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Original Article

Identification of lysosomal genes associated with prognosis in 
lung adenocarcinoma
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Background: Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, representing 
40% of all cases of this tumor. Despite immense improvements in understanding the molecular basis, 
diagnosis, and treatment of LUAD, its recurrence rate is still high.
Methods: RNA-seq data from The Cancer Genome Atlas (TCGA) LUAD cohort were download from 
Genomic Data Commons Portal. The GSE13213 dataset from Gene Expression Omnibus (GEO) was used 
for external validation. Differential prognostic lysosome-related genes (LRGs) were identified by overlapping 
survival-related genes obtained via univariate Cox regression analysis with differentially expressed genes 
(DEGs). The prognostic model was built using Kaplan-Meier curves and least absolute shrinkage and 
selection operator (LASSO) analyses. In addition, univariate and multivariate Cox analyses were employed to 
identify independent prognostic factors. The responses of patients to immune checkpoint inhibitors (ICIs) 
were further predicted. The pRRophetic package and rank-sum test were used to compute the half maximal 
inhibitory concentrations (IC50) of 56 chemotherapeutic drugs and their differential effects in the low- and 
high-risk groups. Moreover, quantitative real-time polymerase chain reaction, Western blot, and human 
protein atlas (HPA) database were used to verify the expression of the four prognostic biomarkers in LUAD.
Results: Of the nine candidate differential prognostic LRGs, GATA2, TFAP2A, LMBRD1, and KRT8 
were selected as prognostic biomarkers. The prediction of the risk model was validated to be reliable. Cox 
independent prognostic analysis revealed that risk score and stage were independent prognostic factors in 
LUAD. Furthermore, the nomogram and calibration curves of the independent prognostic factors performed 
well. Differential analysis of ICIs revealed CD276, ICOS, PDCD1LG2, CD27, TNFRSF18, TNFSF9, 
ENTPD1, and NT5E to be expressed differently in the low- and high-risk groups. The IC50 values of 12 
chemotherapeutic drugs, including epothilone.B, JNK.inhibitor.VIII, and AKT.inhibitor.VIII, significantly 
differed between the two risk groups. KRT8 and TFAP2A were highly expressed, while GATA2 and LMBRD1 
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Introduction

Lung cancer is the most common type of cancer in the 
world. It is associated with poor prognosis, and is the 
leading cause of cancer mortality, accounting for more than 
one million deaths annually (1,2). Lung adenocarcinoma 
(LUAD) is the most common subtype of this tumor, 
accounting for approximately 40% of all lung cancer cases, 
and its frequency has been continually increasing (3,4). 
Genes encoding epidermal growth factor receptor and Ki-
ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) 
are the most frequently mutated genes in LUAD (5). The 
overall survival rate of LUAD patients is less than 5 years, 
but has markedly improved due to recently emerged targeted 
therapies that employ “precision medicine” (6). Indeed, the 
predictive effect of oncogenic driver mutations with targeted 
therapies is a promising therapeutic modality. In the era 

of precision medicine, identifying new therapeutic targets 
requires us to recognize key genes driving carcinogenesis. 
Discovering more effective prognostic indicators and 
therapeutic methods for LUAD is absolutely essential.

Lysosomes are organelles composed of an acidic lumen, 
which contains several hydrolases, including nucleases, 
proteases, phosphatases, and lipases (7), and a phospholipid 
monolayer membrane. Lysosomes play an important 
role in many diseases. They participate in the occurrence 
and development of atherosclerotic plaques, and serve as 
the key nodes connecting lipid degradation, autophagy, 
apoptosis, inflammatory bodies, lysosomal biogenesis, and 
macrophage polarization. Research aimed at preventing 
and treating atherosclerosis is focused on lysosomes and 
mammalian target of rapamycin signaling (8). Changes 
in lysosome-related genes (LRGs) in Parkinson’s disease 
inhibit the degradation of misfolded proteins and damage 
lysosomal function (9,10). In tumor-related diseases, 
the activity of lysosomes is related to the phenotype of 
malignant cells. Lysosomes regulate tumor cell proliferation 
by manipulating growth factor signals and providing 
nutrition (11). The upregulation of cathepsin in lysosomes 
is related to tumor migration, invasion, and metastasis, 
indicating tumor progression and poor prognosis. Many 
cathepsins have been identified as prognostic markers or 
therapeutic targets (12,13). In addition, lysosomes mediate 
the development of radiation and chemotherapy resistance 
in tumor cells (11). However, little is known about the roles 
of lysosomes and LRGs in LUAD.

