integrity and regulating absorp-
tion; the goblet cells secrete mucus; Paneth cells produce 
the antimicrobial peptides; M cells are involved in immunity 
responses, and the enteroendocrine cells produce hormones 
and neurotransmitters, allowing communication between the 
gut and several organs [1, 4, 6]. A rupture in the mucosal or 
epithelial barriers can compromise the gut-vascular inter-
face (endothelium, pericytes, and enteric glial cells), allow-
ing pathogens and bacterial products to disseminate mainly 
through the portal vein circulation to peripheral sites, such 
as the liver or visceral fat [7]. Thus, the gut barrier exists 
as a dynamic structure that regulates metabolic homeosta-
sis, whose function is compromised in metabolic diseases 
such as obesity, metabolic-associated fatty liver disease 
(MAFLD), and type 2 diabetes (T2DM) [7–10].

In this review, we will highlight the contribution of gut 
inflammatory signals (endotoxemia) and bacteria itself on 
AT dysfunction in obesity, a main factor for the develop-
ment of other metabolic disorders. We will briefly review the 
process of diet-driven dysbiosis, intestinal barrier disruption 
and metabolic endotoxemia (1), and will deeply cover two 
main points: (2) the consequences of dysbiosis and intestinal 

inflammation on gut neuroendocrine function and (3) the 
deleterious effects of impaired gut function on AT.

(1)	 Diet-driven dysbiosis, gut inflammation, and intestinal 
barrier disruption

Trillions of microorganisms, most of them bacteria, 
inhabit the human gut in a symbiotic relationship with the 
host and this colonization is a dynamic and ongoing pro-
cess throughout life. The gut microbiota plays an active 
part in the regulation of (1) host defenses, by training the 
immune system through pathogen-associated molecular pat-
terns (PAMPs) and antigens exposure [11]; (2) digestion, 
as dietary indigestible products are degraded by bacteria 
[12]. Indeed, gnotobiology studies in germ-free mice show 
a deficient immune response, originating from morphologi-
cal and functional malformations, insufficient mesenteric 
lymph nodes, and incapacity to produce antibodies [11]. 
During digestion, gut microbiota produce short-chain fatty 
acids (SCFAs) from the metabolism of dietary fibers, which 
are important not only to maintain the epithelial barrier but 
also to keep immune homeostasis [13]. SCFAs are corre-
lated with better glycemic and lipid profiles and their con-
tribution to improved metabolism arises from direct action 
on peripheral sites, such as AT (decrease lipolysis), liver 
(increase fatty acid oxidation), and pancreas (potentiate 
glucose-stimulated insulin secretion) [14, 15]. Other com-
mon bacterial metabolites are trimethylamine (derived from 
choline and carnitine), lipopolysaccharide (LPS) (derived 
from the Western diet), indole (derived from tryptophan), 
and p-cresol (derived from tyrosine) [7].

An adequate balance between the main bacterial phyla 
(Bacteroidetes, Firmicutes, Actinobacteria, Proteobacte-
ria, Verrucomicrobia) and the overall diversity of bacterial 
groups, as well as a healthy ratio of symbionts/pathobionts, 
should be maintained to avoid dysbiosis, which facili-
tates a disease-promoting environment [15]. Well-known 
contributors to dysbiosis are, to name a few, antibiotics, 
drugs, alcohol, stress, genetic susceptibility, and diet, in 
particular, the westernized high-fat diets (HFD) (reviewed 
by Weiss and Hennet) [15–17]. The first studies emerg-
ing on the link between diet-induced obesity and a shift in 
gut microbiota were performed by Gordon and co-workers 
[18, 19] (Table 1). Further, gut microbiota was shown to 
be an active part of fat storage regulation [20]. In fact, in 
C57BL/6 J mice, HFD consumption for 4 weeks, was suf-
ficient to induce marked alterations in gut flora composi-
tion [21–24], and fecal transplantation to germ-free mice 
induced a massive increase in adiposity [19]. Similar 
effects were observed when diets were extended to 8, 12, 
or 16 weeks [25–27] (Table 1), meaning that a short period 
is enough to induce such marked alteration in gut flora and 
structure. Diet-induced obesity promotes dysbiosis mainly 
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Table 1   The putative relationship between diet-driven dysbiosis, gut inflammation, and intestinal barrier disruption with adiposity, in animal 
models and human studies

Model/protocol Gut microbiota (phylum/class, 
order, family or genus)

Gut inflammation Intestinal permeability & 
endotoxemia

Body adiposity References

C57BL/6 J mice/HF diet 
feeding (1 week)

N/A ↓ TNF-α, MCP-
1,  = CD11b, CD11c, 
IL-1β mRNA

↓ eosinophils
No histological features 

of inflammation

↑ FITC-dextran N/A [36]

C57BL/6 J mice/HF diet 
feeding (4 weeks)

↓ Bacteroidetes
↓ Actinobacteria/Bifidobacte-

rium

N/A ↓ colonic zonulin and 
occludin

↑ FITC-dextran
↑ LPS (plasma)

↑ [21, 22]

↓Bacteroidetes/Porphyromona-
daceae

↑ Firmicutes/Peptostreptococ-
caceae

↓ IL-22, IL-17, IL-10 
mRNA and ↓Th17 cells

N/A ↑ [23]

↓ Bacteroidetes
↑ Firmicutes/Mollicutes

N/A N/A ↑ [24]

C57BL/6 J mice/ HF diet 
feeding (8 weeks)

↓ Bacteroidetes
↑ Firmicutes/Ruminococcaceae
↓ Proteobacteria

↑ TNFa, IL-1β, IL-6, 
TLR4 and NF-kB 
mRNA 

↑ LPS (plasma)
↓ colonic claudin-1 and 

occludin

↑ [25]

C57BL/6 J mice/HF diet 
feeding (12 weeks)

↑ Firmicutes/Oscillibacter
↓ Firmicutes/Lactobacillus
↓ Bacteroidetes

↑ TNF-α, = IL-6 mRNA ↓ transepithelial resist-
ance

↓ colonic zonulin

↑ [26]

