Skip to main content
. 2023 May 17;11(5):1184–1191. doi: 10.14218/JCTH.2022.00077S

Table 2. Details of machine learning for the diagnosis of hepatocellular carcinoma.

Author and year Data type Sample number Machine learning model/algorithm Results
Phan et al. 202013 Clinical data N: 6,052 (training set: 70%; test set: 30%) Convolutional neural network AUC: 0.886
Nam et al. 202014 Clinical data Training set: 424; validation set (independent external cohort): 316 Deep neural network c-index: 0.782
Sato et al. 201915 Clinical data N: 1,580 (training set: 80%; development set and test set: 20%) SVM, gradient boosting, random forest, neural network, deep learning, and other algorithms Gradient boosting model had the highest accuracy (87.34%) AUC: 0.94
Kim et al. 202117 Clinical data Training set: 6,051; validation set (external validation cohorts): (5,817 patients from Korean centers and 1,640 from Western centers) GBM c-index: 0.79
Wong et al. 202218 Clinical data N: 124,006 (training set: 70%; test set: 30%) AdaBoost, decision tree and random forest Accuracy of random forest (AUROC: 0.837) was stable
Schmauch et al. 201929 Imaging Training set: 367; validation set: 177 Deep learning Weighted mean ROC-AUC scores of 0.891
Li et al. 202130 Imaging N: 226 (training set: 80%; test set: 20%) SVM AUC: 0.86
Brehar et al. 202031 Imaging N: 268 (training set: 66%; test set: 20%; validation set: 14%) CNN, SVM, random forest, and AdaBoost CNN was the best (accuracy of 91% with AUC of 95%)
Jin et al. 202132 Imaging Training set: 262; validation set: 86; testing set: 86 Deep learning AUCs: 0.981, 0.942 and 0.900 in training, validation, and testing cohorts
Ren et al. 202137 Imaging Training set: 149; test set: 38; validation set: 39 SVM AUC: 0.936
Yasaka et al. 201838 Imaging Training set: 460; test set: 100 CNN AUC: 0.92
Mokrane et al. 202039 Imaging Discovery set: 142; validation set: 36 KNN, SVM, and random forest AUC: 0.70 and 0.66 in discovery and validation cohorts
Hamm et al. 201940 Imaging Training set: 434; test set: 60 CNN AUC: 0.992
Liu et al. 202141 Imaging N: 86 SVM AUC: 0.77
Mao et al. 202042 Imaging Training set: 237; test set: 60 XGBoost AUC: 0.8014
Nebbia et al. 202043 Imaging N: 99 SVM Highest AUC: 0.8669 (multiparametric MRI combination yield)
Lin et al. 201944 Pathology N: 113 CNN Accuracy>90%
Chen et al. 202045 Pathology Training set: 261; test set: 50; internal validation set: 155; external validation set: 101 CNN Accuracy: 96.0%
Kiani et al. 202046 Pathology Training set: 70; test set: 80; validation set: 26 CNN Accuracy: 0.885
Zhang et al. 202047 Gene Training set: 1,333; test set: 336 SVM Sensitivity: 91.93%, specificity: 100%, and AUC: 0.9597
Chen et al. 202148 Genes Training set: 361; validation set: 183 Random forest, SVM, KNN Best predictive performances: random forest (AUC: 0.96; accuracy, 0.90)
Tao et al. 202049 Genes Training set: 209; validation sets: 76/99 Random forest AUC>0.800

AUROC, area under the receiver operating characteristic; CNN, convolutional neural network; GBM, gradient boosting machine; SVM, support vector machine.