This study aimed to construct a prognostic model 
comprising LRGs. The relationships between the model 
and immunity as well as mutation were analyzed. Overall, 
this study found that LRGs can help predict the prognosis 
of LUAD patients and may guide immunotherapy. We 
present this article in accordance with the TRIPOD 
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reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-23-14/rc). The analytical flow of 
this study is detailed in Figure S1.

Methods

Data source

RNA-seq data of The Cancer Genome Atlas (TCGA)-
LUAD cohort retrieved from Genomic Data Commons 
Portal (https://portal.gdc.cancer.gov/) including 526 LUAD 
tissues and 59 normal samples. After excluding samples with 
incomplete survival or clinical information, 513 LUAD 
samples were selected for screening prognostic genes 
and constructing a prognostic model (available online: 
https://cdn.amegroups.cn/static/public/tlcr-23-14-1.xlsx). 
Furthermore, the GSE13213 dataset, downloaded from the 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/), was utilized for external validation. 
It included expression profile and survival data of 117 
LUAD samples (available online: https://cdn.amegroups.
cn/static/public/tlcr-23-14-2.xlsx). A list of 144 LRGs was 
acquired from Vairo et al. (14). Ethics approval was not 
required for this part of the study as TCGA and GEO are 
public databases. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Identification of differential prognostic LRGs in LUAD

First, differential expression analysis was applied to the 59 
normal and 526 LUAD samples to identify differentially 
expressed genes (DEGs) in LUAD using the limma R 
package (version 3.44.3) with the criteria of P value <0.05 
and |log2(fold change)| >0.5 (15). Then, the 144 LRGs 
were analyzed to obtain prognostic LRGs using univariate 
Cox regression survival analysis with P values <0.05. 
Differential prognostic LRGs were obtained by overlapping 
the DEGs and the prognostic LRGs. The results were 
visualized as a Venn diagram and a heatmap, which were 
plotted using the gglpot2 package (version 3.3.2) and 
Heatmap package (version 4.1.0), respectively.

Enrichment analysis of differential prognostic LRGs in 
LUAD

The differential prognostic LRGs were subjected to 
enrichment analyses using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Gene Ontology (GO) 

resource, which included the sub-ontologies of cellular 
components (CC), molecular function (MF), and biological 
process (BP). ClusterProfiler (version 4.0.2) in R with a 
selection criteria of P<0.05 was used for this purpose (16).  
In addition, GeneMANIA was used to explore the 
interactions among the differential prognostic LRGs, which 
were analyzed through protein-protein interaction (PPI) 
networks from the aspects of physical interactions, co-
expression, predicted, shared protein domains, and genetic 
interactions.

Risk model construction and validation

Of the 513 LUAD samples, 360 and 153 were delegated to 
training and internal validation sets, respectively, based on a 
ratio of 7:3. The prognostic LRGs were subjected to logistic 
regression using least absolute shrinkage and selection 
operator (LASSO) with the following settings: family to 
“binomial” and type.measure to “class”. The feature genes 
obtained were studied by multivariate Cox analysis, and the 
most optimized model genes were selected by the “step” 
method.

The risk score of every LUAD patient, which aimed to 
assess the prognostic value of the risk model, was computed 
from the risk coefficient, obtained through multivariate 
Cox analysis and the expression levels of model genes, using 
the following formula: 1

risk score n
i in

coef x
=

= ×∑ . Based on 
the median risk score, LUAD patients were separated into 
high- or low-risk groups. The efficacy of the risk model 
was further investigated by area under the curve (AUC) of 
the receiver operating characteristic (ROC) curves. The 1-, 
3-, and 5-year survival time node ROC curves were plotted 
using the survivalROC package (version 3.1-12) according 
to the risk model obtained after Cox regression analyses. 
The same evaluation procedures were applied to both the 
internal and external validation sets to further determine 
the effectiveness of the risk model.

Establishment of a nomogram

Patients’ risk scores were compared according to the 
following clinical factors of different subgroups: age (>60 
or ≤60 years), tumor (T) stage (T1, T2, T3, T4), node (N) 
stage (N0, N1, N2, N3), metastasis (M) stage (M0, M1, 
M2), and sex (male or female). T staging indicated the 
extent and size of the primary tumor, N staging indicated 
the spread of the tumor to the lymph nodes, and M staging 
indicated the extent of tumor metastasis. ROC curves were 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-14/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-14/rc
https://cdn.amegroups.cn/static/public/TLCR-23-14-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-23-14-1.xlsx
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cdn.amegroups.cn/static/public/tlcr-23-14-2.xlsx
https://cdn.amegroups.cn/static/public/tlcr-23-14-2.xlsx
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employed to further analyze the effects of the combination 
of the risk score and clinical factors.