N/A N/A ↑ FITC-dextran
↓ colonic occludin and 

claudin-5 recruitment 
of immune cells into 
the intestinal epithelial 
layer (H&E staining)

↑ [41]

C57BL/6 J mice/HF diet 
feeding (16 weeks)

N/A ↑ ileum NF-kB, TNF-α N/A ↑ [34]
↓ Bacteroidetes
↑ Firmicutes

N/A N/A ↑ [27]

C57BL/6 J mice/HF diet 
feeding (80 weeks)

↓ Bacteroidetes
↑ Firmicutes
↓ Tenericutes/Anaeroplasma
↑ Actinobacteria/Adercreutzia

↑ IL-6, = MCP-1, IL-10, 
IL-17 mRNA

No histological features 
of inflammation

N/A ↑ [28]

C57BL/6 J mice/HS 
or HFr diet feeding 
(12 weeks)

↑ Firmicutes
↑ Proteobacteria/Desulfovibrio
↓ Bacteroidetes/Muribaculum
↑ Verrucomicrobia/Akkermansia

↑ IL-1β, TNF-α mRNA ↑ LPS (plasma)
↑ FITC-dextran
↓ colonic zonulin and 

occludin

↑ [29]

GF C57BL/6 J mice/fecal 
transplantation from 
HF/HS-fed donors

↑ Firmicutes/Erysipelotrichi
↑ Firmicutes/Bacilli
↓ Bacteroidetes

N/A N/A ↑ [19]

Sprague–Dawley rats/ 
HF diet feeding 
(12 weeks)

↓ Bacteroidetes
↑ Firmicutes/Clostridiales
↓ Firmicutes/Lactobacillus
↓Tenericutes

N/A N/A N/A [30]

↑ Proteobacteria/Enterobacte-
riales

↑ Firmicutes/Clostridiales
 = Bacteroidetes/Bacteroidales

↑ ileum TLR4/MD2 ↑ LPS (plasma)
↑ FITC-dextran

↑ [31]

Sprague–Dawley rats/
HF-HS diet feeding 
(4 weeks)

↓ Bacteroidetes
↑ Firmicutes
↑ Actinobacteria/Micrococ-

caceae
↑ Tenericutes/Anaeroplas-

matales

↑ IL-6, IL-1β, TNF-α 
mRNA

↑ LPS (plasma)
↓ cecum occludin

↑ [32]
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by increasing Firmicutes/Bacteroidetes ratio, in mice and 
rats, with an overall loss in genus diversity [15, 17, 21–32] 
(Table 1), which has been shown to promote the increased 
ability for energy accretion from food and generation of an 
inflammatory environment [33]. In an HFD-driven dysbio-
sis environment, with a high prevalence of LPS-producing 
Gram-negative bacteria, Toll-like receptors (TLRs) may be 
continuously activated, namely TLR4. This will promote 
downstream activation of nuclear factor kappa β (NF-ĸB)-
dependent transcription programs for several pro-inflam-
matory cytokines -, interleukin (IL)-1β, IL-18, IL-6, IL-33, 
tumor necrosis factor α (TNFα) and interferon-gamma 
(IFNy), eventually contributing to colonic inflammation [25, 
26, 28, 31, 32, 34, 35] (Fig. 1(1)). Yet, decreased amounts 
of TH17 cells and eosinophils have been reported in the 
small intestine of HFD-fed mice, during 1 to 4 weeks of 
diet, which are features of a reduced intestinal inflamma-
tory process [23, 36] (Table 1). Moreover, no histological 
hallmarks of intestinal inflammation (e.g., mononuclear 
cell infiltrate, epithelial hyperplasia, or goblet cell deple-
tion) were observed in most studies even when molecular 
markers of inflammation were present and under chronic 
regimens of HFD feeding [28, 36]. Albeit still controver-
sial, sustained activation of inflammatory pathways, which 
appear to be mainly triggered by TLR4 activation [25], may 
perpetuate a chronic inflammation state, causing damage to 
the epithelial barrier (Fig. 1(1)). In fact, HFD-induced gut 
dysbiosis and inflammation compromise barrier integrity by 
decreasing tight-junction proteins, such as zonulin, occludin, 
and claudin-1/5 [25, 26, 29, 41] (Table 1). The influence of 
dysbiosis is clearly proven by antibiotic treatment, which 
indeed prevented diet-induced barrier breakage [22]. 

Another mechanism possibly involved in the regulation 
of barrier integrity is the endocannabinoid system, which is 
highly upregulated by HFD consumption [37]. Cannabinoid 
receptor 1 has been shown to modulate barrier permeability. 
Rimonabant administration to ob/ob mice reduces intestinal 
permeability (measured by circulating LPS levels), whereas 
agonism displayed differential effects, leading to increased 
(with anandamide) or decreased (with 2-arachidonoylglyc-
erol) barrier integrity (reviewed by Cuddihey et al.) [38].

HFD is also associated with increased hepatic bile acids 
(BA) secretion, which are converted to secondary BA by 
the microbiota within the colon. Secondary BA play a role 
in fat digestion and can in turn control the gut microbiome 
(increasing Firmicutes/Bacteroidetes ratio) while reducing 
the risk of intestinal inflammation [7]. However, at chroni-
cally high levels, secondary BA are associated with colonic 
inflammation and intestinal barrier dysfunction [7, 39, 40]. 
A 2-week HFD regimen, in mice, potentiated secondary BA 
production by increasing Lachnospiraceae and Rumincoc-
caceae (Firmicutes/Clostridiales), which deconjugate and 
transform the liver-derived primary BA into secondary intes-
tinal BA [39] while inducing gut epithelium proliferation, 
which may arise as an initial protective mechanism.

