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1 | INTRODUCTION

Sickle cell disease (SCD) is the most prevalent inherited monogenic disease worldwide 

caused by a single nucleotide mutation in the gene coding for β-globin chain. This results in 

an abnormal form of hemoglobin, known as hemoglobin S (HbS). In low-oxygen conditions, 

HbS forms polymers in red blood cells (RBCs), making them rigid, adhesive, and prone to 

lysis [1] The primary pathologies of SCD are hemolytic anemia and vaso-occlusive episodes 

(VOEs), with other sequelae of inflammatory vasculopathy, coagulation activation and 

thromboembolism, stroke, acute chest syndrome (ACS), multiorgan failure, and shortened 

lifespan [1–3]; SCD affects more than 4 million people worldwide (85% of cases are 

concentrated in Sub-Saharan Africa and India), with approximately 100 000 patients in the 

United States, with an increasing frequency of reported cases in the United Kingdom and 

Europe [4,5].

VOEs are caused, in part, by the formation of multicellular aggregates of neutrophils, 

platelets, and sickled RBCs, which bind to adhesion molecules, including the well-described 

interactions of these cells with P-selectin and von Willebrand factor (VWF) on the activated 

endothelium [1,4]. These aggregates form vascular occlusions that can lead to tissue injury 

from ischemia reperfusion and release of cytokines, reactive oxygen species, and damage 

associated molecular patterns, such as free hemoglobin and heme [1]. Although VOEs can 

result in the clinical presentation of a pain crisis, the processes described here leading 

to end-organ damage are often distinct from a clinical syndrome of acute or chronic 

pain. Current treatment options for SCD are limited to hydroxyurea (which increases fetal 

hemoglobin production and limits HbS polymerization), L-glutamine (an antioxidant that 

reduces painful VOEs), crizanlizumab (a monoclonal antibody targeting P-selectin), and 
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voxelotor (a small molecule that alters HbS binding to oxygen to decrease polymerization) 

[4]. Unfortunately, these treatments reduce the frequency of VOEs by only approximately 

45% [6]. Although prospective studies are evaluating the potential benefits for end-organ 

health, neither crizanlizumab nor voxelotor has been demonstrated to prevent ACS or stroke. 

During an acute VOE, patients receive supportive therapy, such as pain medication (often 

in the form of opioids) and hydration [4], and all of the currently approved agents are 

preventative rather than therapeutic. Clearly, a better understanding of the mechanisms of 

VOEs and downstream consequences is crucial, and it is likely that a multimodal approach 

is the best therapeutic strategy to treat the complex pathophysiology of the disease. One 

pathway that has received increasing attention is the VWF–ADAMTS-13 axis.

2 | VWF–ADAMTS-13 IN SCD

The adhesion molecule VWF and its regulatory protease ADAMTS-13 (a disintegrin and 

metalloproteinase with thrombospondin type 1 motif, number 13) play an important role in 

inflammatory and thrombotic conditions. The form of VWF present in endothelial cells is a 

multimerized polymer referred to as ultralarge VWF (ULVWF), and under flow conditions, 

these ULVWF multimers tend to form long strings and mesh-like structures within the 

vasculature [7]. The presence of ULVWF multimers was described first in patients with 

relapsing thrombotic thrombocytopenic purpura (TTP) [8]. The generation of plasma VWF 

multimers, which are found in a variety of sizes in vivo, is a result of proteolysis of VWF 

by ADAMTS-13 [9], a process that requires shear stress-induced unfolding of VWF [10,11]. 

ADAMTS-13 is a constitutively active enzyme with no known physiologic inhibitors, and its 

cleavage of ULVWF to smaller multimers is a requisite for normal hemostasis [12]. Under 

physiologic intravascular shear stresses, VWF undergoes a conformational change from a 

globular form to a more linear, extended chain, which in turn exposes cleavage sites for 

ADAMTS-13 [10,13,14]. This physiology creates a self-limiting system commonly termed 

the VWF–ADAMTS-13 axis.