Univariate Cox independent prognostic analysis was used 
to investigate the prognosis of LUAD patients based on 
the aforementioned clinicopathological characteristics, and 
those with P>0.05 were further input into the risk model to 
perform multivariate Cox independent prognostic analysis.

The cph function (rms package, version 6.1.0) was 
employed to construct an independent prognostic model 
from the clinicopathological factors screened out using 
multivariate Cox analysis. Finally, the nomogram was 
plotted to predict the 1-, 3-, and 5-year survival rates 
of LUAD patients, and was verified using the overall 
calibration curve.

Functional enrichment analyses

From the C5:GO (BP + CC + MF) and C2:CP:KEGG 
gene sets downloaded from Molecular Signatures Database 
v7.4 (https://www.gsea-msigdb.org), all genes from the 
risk groups in TCGA were subjected to gene set variation 
analysis (GSVA) to perform GO and KEGG enrichment 
analyses. Common functions and pathways were explored 
with the screening criteria of false discovery rate <0.25 and 
|normalized enrichment score| >1.

Analysis of immunotherapy response and mutation in the 
risk groups

The proportions of both stromal and immune cells in 
a tumor sample were obtained from the sum of quality 
expression determined by the Estimation of Stromal and 
Immune cells in Malignant Tumor tissues using Expression 
data (ESTIMATE) algorithm. The stromal, immune, and 
combined scores can also be analyzed separately. Immune 
cells or immune function as well as immune pathway 
activities within each sample were explored using single 
set gene sample enrichment analysis (ssGSEA) according 
to the immunocompetence. Before performing subsequent 
statistical analysis, ssGSEA was applied to the expression 
profile to obtain the rank value of each gene.

To investigate the immunotherapy response in the high- 
and low-risk groups, Tumor Immune Dysfunction and 
Exclusion (TIDE), rank-sum test, and differential analysis 
were applied to immune checkpoint inhibitors (ICIs). TIDE 
is a prediction tool for ICI responses. The differences in 
immunotherapy sensitivities between the two risk groups 
were estimated using TIDE, and the TIDE scores were 

applied to the rank-sum test. In addition, the corresponding 
expression of each reported ICI was extracted, and 
differential analysis was conducted in the high- and low-risk 
groups.

Gene mutation differences between the risk groups were 
explored using the maftools R package based on single 
nucleotide polymorphism mutation site data for LUAD. 
Subsequently, the tumor mutation burden (TMB) of each 
LUAD sample was computed using the tmb function in 
the maftools package, and compared between the two risk 
groups. Simultaneously, the relationship between TMB and 
risk score was analyzed. Based on the median TMB score, 
LUAD patients were classified into high-TMB or low-
TMB groups, and the combined survival curves of these 
groups were plotted after Kaplan-Meier survival analysis.

Drug susceptibility analysis

The half maximal inhibitory concentration (IC50) values 
of 56 common chemotherapy drugs were obtained using 
the pRRophetic package in R (17), and the rank-sum test 
and ggplot2 were employed to compare and visualize 
IC50 differences between the high- and low-risk groups 
to further investigate the feasible guiding significance of 
patient risk scores for chemotherapy.

Analysis of prognostic biomarkers

Gene Transcription Regulation Database (https://gtrd.
biouml.org/) was used to predict the genes targeting 
prognostic biomarkers (18), and clusterProfiler in R was 
utilized to explore their potential function (P<0.05 and 
count >2). The PPI network of prognostic biomarkers and 
target genes was constructed using GeneMANIA (https://
genemania.org/) (19).

Clinical samples

Patients who were diagnosed with LUAD and had not 
undergone any radiotherapy or chemotherapy before 
surgery were selected for this study. Six pairs of LUAD 
tissue samples were obtained from the Affiliated Hospital 
of Nantong University between January 2021 and April 
2022. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of the Affiliated 
Hospital of Nantong University (No. 2022-L165) and 
informed consent was taken from all the patients.

https://gtrd.biouml.org/
https://gtrd.biouml.org/
https://genemania.org/
https://genemania.org/
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Cell culture

Human bronchial cells (16HBE) and lung cancer cells 
(H1299, and A549) were purchased from the American Type 
Culture Collection, and cultured in RPMI 1640 (Gibco, 
Thermo Fisher Scientific, Waltham, MA, USA) with 10% 
fetal bovine serum (Gibco) at 37 ℃ under 5% CO2.