Furthermore, a 4-week HFD, in C57BL6/J mice, was 
already able to increase LPS levels in circulation, induc-
ing LPS-dependent systemic inflammation, the so-called 
metabolic endotoxemia, which might initiate/contribute to 
the metabolic sequelae of obesity [21]. The relevance of 
impaired barrier integrity as a pathological mechanism for 
obesity (reviewed by Portincasa et al.) [7] was recently fur-
ther validated, since extracellular vesicles from Akkermansia 
muciniphila (Verrucomicrobia) were able to reduce weight 

N/A Not applicable or not measured, HF high-fat, HS high-sugar, HFr high-fructose, LPS lipopolysaccharide, GF germ-free, MCP-1 monocyte 
chemoattractant protein-1, NF-kB nuclear factor kappa β, TLR4/MD2 Toll-like receptor 4/myeloid differentiation protein-2, FITC fluorescein iso-
thiocyanate, IL interleukin, TNFα tumor necrosis factor alpha, LBP lipopolysaccharide-binding protein

Table 1   (continued)

Model/protocol Gut microbiota (phylum/class, 
order, family or genus)

Gut inflammation Intestinal permeability & 
endotoxemia

Body adiposity References

Adults with obesity N/A N/A ↑ LPS (plasma) N/A [44]

↑ Firmicutes
↓ Bacteroidetes

N/A N/A N/A [45]

↓ Actinobacteria/Bifidobacte-
rium

 = fecal calprotectin  = lactulose/mannitol
 = lactulose/sucralose

N/A [48]

Women with overweight 
or obesity

N/A N/A ↑ lactulose and sucra-
lose/mannitol excretion

N/A [46, 47]

Healthy adults on HF 
diet (5 days)

↑ Firmicutes/Clostridiales
↑ Proteobacteria/Bilophila

N/A N/A N/A [49]

Women with obesity 
on a low-calorie diet 
(14 days)

↓ Firmicutes/Agathobacter
↑ Actinobacteria/Bifidobacte-

rium

N/A ↓ lactulose and sucralose 
excretion  = mannitol 
excretion

↓ plasma zonulin and 
LBP

↓ [51]
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gain of HFD-fed mice, by improving tight-junctions, and 
thus decreasing intestinal permeability, through an AMP-
activated protein kinase (AMPK)-dependent mechanism 
[41].

Glucose and fructose-enriched diets were also shown to 
induce loss in tight-junction proteins and increased gut bar-
rier permeability assayed by plasma LPS levels and fluores-
cein isothiocyanate (FITC)-dextran administration, although 
to a lower extent than after the HFD feeding [29] (Table 1). 
Refined sugars, such as saccharides, are a typical component 
of Western diets and were linked to TLR4-mediated colonic 
inflammation and increased permeability [42]. Hypergly-
cemia enhanced glucose transporter 2 (GLUT2)-mediated 
retrograde glucose uptake into epithelial cells, leading to 
increased N-glycan biosynthesis, also dampening barrier 
integrity [43].

Although westernized diets (high sugar and HFD) are 
associated with a pattern of dysbiosis (increased Firmi-
cutes/Bacteroidetes ratio), putative intestinal inflammatory 
response, and barrier disruption in rodents (Table 1), this 
link is less evident in humans, in part because it is harder to 
study. However, some studies in humans have already shown 
a relationship between HFD-feeding and/or obesity scenar-
ios with alterations in gut colonization and intestinal barrier 
disruption (Table 1). The Firmicutes/Bacteroidetes ratio and 
circulating LPS levels (7.8 EU/mL) are increased in patients 
with obesity when compared to normal-weighted ones [44, 
45] (Table 1). However, such measurements are merely indi-
rect indicators of barrier integrity, since the definition of 
the normal range of values is uncertain. The lactulose/man-
nitol or sucralose/mannitol excretion ratios are more useful 
to assess intestinal permeability, allowing to discriminate 

Fig. 1   The putative mechanisms linking HF diet-driven dysbio-
sis to impaired AT function. HFD initiates a loop of gut dysbiosis 
and inflammation, dampening epithelial barrier integrity, and thus 
increasing intestinal permeability. Because of dysbiosis, LPS lev-
els rise while SCFAs production is impaired. 1—LPS-meditated 
TLR activation triggers NF-kB-dependent transcription programs 
for pro-inflammatory cytokines: IL-1, TNFα, and IFNy, contribut-
ing to colonic inflammation, that may spread into the circulation. 
2—A reduction in the SCFAs production hinders GLP-1 secretion by 
L cells. Additionally, since SCFAs, mainly butyrate, directly stimu-
late vagal afferents in healthy conditions (left side), a decrease in the 
SCFAs production will likely result in decreased vagal tone, which 

might compromise the gut-brain axis and energy balance regula-
tion (right side). 3—Increased intestinal permeability facilitates 
LPS, cytokines, and bacteria translocation and migration to distant 
peripheral targets, via the circulation. Colonization of AT by gut-
derived bacteria and LPS-mediated TLR activation will culminate 
in an inflammatory response and overall impairment of AT function. 
Abbreviations: SCFAs short-chain fatty acids, GLP-1 glucagon-like 
peptide 1, GABA y-aminobutyric acid, TLR toll-like receptor, NF-kB 
nuclear factor kappa-light-chain-enhancer of activated B cells, IL-1 
interleukin 1, IFNy interferon-gamma, LPS lipopolysaccharide, TNFa 
Tumor necrosis factor-alpha, AT adipose tissue. Image created with 
Biorender.com
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between small intestinal permeability (lactulose/mannitol) 
or colonic permeability (sucralose/mannitol) [4]. In women 
with obesity, the permeability of the small intestine was 
increased, as measured by the lactulose/mannitol excre-
tion, and correlated positively with waist/abdominal perim-
eter and with the homeostatic model assessment of insulin 
resistance (HOMA-IR) [46]. Moreover, gut permeability was 
also positively associated with visceral adiposity in healthy 
overweight women, but in advanced age, as measured by the 
sucralose/mannitol excretion ratio [47] (Table 1). Altogether 
these studies point to a relationship between whole gut per-
meability and visceral adiposity. A study by Brignardello 
et al. challenged this hypothesis, as no alterations in small 
intestine barrier permeability (through lactulose/mannitol 
excretion) in obese versus lean individuals were reported 
[48]. This discrepancy may arise from the inclusion of males 
in this study, as age and body mass index (BMI) were com-
parable to the study conducted by Teixeira et al. [46]. As 
aforementioned in pre-clinical studies, HFD seems to have a 
preponderant role in barrier impairment (Table 1) and, in the 
covered human studies, no data regarding dietary habits was 
evaluated, nor provided. Nonetheless, in healthy subjects, a 
five-day HFD regimen induced a marked increase in Fir-
micutes and Proteobacteria [49]. On the other hand, higher 
fiber intake was related to lower amounts of Proteobacteria, 
increased SCFA, and weight loss in overweight and obese 
subjects [50]. A very low-calorie diet (800 kcal/day) induced 
a marked amelioration of glycemic profile while decreasing 
Proteobacteria and improving gut barrier integrity, in obese 
women, as measured by lactulose/mannitol and polyethylene 
glycol excretion and by plasma zonulin levels [51] (Table 1). 
To the best of our knowledge, no studies in patients with 
obesity were conducted with more precise techniques that 
would allow visual detection of GI abnormalities, such as 
confocal endomicroscopy, a technique allowing in vivo 
imaging of GI lesions and structures, using a contrast agent 
during endoscopy, nor using in vitro assessment of intesti-
nal biopsies. In animal models, GI integrity assessment by 
confocal endomicroscopy has been used in rats and mice to 
evaluate the gastric and colonic walls [52, 53], but no studies 
in obesity models were reported to date.

Altogether, these data show the powerful role of the diet 
itself in the fast modulation of gut microbiota and barrier 
permeability. Some dietary factors have been linked to a 
balanced microbiome and restored gut function, such as 
fiber and polyunsaturated fatty acids. Dietary interventions 
can be designed with greater precision now that the contri-
bution of specific foods on gut microbiota and modulation 
of enterotypes and inflammation is starting to be unraveled 
[54]. Both bamboo fiber and omega-3 supplementation in 
HFD-fed mice restored the Firmicutes/Bacteroidetes ratio, 
and increased SCFAs production (by increasing Prevo-
tella and Bacteroides), thus being associated with better 

metabolic outcomes [55, 56]. Cereals, vegetables, fish, and 
nuts are highly associated with microbiota balance, reduced 
inflammation, and increased SCFAs production in humans 
[57], highlighting the potential of healthy dieting in the 
management of intestinal health. On the other hand, envi-
ronmental factors such as air pollutants, heavy metals and 
pesticides, can also shape the gut microbiota, by entering 
the food chain, thus contaminating aliments [58]. Indeed, 
microplastics, derived from the degradation of plastic lit-
ter, which accumulate in the soil, water and air, have been 
shown to promote gut dysbiosis in C57BL/6 J mice and alter 
the fecal BA profile and liver function [59]. Further, traffic-
related air pollution is emerging as a possible inductor of gut 
dysbiosis in rodents [60] and humans [61], and correlates 
positively with the development of obesity from a young age 
[62], raising serious concerns about their negative impacts 
on metabolic health.

Arising as beneficial gut microbiota modulators, probiotic 
supplementation with Lactobacillus spp. has been shown as 
a promising strategy to counteract intestinal inflammation 
and barrier disruption, while reverting obesity in mice [8, 
63]. Exercise training is also a potent modulator of the gut 
microbiota, by decreasing the Firmicutes/Bacteroidetes ratio 
and improving intestinal inflammation in sedentary adults 
with obesity [64]. By reshaping gut microbiota and allevi-
ating inflammation and barrier disruption, these strategies 
will end up improving overall gut function, metabolic endo-
toxemia and peripheral tissue’s function, such as adipose 
tissue and the liver, constituting valuable weapons against 
metabolic diseases and related gut malfunction.

(2)	 Consequences of dysbiosis and inflammation on gut 
function

The role of gut microbiota on regulating gut endocrine 
and nervous functions: the gut communicates with other 
organs either through nervous connections or endocrine 
signaling, in an intricate manner, to regulate energy bal-
ance [2]. Vagus nerve projections onto the nucleus tractus 
solitarius regulate food intake, inducing a positive response 
upon activation of epinephrine neurons co-expressing neuro-
peptide Y (NPY), or instead, inhibiting it, through activation 
of norepinephrine ones [65]. Moreover, the vagus-mediated 
gut-brain-liver connection controls glucose homeostasis by 
suppressing hepatic glucose production upon nutrient sens-
ing in the duodenum-jejunum [66]. Additionally, the GI tract 
secretes a myriad of hormones, including the glucagon-like 
peptide 1 (GLP-1), peptide YY (PYY), glucose-dependent 
insulinotropic polypeptide (GIP), cholecystokinin (CCK) 
and ghrelin [67]. While nutrient digestion and absorption 
stimulate the secretion of anorexigenic signal—GLP-1, 
CCK and PYY–, nutrient shortage triggers ghrelin secre-
tion from the stomach to promote feeding instead [67]. The 
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synchronicity between neuronal and humoral signals trave-
ling across the crossroads of the gut-brain axis will govern 
overall energy homeostasis.

A healthy microbiota regulates gut signals secretion 
by the production of SCFAs from dietary fiber digestion 
[14]. Within the gut, SCFAs, but mainly butyrate, stimulate 
GLP-1 and PYY secretion from L-cells, through a G protein-
coupled receptor 43 (GPR43)-dependent mechanism [68, 
69] (Fig. 1(2)), This favors an anorexigenic and incretin-
stimulatory environment that might account for the benefi-
cial metabolic effects. Secondary BA were also shown to 
stimulate GLP-1 secretion in vitro in enteroendocrine cell 
lines [70]. Other metabolites derived from bacterial metabo-
lism, such as indole, are stimulants of gut hormones secre-
tion. Indole is derived from bacteria-mediated tryptophan 
metabolism [71]. Acute indole action (5 min) stimulated 
GLP-1 secretion from GLUTag cells, by inhibiting voltage-
gated K+ channels [71]. However, longer exposure to indole 
(30–240 min) induced a reduction of GLP-1 secretion rate, 
through a reduction of adenosine triphosphate production in 
GLUTag cells [71], showing that indole production by bac-
teria can have a major impact on host metabolism. Whether 
SCFAs, indole, or other bacterial metabolites can modulate 
the secretion of other gut hormones, such as CCK or ghrelin, 
remains yet to discover.