Quantitative real-time polymerase chain reaction

Total RNA was extracted using TRIzol (Invitrogen, 
Waltham, MA, USA), and reversely transcribed into 
cDNA using a reverse transcription kit (Vazyme, Nanjing, 
China). Genes were amplified using a SYBR Green System 
(Vazyme), and glyceraldehyde 3-phosphate dehydrogenase 
was used as an internal reference. Relative gene expression 
was calculated by the comparative Ct method (2−ΔΔCt). 
The primer sequences were as follows: human GATA2 
(forward primer: 5'-CGCACAACTACATGGAACCC-3'; 
reverse primer: 5'-CTGCGAGTCGAGGTGATTGA-3'); 
h u m a n  T F A P 2 A  ( f o r w a r d  p r i m e r : 
5 ' - T C C T TA C C T C A C G C C AT C G A - 3 ' ;  r e v e r s e 
primer:  5 '-TGGACTTGGACAGGGACACG-3') ; 
h u m a n  L M B R D 1  ( f o r w a r d  p r i m e r : 
5 ' -CGTGAAGCCCAAATCCAATAT-3 ' ;  r eve r se 
primer: 5'-TGCAGACCACTGCCTTCTCAT-3'); 
h u m a n  K R T 8  ( f o r w a r d  p r i m e r : 
5'-GGTCAAGGCACAGTACGAGGATA-3'; reverse 
pr imer:  5 '-ACTTGGCGTTGGCATCCTTA-3' ) ; 
h u m a n  G A P D H  ( f o r w a r d  p r i m e r : 
5'-CAACGTGTCAGTGGTGGACCTG-3'; reverse 
primer: 5'-GTGTCGCTGTTGAAGTCAGAGGAG-3').

Western blotting

RIPA lysis buffer (Sigma, St. Louis, MO, USA) containing 
a proteinase inhibitor cocktail (Servicebio, Wuhan, 
China) and phenylmethylsulfonyl fluoride (Servicebio) 
was used to extract total protein in tissues. Samples with 
the same protein concentration were resolved on a 12% 
polyacrylamide gel and transferred to a polyvinylidene 
fluoride membrane (Millipore, Burlington, MA, USA). 
Membranes were blocked with protein-free rapid 
sealing solution (Servicebio) at room temperature for 
15 min, incubated with the following antibodies at 4 ℃ 
overnight: GATA2 (1:1,000, Proteintech Cat# 11103-
1-AP, RRID:AB_10914503), TFAP2A (1:1,000, Affinity 

Biosciences Cat# AF0535, RRID:AB_2834124), LMBRD1 
(1:1,000, ABclonal Cat# A15866, RRID:AB_2763294), 
KRT8 (1 :2 ,000 ,  Pro te in tech  Cat#  27105-1-AP, 
RRID:AB_2918117). The membranes were washed with 
Tris-buffered saline (100 mM NaCl, 50 mM Tris-HCl, 
pH 7.6) containing 0.1% Tween 20 thrice for 10 min each, 
probed with anti-rabbit immunoglobulin G (heavy + light) 
[IgG (H + L)] (DyLight 800 Conjugate) (1:30,000, Cell 
Signaling Technology Cat# 5151, RRID:AB_10697505) 
for 2 h at room temperature, and washed again. The 
membranes were scanned and imaged using the Odyssey 
infrared imaging system (LI-COR, Lincoln, NE, USA). 
The intensity of each band was quantitatively determined 
by the ImageJ analysis system (Wayne Rasband, National 
Institutes of Health, USA).

Validation of human protein atlas (HPA)

Protein expression levels of GATA2, TFAP2A, LMBRD1, 
and KRT8 in carcinoma and normal para-carcinoma tissues 
were discerned through immunohistochemistry (IHC) 
images from the HPA database.

Statistical analysis

Gene expression profile and clinical data for the LUAD 
samples were downloaded from Genomic Data Commons 
Portal or the GEO database. Statistical analysis was 
performed using GraphPad Prism (version 7) and R 
packages. The Student’s t-test and paired t-test were used 
for independent and paired groups, respectively. The 
results for continuous variables were presented as the 
mean ± standard deviation. A P value ≤0.05 was considered 
statistically significant.