Despite not being able to contact directly with vagal affer-
ent fibers, the gut microbiota produce several neurotransmit-
ters—acetylcholine, dopamine, serotonin, γ-aminobutyric 
acid —, that can act either in the enteric nervous system or 
in brain centers through the vagal afferents or via circula-
tion [72] (Fig. 1(2)). Additionally, butyrate was shown to 
induce a direct stimulatory effect on the vagus nerve in rats, 
independently of enteric neurotransmitters release/activa-
tion, but the mechanisms were not further investigated [73] 
(Fig. 1(2)).

Gut dysbiosis, inflammation and impaired gut endocrine 
and nervous functions: gut hormones secretion is highly 
dependent on diet composition (reviewed by Martin et al.) 
[74]. Diet-induced obesity, accelerated by HFDs, is a major 
deregulator of the gut-brain axis and gut inflammation has 
deleterious effects on the overall GI function [74]. Obesity 
is characterized by alterations in the gut hormones secre-
tion profile, as shown by the decrease in GLP-1 and PYY 
post-prandial excursions, as well as impaired total and 
acylated ghrelin levels, which levels remain higher in the 
post-prandial state when compared to healthy lean controls 
[67]. Furthermore, obesity is linked to the desensitization of 
satiety signals in vagal afferent neurons, favoring constitu-
tive orexigenic activity [75].

SCFAs production is also hampered in the context of 
obesity, as dysbiosis induces the loss of butyrate-producing 
bacteria [76]. Consequently, the SCFAs-mediated gut hor-
mones secretion, such as GLP-1, may be reduced (Fig. 1(2)). 

Lactobacillus reduction in HFD-fed mice was associated 
with decreased GLP-1 responsiveness [77]. Moreover, cir-
cadian alterations of ileal microbiota were shown to regu-
late GLP-1 production in L cells, through ileum clock genes 
regulation [78].

Loss in SCFAs production might also impair the vagal 
tone since butyrate contributes to vagal afferents stimulation 
[73] (Fig. 1(2)). Indeed, germ-free mice conventionalized 
with microbiota from HFD-fed mice displayed a reduction in 
vagal innervation to the brain [79]. In rats, inducing dysbio-
sis by an HFD/high-sugar regimen, induces vagal innerva-
tion withdrawal at the gut and nucleus solitary tract, damp-
ening the gut-brain axis [32]. Intestinal dysbiosis was also 
associated with alterations in serotonin availability, through 
serotonin transporter modulation [80]. Excessive reuptake 
of serotonin will induce precocious termination of its physi-
ologic effects, impairing normal gut-brain connectivity.

The relationship between the compromise on gut endo-
crine function and vagal activation in scenarios of intes-
tinal inflammation is yet poorly understood. Nonetheless, 
colonic GLP-1 and circulating GLP-1 and GLP-2 levels were 
decreased under inflammatory conditions, in rodent models 
and patients with inflammatory bowel disease (IBD) [81, 
82]. Interestingly, promising data from pre-clinical studies 
support a protective role of GLPs in the amelioration of IBD, 
as agonism of their receptors was shown to alleviate colitis, 
by reducing the expression of inflammatory cytokines [83]. 
Clinical pilot studies using the GLP-2 analog teduglutide 
have demonstrated higher and quicker remission rates in 
Chron’s disease patients, than placebo-treated ones [84]. In 
a recent study, in patients with IBD, GLP-1-based thera-
pies showed a decreased risk of hospitalization or need for 
a TNFα inhibitor treatment, compared to patients on other 
medications [85]. Similarly, plasma PYY levels, colonic 
PYY and oxyntomodulin-positive cells are decreased in 
IBD patients [86]. In turn, ghrelin levels were reported to 
be increased in patients with Crohn’s disease and ulcerative 
colitis [87]. Altogether, although the crosslink between gut 
inflammation and altered gut hormones secretion patterns is 
still not clear, the available data supports the notion that gut 
inflammatory milieu potentiates the impairment of neuroen-
docrine mechanisms involved in nutrient-sensing and energy 
balance. Future studies should address the mechanisms 
involved in gut hormone dysregulation by inflammation.

The vagus nerve is a major regulator of gut inflamma-
tion. In animal models of colitis, vagal nerve stimulation 
prevents disease worsening, through acetylcholine-mediated 
anti-inflammatory effects on macrophages [88]. Individuals 
who underwent vagotomy have an increased risk of develop-
ing IBD, highlighting the immunomodulatory effect of the 
vagus nerve activity [89]. Further, intestinal inflammation 
is characterized by an increase in serotonin and NPY circu-
lating levels, neurotransmitters with relevant action within 
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the enteric nervous system and in the gut-brain axis [90, 
91]. NPY is abundantly expressed in the enteric nerves and 
plays a role in colonic relaxation. Npy knock-out mice were 
shown to be more protected from the development of dex-
tran sodium sulfate-induced colitis [92]. Colitis induces a 
major upregulation of enteric neuronal NPY, which triggers 
an oxidative and inflammatory response through neuronal 
nitric oxide synthase activation [93]. The NPY system seems 
particularly relevant as a modulator of inflammatory activ-
ity, since NPY receptor 1 antagonism reduced inflammatory 
cytokines in the gut of an IBD rodent model [93]. Colonic 
serotonin is increased in IBD patients and colitis rodent 
models, and inhibition of serotonin synthesis is a sufficient 
factor to reduce experimental colitis severity [94].

Prebiotics are indigestible fermented foods, frequently 
used to restore balance in the gut flora, by increasing the 
amount of beneficial Bifidobacterium and Lactobacillus 
spp., and thus of SCFAs [95]. Modulation of the gut micro-
biota has shown beneficial effects on intestinal function, thus 
restoring normal gut hormones secretion. Prebiotic supple-
mentation, with oligofructose, ameliorated gut inflamma-
tion and intestinal barrier integrity, while restoring GLP-1 
and GLP-2 levels, through increased L cells density [95, 
96]. Further, pre and probiotics supplementation has marked 
effects in AT metabolism [95], highlighting a relevant link 
between the gut and the AT, possibly mediated by both gut 
hormones and microbiota.

(3)	 The involvement of gut dysbiosis and endotoxemia in 
AT dysfunction

Dysbiosis/inflammation-mediated changes of gut-AT 
crosstalk: Under physiological conditions, the gut hor-
mones act on and modulate AT function, to regulate lipid 
metabolism (GLP-1 stimulates lipolysis, CCK and ghre-
lin stimulate lipogenesis), insulin sensitivity and glucose 
uptake (GLP-1), and tissue plasticity (GLP-1 and ghrelin) 
[67]. This intricate communication is a central piece in the 
whole-body energy balance regulation, allowing the AT res-
ervoirs to behave accordingly to the energetic status, i.e., 
post-absorptive or post-prandial. Given that the secretion 
pattern of gut hormones is altered in obesity, this may be 
an important contributing factor to AT dysfunction, a major 
hallmark of both obesity and the metabolic syndrome [67]. 
Also, as covered above, gut dysbiosis and possible inflam-
mation have deleterious effects not only on endocrine, but 
also nervous-mediated gut communication, which inevitably 
ends up by compromising other organs’ function. However, 
the real contribution of gut dysbiosis/inflammation for com-
promising gut endocrine and nervous functions is not yet 
established, neither is the role of the dietary signals for such 
relationship. One may note that many of the mechanisms and 
signals governing gut hormone secretion are not known, and 

only recently their direct action in AT has been disclosed 
in more detail (reviewed by Rosendo-Silva) [67]. It may be 
expectable that impaired GLP-1 secretion following loss 
of SCFA-producing bacteria could have a negative impact 
on AT plasticity and glucose metabolism, given the known 
GLP-1 actions in adipose fat [67, 97]. However, the impact 
of other gut signals is yet to be disclosed.

The direct contribution of gut signals to AT dysfunction 
in obesity: A reduction in the SCFA-producing bacteria, in 
the context of HFD-driven dysbiosis, is also associated with 
an increased prevalence of bacteria able to convert other 
food molecules (such as aromatic amino acids and histidine, 
among others) in metabolites (namely indoles, cresols, and 
imidazole propionate) that can affect metabolic function. For 
instance, this has been observed regarding glucose toler-
ance and insulin resistance, contributing also to an increase 
in overall pro-inflammatory effects [98–100]. In fact, while 
the symbiotic SCFA-producing bacteria contribute to meta-
bolic homeostasis and gut barrier health, the prevalence of 
pathogenic bacteria contribute to metabolic deregulation and 
gut barrier impairment, on one side by losing the panoply 
of protective effects of SCFAs (including the secretion of 
mucin by goblet cells), and on the other side by presenting 
a pro-inflammatory profile in opposition to the anti-inflam-
matory effects of symbiotic bacteria [15, 16]. Gut-derived 
metabolites can directly impair the behavior of several extra-
intestinal sites, such as the AT, especially the mesenteric 
one due to the close location, the liver, the pancreas, and 
the skeletal muscle [101]. Upon intestinal barrier leaki-
ness, the whole organism is exposed to the metabolic by-
products of the local microbiota (Fig. 1(3)). Some of these 
metabolites are important metabolic mediators, including 
SCFAs, H2S, p-cresol, and trimethylamine [100]. Namely, 
they display relevant effects in adipocytes. While SCFAs 
and H2S induce antilipolytic effects and favor lipid stor-
age [102, 103], 4-cresol and secondary bile acids induce 
lipolysis [104]. Nonetheless, other microbiota-derived fac-
tors, can trigger harmful events in extra-intestinal organs. 
A well-known example is LPS, responsible for metabolic 
endotoxemia, giving rise to chronic low-grade inflammation, 
characteristic of obesity and metabolic syndrome [21]. By 
activating the TLR4/MD-2 complex in target organs, and 
after cluster of differentiation 14 (CD14)-dependent inter-
nalization, LPS-mediated signaling triggers the production 
of several pro-inflammatory cytokines, similar to its role 
in mediating gut inflammation [105]. The primary site of 
action of LPS is suspected to be the liver, through the portal 
vein circulation [106]. In fact, hepatocytes and Kupffer cells 
highly express CD14 [107]. LPS migration through portal 
circulation is mainly mediated by high-density lipoprotein 
(HDL), specifically HDL3, which paradoxically plays a pro-
tective role against LPS-mediated liver injury [106]. Still to 
uncover is how HDL3 suppresses LPS bioactivity, possibly 
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by inducing its clearance, and if and how this mechanism is 
impaired in obesity, which is usually associated with altera-
tions in HDL cholesterol levels and properties. Indeed, a 
recent study reported increased HDL3 levels in patients with 
obesity, but LPS levels were not simultaneously assayed 
[108]. Circulating LPS has been suggested as a biomarker 
of MAFLD [109]. Indeed, TLR4 activation is required for 
fructose-induced experimental MAFLD in mice, highlight-
ing the role of diet-driven dysbiosis as a fuel for metabolic 
diseases [110]. Similarly, the secondary BA deoxycholic 
acid can cause liver injury, by activation of the inflamma-
some [111].