Results

Identification of differential prognostic LRGs in LUAD

A total of 5,195 DEGs were identified in LUAD samples 
compared with normal samples, of which 2,942 were 
upregulated and 2,253 were downregulated (Figure 1A,1B). 
Moreover, univariate Cox regression analysis of the 144 
LRGs revealed 23 prognostic LRGs with P<0.05 (Figure 
1C). Finally, overlap analysis between the 5,195 DEGs and 
23 prognostic LRGs yielded nine differential prognostic 
LRGs: TFAP2A, KRT8, KRT18, GATA2, PIK3R1, LMBRD1, 
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Figure 1 Identification of differential prognostic LRGs. (A) Volcano plot of differential genes. (B) Heatmap of differential genes. (C) 
Univariate Cox regression analysis of LRGs. (D) Identification of differential prognostic LRGs. (E) Expression of differential prognostic 
LRGs. CI, confidence interval; LRGs, lysosome-related genes.
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NPC2, LPL, and ASAH1 (Figure 1D,1E).

Functional analyses of the nine differential prognostic 
LRGs

A total of 416 GO terms were enriched in these nine mRNAs. 
Under the BP sub-ontology, response to tumor necrosis 
factor, embryonic organ development, extrinsic apoptotic 
signaling pathway, and epithelial cell apoptotic process were 
mainly enriched; under CC, cell-cell junction, vacuolar 
lumen, and lysosomal lumen were mainly enriched; under 

MF, insulin receptor binding and scaffold protein binding 
were mainly enriched (Figure 2A). KEGG enrichment 
analysis revealed 19 terms that were mainly enriched, such 
as sphingolipid signaling pathway, lysosome, cholesterol 
metabolism, and estrogen signaling pathway (Figure 2B).

The PPI network illustrated the interactions among 
these nine differential prognostic LRGs; for example, KRT8 
co-expressed with KRT18 and DSP, LPL co-expressed with 
PIK3R1, GPIHBP1, and SMIM3. Additionally, physical 
interactions existed between KRT18 and KRT8, PKP2 and 
KRT8, PKP1 and KRT8, PKP1, and KRT18, etc. Genetic 
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interactions existed between PIK3CD and LPL, predicted 
interactions between KRT8 and KRT18, and shared protein 
domains between KRT18 and KRT8 (Figure 2C).

Risk model based on GATA2, TFAP2A, LMBRD1, and 
KRT8 was effective

LASSO regression analysis of the nine differential 
prognostic LRGs yielded eight feature genes (LPL was 
excluded) corresponding to the lowest cross-validation error 
(lambda.min =0.02; Figure 3A,3B). Multivariate Cox analysis 
further demonstrated that the optimal risk model comprised 

GATA2, TFAP2A, LMBRD1, and KRT8. TFAP2A and KRT8 
were used as risk factors, while GATA2 and LMBRD1 as 
protective factors (Figure 3C). The risk score was calculated 
as follows: risk score = 0.20155 × TFAP2A + (−0.25089) × 
GATA2 + (−0.35366) × LMBRD1 + 0.282575 × KRT8. The 
risk curve based on the risk score predicted a worse outcome 
in high-risk patients (Figure 3D). The Kaplan-Meier curve 
revealed that the survival probability of low-risk patients 
was higher (Figure 3E). Furthermore, the AUCs of the 
ROC curve in the training set were all greater than 0.64 at 
1, 3, and 5 years, illustrating the efficiency of the risk model 
(Figure 3F). Finally, the results for the internal and external 
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validation sets were consistent with those of the training set 
(Figure 3G-3L).

Clinical correlation analysis

The violin plots of risk scores versus age, T, N, M, sex, and 
stage demonstrated significant differences among nearly all 
subgroups of T, N, and stage (Figure 4A). Moreover, the AUC 
values of the ROC curves for the combination of risk score 

and all the clinical factors were the best, reaching 0.712, 0.700, 
and 0.687 at 1, 3, and 5 years, respectively (Figure 4B-4D).