Circulating LPS eventually reaches other peripheral 
organs besides the liver, such as AT. The relevance of LPS 
signaling on AT emerged from the early studies revealing 
increasing adiposity as one of the main outcomes of meta-
bolic endotoxemia [23]. In fact, human AT macrophages 
highly express the TLR4/CD14 machinery, and so do adi-
pocytes, although to a lower extent [112]. LPS can modulate 
several AT events—inflammation, matrix remodeling/plas-
ticity, metabolic activity—possibly being involved in tissue 
dysfunction (Fig. 1(3)). Subcutaneous AT from patients with 
obesity displayed a marked increase in the LPS-signaling 
machinery and LPS-treated adipocytes initiated an immu-
nogenic response, relying on NF-ĸB and the inflammasome 
[113]. Accordingly, NLRP3 silencing prevented LPS-
induced inflammation in human visceral adipocytes [114]. 
Vatier et al. reported higher sensitivity of subcutaneous, 
rather than visceral adipocytes, to the deleterious effects of 
LPS, with lower amount of LPS triggering a more powerful 
immune response in abdominal subcutaneous AT explants 
[115]. Metabolic endotoxemia impairs the AT matrix remod-
eling by inducing fibrosis both in vivo and ex vivo, through 
a transforming growth factor beta 1 (TGFβ1)-dependent 
mechanism [101]. LPS is also able to directly stimulate the 
lipolytic activity of AT, inducing hormone-sensitive lipase 
phosphorylation (S650), thus increasing serum fatty acids lev-
els [115, 116]. It has also been shown that adiponectin gene 
expression was downregulated in 3T3-L1 cells after LPS 
treatment, and so was the adiponectin receptor in muscle 
cells [117]. Moreover, adiponectin suppressed LPS-induced 
NF-ĸB activation, and consequent inflammation, in pig sub-
cutaneous adipocytes and 3T3-L1 cells [118]. Given that 
circulating adiponectin is decreased in subjects with obesity, 
as young as 5 years of age, and in individuals with the meta-
bolic syndrome [118, 119], this may increase the susceptibil-
ity of AT to LPS-mediated deleterious effects. Low-dose of 
LPS infusion (600 µg  kg/day) during 4 weeks in C57BL/6N 
mice induced insulin resistance, as shown by an aberrant 
increased insulin secretion without proportional clearance 
of plasma glucose levels [120]. Co-administration of the 
anti-inflammatory resveratrol, restored normal insulinogenic 
index, suggesting inflammation of insulin-dependent organs 

to be the cause of LPS-mediated impaired glucose homeo-
stasis [120]. However, Stevens et al. demonstrated that an 
acute low-dose LPS (0.1 µg/kg) had a positive impact in 
glucose tolerance in C57BL/6N mice, but without increas-
ing glucose uptake [121]. Thus, for further accuracy, it is 
important to reflect on the definition of high and low LPS 
dosages. LPS levels in circulation fluctuate along the day 
(from 1 to 50 pg/mL) [122], increasing after a single high-fat 
meal, even in lean healthy subjects [123].

Although controversial at the beginning, the number of 
reports on bacterial DNA and bacteria itself in the blood has 
been drastically increasing, leaving no doubt as to the exist-
ence of the blood microbiome. In healthy individuals, the 
blood-borne bacteria resemble that of the skin and mouth, 
substantially different from intestinal microbiota [124]. 
Remarkably, in patients with obesity and T2DM, the blood 
microbiota might be more closely related to that of the intes-
tines [125, 126]. In fact, Escherichia–Shigella is increased in 
plasma and stool samples from patients with T2DM [127], 
highlighting once again the involvement of gut bacteria and 
respective metabolites on the pathophysiology of obesity 
and related metabolic disorders. The idea of blood-resident 
bacteria, with no association with an ill state or infection, 
needs further reflection, as it could lead to the discernment 
between healthy versus unhealthy blood microbiome, and 
thus, be a useful biomarker aiding the prediction or diagno-
sis of a specific disease.

More recently, and with the advances in sequencing tech-
niques, the easiness to dig deeper into human physiology 
from a microbial perspective allowed ground-breaking dis-
coveries. Today, we acknowledge our “microbial-selves”, 
as referred by Castillo et al., not only because our intestines 
house more bacteria than our body houses cells, but also, 
since apparently several organs have a resident microbiota 
[124, 128]. Major players in the pathophysiology of obesity 
and metabolic syndrome—the liver, AT depots (mesenteric, 
omental and subcutaneous), skeletal muscle and the pan-
creas -, have been described to harbor their own microbiota 
(reviewed by Massier et al.) [128, 129]. The “tissue micro-
biota hypothesis”, as first raised by Burcelin et al. postulates 
that gut-derived bacteria colonize extra-intestinal tissues, 
modulating their function and causing the onset of metabolic 
diseases [130]. The first evidence arrived from pre-clinical 
studies of Rémy Burcelin and co-workers. HFD-induced 
obese mice showed translocation of gut-derived live bacte-
ria to blood and mesenteric AT [131]. However, studies with 
human AT samples, were very controverse at the beginning. 
In 2016, the first study testing the hypothesis of the tissue 
microbiota in humans, failed to identify endogenous bacte-
rial DNA in subcutaneous and visceral AT [132]. Nonethe-
less, in the following year, two studies reported successful 
characterization of bacterial DNA in human AT [133, 134]. 
Ralstonia spp. (Gram-) was enriched in the mesenteric AT 
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from subjects with obesity. Despite lacking appropriate 
control conditions, the occurrence of contamination may be 
discarded, as subcutaneous and omental AT did not yield 
16S rRNA amplicons determined by pyrosequencing [134]. 
Pedicino et al. also showed the presence of bacterial DNA in 
epicardial AT from patients with acute coronary syndrome, 
but not in control subjects, which was positively associated 
with inflammasome activation [133]. More recently, in 2020, 
studies employing the Illumina sequencing technology have 
confirmed the hypothesis of AT being colonized with micro-
biota [127, 135]. Being aware of possible sample contamina-
tion as a confounding factor, Anhê et al. designed an elegant 
study, considering a set of controls, from the operating room 
to sample manipulation in the laboratory [127]. Success-
ful 16S rRNA quantification and sequencing, in different 
AT depots, revealed higher bacterial DNA deposition in the 
omental AT. However, the mesenteric AT bacterial signa-
ture presented the closest resemblance to the gut microbiota, 
suggesting the gut to be the main source of bacterial DNA 
to the surrounding AT [127]. Interestingly, the mesenteric 
AT microbiota, was substantially different between individu-
als with obesity, with or without T2DM [127], suggesting 
a close relationship between extra-intestinal bacterial colo-
nization and dysglicemia. More compelling evidence arose 
from the work of Massier et al. who employed a protocol, 
enabling to detect live bacteria in human subcutaneous AT 
of patients with obesity [135]. Findings regarding bacteria 
compartmentalization and quantity in various AT depots 
were according to those aforementioned [127]. The bacterial 
load in omental AT was highly correlated with macrophage 
infiltration and inflammatory genes, in obese subjects with 
T2DM. Despite being merely associative, these data advert 
a possible involvement of the tissue microbiota in the devel-
opment of local inflammation. Further, HOMA-IR provided 
good explanatory power on Bray–Curtis dissimilarity analy-
sis, in all fat depots (subcutaneous, omental, and mesen-
teric), suggesting an interplay between dysglycemia and 
shifted bacteria signatures in obesity [135].

Nonetheless, some important questions remain to be 
answered: (1) how to disclose the gut as the main source of 
extra-intestinal bacterial colonization? As discussed above, 
in vivo evaluation of intestinal barrier integrity is challeng-
ing, especially in humans. Nonetheless, the link between 
metabolic endotoxemia, obesity and intestinal permeability 
must be further investigated by employing more reliable 
techniques and finding new biomarkers of the leaky gut to 
correlate with in vivo tests, especially since increased intes-
tinal permeability is also a hallmark of other obesity-related 
metabolic diseases, such as MAFLD and T2DM. (2) When 
does AT depots colonization takes place? The difficulty to 
include normal-weighted subjects in these studies has led to 
uncertainty regarding this matter, since the doubt persists on 
whether AT colonization exclusively happens during chronic 

inflammatory diseases, such as obesity and related T2DM. 
Further, the aforementioned studies only focused on the obe-
sity scenario with or without T2DM. However, one must 
interpret the metabolic sequelae of obesity as a spectrum, 
ranging from metabolically healthy obesity (normoglyce-
mia and insulin sensitivity) to the metabolically unhealthy 
phenotype, comprising the consequent ill-stages of insulin 
resistance, progressive dysglycemia and established T2DM. 
Hence, future studies should address the chronological time-
point of AT bacterial colonization and how it responds to the 
consequent metabolic dysregulation that may follow obesity; 
(3) what are the implications of AT colonization in tissue 
function? Doubt remains on what could be the influence 
of a given bacteria signature on AT function. Existing data 
focused only on AT inflammation and relied on associative 
links, derived from correlation analyses, that do not neces-
sarily reflect causality. More studies are needed to unravel 
the contribution of specific bacteria to the modulation of 
AT (dys)function. In particular, the reshaping of resident 
and infiltrating AT immune cells population may arise as 
a determinant factor for the development of a pro-inflam-
matory environment that may trigger insulin resistance and 
dysmetabolism.

Conclusion

Many of the components of the diet (fibers, macro, and 
micronutrients) are digested by the microbiota and most of 
the physiological functions of the gut are regulated by the 
metabolites resulting from such modifications. Westernized 
diets with a lipid and sugar overload, and potentially also 
contaminated with residual levels of chemicals and pollut-
ants, induce rapid and marked dysbiosis (alterations in gut 
microbiota composition and its metabolites), that may be 
accompanied by gut inflammation and barrier disruption. 
While the role of Westernized diets in inducing dysbiosis is 
overall consistent (increasing the Firmicutes/Bacteroidetes 
ratio) (Table 1), in rodents and humans, the development of 
gut inflammation is a more complex process to decipher, as 
there is conflicting evidence regarding a pro-inflammatory 
response (Table 1). Despite some studies showing increased 
colonic inflammatory markers upon HF or high-sugar diet 
consumption in rodents, there is a lack of observation of 
histological features of inflammation, even when diets were 
taken to an extreme duration (Table 1) [28]. However, this 
does not exclude that a chronic low-grade inflammation 
might be taking place in the colon, resulting from increased 
levels of pro-inflammatory factors. Nevertheless, studies 
with germ-free mice have shown the central role of micro-
biota in Westernized diet-induced gut inflammation [34]. 
Slight alterations in the microbiota (at family or genus level), 
possibly attributed to differences in diet composition, might 
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be the explanation for the discrepancy in the inflammatory 
response.

The gut microbiota exerts a modulatory effect on vagal 
tone and the production of GLP-1, PYY, serotonin, mainly 
through SCFAs, having a major impact in gut-brain com-
munication (Fig. 1(2)). Diet-induced dysbiosis was shown 
to hamper gut hormones production and to cause vagal 
withdrawal in rodents, although their consequences in the 
secretion of gut neuroendocrine factors are still unknown 
[31, 73, 75]. However, it is necessary to depict the involved 
triggering agents, from specific bacteria to inflammatory 
markers, as this investigation is still in its first steps. Thus, 
there is still a long way to understand the relation between 
gut microbiota and impaired energy balance, at central and 
peripheral levels.

Westernized diets consumption and metabolic diseases, 
such as obesity, MAFLD and T2DM, are associated with 
the development of chronic low-grade inflammation [17, 
136]. Intriguingly, this feature is also present in patients 
with T2DM without obesity and some patients with obesity 
do not have increased markers of systemic inflammation, 
raising questions about the mechanisms linking metaboli-
cally (un)healthy obesity with gut dysbiosis/endotoxemia. 
The diet-induced modulation on gut microbiota is associ-
ated with increased intestinal permeability and endotoxemia 
(Table 1), which can be the initial trigger for low-grade 
inflammation by activating TLR4 in the liver and adipose 
tissue (Fig. 1(3)). Moreover, the extravasation of bacte-
ria itself to the blood and tissues is arising as a putative 
modulator of inflammatory pathways. Despite their role in 
the establishment of low-grade inflammation is also still to 
unravel, this highlights the importance of diet manipulation 
as an important factor not only to ameliorate gut dysbiosis, 
but also in regulating pathogenic bacteria and metabolites 
translocation to the adipose tissue.
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