Prediction of the nomogram was accurate

Univariate Cox independent prognostic analysis suggested 
T, N, stage, and risk score to be independent prognostic 
factors (P<0.05; Figure 5A). Multivariate Cox independent 
prognostic analysis further trimmed the candidates down to 
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Figure 5 Construction of an independent prognostic model. (A,B) Univariate and multivariate Cox regression analyses for identifying 
independent prognostic factors. (C) Nomogram of the independent prognostic model. (D) Calibration curve of the nomogram. CI, 
confidence interval; OS, overall survival.

stage and risk score (Figure 5B). The importance of staging 
was most probably due to the N stage, which indicated the 
spread of the cancer to the lymph nodes. Moreover, the 
concordance index (C-index) of the nomogram was 0.6789, 
and the slopes of 1-, 3-, and 5-year nomogram calibration 
curves were 0.7034, 0.3816, and 0.1899, respectively, 
indicating the accuracy of this model’s prediction (Figure 
5C,5D).

GSVA enrichment analysis

The GSVA results highlighted the effects of the risk score 
on tumor development. In the GO enrichment analysis, 
1,276 and 2,470 pathways were significantly enriched in 
the high- and low-risk groups, respectively. Keratinization, 
RNA b ind ing ,  mi to t i c  c e l l  c yc l e ,  ke ra t inocy te 
differentiation, cell cycle process, ribonucleoprotein 
complex, cell cycle, chromosome segregation, intermediate 
filament, and cornification were significantly enriched in 
the high-risk group. Twenty-four terms, such as external 
side of plasma membrane, molecular transducer activity, 
regulation of immune system process, intrinsic component 

of plasma membrane, adaptive immune response, 
complement activation cell surface, side of membrane, 
regulation of immune response, and positive regulation 
of immune system process, were mainly enriched in the 
low-risk group (Figure 6A). KEGG enrichment analysis 
revealed 23 pathways to be enriched in the high-risk 
group, including spliceosome, cell cycle, and proteasome 
among others, and 55 pathways to be enriched in the low-
risk group, such as asthma, hematopoietic cell lineage, and 
autoimmune thyroid disease among others (Figure 6B).

Tumor immune cells infiltration and differential ICIs

ESTIMATE and ssGSEA were employed to explore the 
tumor microenvironment in LUAD. The stromal scores, 
immune scores, and ESTIMATE combined scores of the 
high-risk group were significantly lower than those of the 
low-risk group (Figure 7A). Additionally, ssGSEA analysis 
illustrated that most of the immune cell scores, such as those 
of activated dendritic cells (aDCs), B cells, DCs, human 
leukocyte antigen (HLA), and mast cells, were significantly 
higher in the low-risk group, reflecting that immune 
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function differed between the risk groups (Figure 7B,7C).
TIDE scores, which reflect the immunotherapy response, 

varied significantly between the risk groups (P=0.01; 
Figure 7D). Moreover, the expression of CD276, ICOS, 
PDCD1LG2, CD27, TNFRSF18, TNFSF9, ENTPD1, 
ENTPD1, HAVCR2, NCR3, and NT5E dif fered 
significantly between the two risk groups (Figure 7E).

Correlations between mutation and survival

The overall presentation of the TCGA-LUAD mutation 

data revealed missense mutations and single nucleotide 
polymorphisms to be the top variant classification and 
variant type, respectively. Moreover, the median variant 
value in each sample was found to be 162, and the top 10 
mutated genes were TTN, MUC16, CSMD3, RYR2, LRP1B, 
TP53, USH2A, ZFHX4, XIRP2, and KRAS (Figure 8A). 
The samples of each group were extracted after merging 
the mutation data with the high-risk and low-risk groups, 
and the top 20 genes with the highest mutation frequency 
were plotted on a waterfall map. In the high-risk group, 
240 of 252 samples (95.24%) carried mutations, whereas in 
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the low-risk group, 218 of 248 samples (87.9%) harbored 
mutations (Figure 8B,8C). Both TP53 and TTN exhibited 
the highest mutation frequency of all genes in both the risk 
groups.

The high-risk group had a significantly higher TMB 
(P=0.0015; Figure 8D). The correlation between TMB and 
risk score was weak-to-moderate, but significant (P<0.05; 
Figure 8E). Kaplan-Meier survival curves illustrated that the 
survival probabilities of the “low-risk score + high-TMB” 
and “low-risk score + low-TMB” groups were significantly 
higher (P<0.0001; Figure 8F).

Chemotherapy drugs performed differently

Among the 56 chemotherapeutic drugs investigated, 12, 
including A.443654, BIRB.0796, GW843682X, DMOG, 
JNK.inhibitor.VIII, JNJ.26854165, AUY922, BMS.708163, 
BX.795, epothilone.B, BIBW2992, and AKT.inhibitor.VIII, 
exhibited significantly different IC50 values between the two 
groups (P<0.05; Figure 9).

Relevance of TFAP2A and GATA2 in LUAD

TFAP2A  was shown to cr i t ical ly  promote LUAD 
progress ion,  whi le  GATA2  express ion was  found 
significantly reduced in lung cancer (20,21). Therefore, 
we investigated the relationship between these prognostic 
biomarkers and LUAD. First, we identified 1,338 genes 
targeting TFAP2A and 5,240 genes targeting GATA2, 
and considered their intersection to obtain 514 common 
target genes, whose potential functions were mined 
(Figure S2A, available online: https://cdn.amegroups.cn/
static/public/tlcr-23-14-3.xlsx). TFAP2A was found to be 
associated with pathways related to cell replication, protein 
modifications, and metabolic processes, such as negative 
regulation of the cell cycle, cell cycle checkpoint signaling, 
carbon metabolism, and tricarboxylic acid cycle among 
others (Figure S2B). GATA2 was found to be associated 
with RNA splicing, ribonucleoprotein complex biogenesis, 
mitochondrial matrix and immune-related pathways, and 
p53 signaling pathway among others (Figure S2C). The 
PPI network of TFAP2A, GATA2, and their interacting 
genes revealed strong interactions between TFAP2A and 
TFAP2D, as well as GATA2 and ZFPM1 (Figure S2D). 
Furthermore, the target genes of GATA2 were found 
to be mainly correlated with the positive regulation of 
transcription by RNA polymerase II, endothelial cell 
migration, and cell differentiation among other processes. 

Finally, we explored the fluctuations in TFAP2A and GATA2 
expression in different sub-groups of clinical factors. 
TFAP2A expression significantly differed between males 
and females, as well as between T1 and T2, while GATA2 
expression significantly differed by age, sex, and between 
T1 and T3 (Figure S2E). In summary, TFAP2 and GATA2 
were linked with the prognosis of LUAD patients.

External experimental verification

The mRNA levels of KRT8 and TFAP2A were upregulated, 
while those of GATA2 and LMBRD1 were downregulated in 
A549 and H1299 cell lines compared with human bronchial 
epithelial cells (Figure 10A). In addition, Western blot 
analysis also confirmed that the expression of KRT8 and 
TFAP2A proteins in six cancer tissues was higher than that 
in tumor-adjacent tissues, while the expression of GATA2 
and LMBRD1 proteins was lower than that in tumor-
adjacent tissues (Figure 10B). HPA database was used to 
show protein levels of four genes. Compared with the 
normal samples, the protein expression levels of KRT8 and 
TFAP2A were higher, while the expression level of GATA2 
and LMBRD1 was lower in the LUAD samples (Figure S3).

Discussion

The role of LRGs in LUAD has never been systematically 
investigated before. An important hallmark of cancer is 
the increased requirement for new biomass. Lysosomes can 
contribute to the synthesis of macromolecular precursors. 
The activity of lysosomal enzymes was shown to be lower in 
adjacent normal tissues compared with tumor tissues (22). 
Indeed, many cancer biomarkers result from lysosomal 
function and dysfunction (23). Therefore, understanding 
lysosomal changes that occur in cancer is critical to develop 
therapies targeting this organelle. Nowadays, cancer 
immunotherapy is becoming one of the main treatments for 
lung cancer (24). Previous findings in this domain sparked 
our interest in exploring the predictive and prognostic value 
of LRGs, as well as their relevance to anti-tumor immunity 
in LUAD.

In this study, nine genes or prognostic factors were found 
to be differentially expressed between LUAD and normal 
samples. LASSO regression and multivariate Cox analysis 
highlighted four of these—GATA2, TFAP2A, LMBRD1, 
and KRT8—to be significant, and the model constructed 
using these four prognostic biomarkers was found to be the 
optimal model. 

https://cdn.amegroups.cn/static/public/TLCR-23-14-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-23-14-3.xlsx
https://cdn.amegroups.cn/static/public/tlcr-23-14-3.xlsx
https://cdn.amegroups.cn/static/public/TLCR-23-14-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-14-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-14-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-14-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-14-Supplementary.pdf
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Figure 9 Analysis of drug sensitivities in the high- and low-risk groups. IC50, half maximal inhibitory concentration.

GATA2 encodes a zinc finger transcription factor that 
plays a crucial role in hematopoietic cell development and 
maintenance (25). Studies have revealed low expression 
of GATA2 in lung cancer (26). However, knockdown of 
GATA2 in KRAS mutant tumors did not affect the survival 
of malignant cells (27). GATA2 regulates endothelin-1 
expression in endothelial cells (28). TFAP2A, a transcription 
factor from the activator protein 2 (AP-2) family, plays 
an important role in carcinogenesis and neural crest 
development (29-31). AP-2 family transcription factors 
regulate the cell cycle, proliferation, and apoptosis during 
embryogenesis (32). Previously, TFAP2A was found to 

suppress the proliferation of lung cancer, induce apoptosis, 
and enhance chemosensitivity (33). Contrastingly, 
TFAP2A was also found to play a cancer-promoting role 
by upregulating telomerase to resist apoptosis, besides 
promoting the proliferation, invasion, and migration of 
lung cancer by increasing inositol-trisphosphate 3-kinase A 
(34,35). LMBRD1 encodes a membrane protein required for 
the transport and metabolism of cobalamin, and its mutations 
are related to the vitamin B12 metabolic disorder (36). KRT8 
is a member of the type II keratin family, and is essential 
for the development and metastasis of LUAD (37). Wang 
et al. found that KRT8 was over-expressed in tumor tissues 
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compared with normal tissues, and was associated with 
poorer prognosis in LUAD (38). The findings from this 
study are consistent with those from previous studies.

TFAP2A has been found to be a risk factor and GATA2 
a protective factor. We analyzed the biological functions 
that are specifically regulated by each of these factors, 
leading to specific observations at the clinical level. The 
genes targeting TFAP2A were enriched in pathways 
related to cell replication and metabolic processes such as 
negative regulation of cell cycle and cell cycle checkpoint 
signaling among others. The target genes of GATA2 were 
mainly enriched in processes like the positive regulation 
of transcription by RNA polymerase II, endothelial cell 
migration, and cell differentiation among others. Although 
different subtypes of clinical factors did not exhibit 
significant differences, all these factors were shown to 
possess significant prognostic value.

We found that p53 and TTN showed the highest mutation 
frequencies in the high-risk and low-risk groups, respectively. 

Both these genes are related to immunotherapy (39).  
Abnormal P53 function in cancer can affect the recruitment 
and activity of T cells, leading to immune escape and tumor 
progression (40). The expression level of TTN is not only 
positively correlated with the infiltration level of CD8+ and 
CD4+ T cells but also closely related to TMB and immune 
checkpoint block (41,42).

Nowadays, immunotherapy has become a promising 
approach to treat LUAD. Establishing a new way 
of  ident i fy ing  pat ients  that  might  benef i t  f rom 
immunotherapy is enormously challenging (43). The 
immune microenvironment was shown to be related to 
lysosomal activities in cells like DCs and macrophages (11). 
Additionally, toll-like receptors on lysosomal membranes 
can sense various microbial and host-derived ligands, and 
initiate inflammatory signaling (44). Both follicular B 
cells and mature DCs can play an important role in the 
protective immune response, and are associated with higher 
survival in patients of non-small cell lung carcinoma (45). 
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HLA participates in antigen presentation and plays an 
important role in antitumor immunity. The downregulation 
of HLA-I in lung cancer was demonstrated to be closely 
related to tumor immune escape (46,47). In this study, most 
immune cell scores, such as those of antigen presenting 
cell co-inhibition, B cells, DCs, HLA, and mast cells, were 
significantly higher in the low-risk group, indicating that 
immune function differed between the two groups. GO 
enrichment analysis revealed that immune receptor activity, 
B cell receptor signaling, major histocompatibility complex 
protein, and major histocompatibility complex class II were 
enriched in the low-risk group, reflecting the enrichment 
of the immune response. In conclusion, these results 
suggest that patients in the low-risk group displayed better 
responses to immunotherapy.

This study has some limitations. First, we did not study 
the underlying mechanisms of the four prognostic LRGs 
identified in this study. In vitro and in vivo experiments 
can corroborate the findings of this study. Second, the 
prognostic model was constructed and validated based on 
TCGA and GEO databases. Multi-center, prospective 
studies should be conducted in the future.

Conclusions

This is the first study to construct a prognostic model using 
LRGs. The model predicted the prognosis and survival 
outcome of LUAD patients with high accuracy. In addition, 
the prognostic model was found to be related to TTN and 
TP53 mutations, TMB index, immune microenvironment, 
immunotherapy response analysis, and various anticancer 
drugs in LUAD patients. We believe that these findings may 
provide valuable insights for further research on lysosomes 
and lung cancer.
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