Even before the discovery of numerous endothelial and subendothelial ligands implicated in 

RBC adhesion [15], it had been demonstrated that clinical disease severity in SCD correlates 

with increased adhesion of erythrocytes to the endothelium [16]. These early findings 

prompted a sustained and ongoing interest in targeting these interactions for therapeutic 

purposes, with several such drugs currently being investigated [17]. The introduction of 

crizanlizumab in 2019 established an important precedent in the SCD treatment paradigm 

by demonstrating therapeutic impact on VOEs and quality of life despite not addressing 

the underlying hemoglobin disorder directly but rather an important cell adhesion ligand 

[12]. Despite some notable failures to treat acute VOEs with similar agents [18,19], the 

success of crizanlizumab has indelibly imprinted on the clinical and research landscape, 

with more promising targets on the horizon. One such potential therapeutic target is VWF, 

which is implicated in adhesion and thrombotic processes in SCD [20–22]. The chronic 

vascular inflammation present in persons with SCD stimulates the secretion of VWF, and 

these patients demonstrate abnormal in vivo dynamics of ADAMTS-13 and VWF [14,20,23] 

Specifically, ULVWF multimers are present in higher proportion both at steady state and 

in crisis in persons with SCD than in persons without SCD [24,25]. In vitro studies 

investigating this phenomenon have shown that free hemoglobin and thrombospondin 1 
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bind to VWF, transiently inhibiting its cleavage by ADAMTS-13. Although this seems to be 

a primary driving mechanism, lower ADAMTS-13 activity is observed in a subset of people 

with SCD as well, which is attributed to possible exhaustion and reduced synthesis of the 

enzyme, as is observed in thromboinflammatory conditions such as sepsis [26–29]. These 

mechanisms seem to cumulatively explain the abnormal in vivo dynamics and presence of 

larger VWF multimers [29,30], which have, in turn, been long recognized to adhere more 

readily to RBCs [21,31].

3 | TARGETING THE VWF–ADAMTS-13 AXIS TO TREAT VOES

Evidence has accumulated in recent years suggesting that the VWF–ADAMTS-13 axis 

might play a role in the pathology of VOEs in SCD. Because VWF can adhere sickle RBCs 

to the endothelium in vitro [21] and bind to platelet GPIb in patients with SCD during VOE 

[20], it suggests that VWF can mediate the events involved in the pathogenesis of VOEs. 

In a recent study by Shi et al. [32] published in Proceedings of the National Academy of 

Sciences, this hypothesis was investigated in a mouse model of SCD via comprehensive 

experiments. The authors used a well-characterized model of VOEs induced by tumor 

necrosis factor α (TNFα) [33,34] in humanized sickle cell mice [22]. In this model, TNFα 
administration worsens anemia and thrombocytopenia, increases plasma levels of VWF 

antigen, and leads to the formation of VWF-positive vascular occlusions and ischemic 

and necrotic changes in several organs of mice with SCD (HbSS) mice. To determine the 

role of (endothelial) VWF in this model, the authors transplanted HbSS bone marrow into 

von Willebrand factor knockout (VWFKO) mice, generating VWF-deficient sickle mice 

VWF-deficient sickle mice exhibited less severe anemia and a significant reduction in 

vascular occlusions in the tissue. To investigate whether ADAMTS-13–mediated cleavage of 

VWF contributes to VOEs, HbSS mice received recombinant ADAMTS-13 (rADAMTS-13) 

either before or after TNFα challenge. Both strategies significantly reduced the number of 

vascular occlusions and organ damage in HbSS mice. These findings are notable because 

they suggest that rADAMTS-13 might be beneficial as a treatment for a patient during a 

VOE to protect against organ damage. The authors also found that rADAMTS-13 reduced 

fibrin deposition after TNFα administration, suggesting that it may also reduce thrombotic 

complications in SCD.

Coincidentally, the VWF–ADAMTS-13 axis was investigated in another recent study in 

which a VOE was induced by exposing Townes HbSS mice to hypoxia/reoxygenation (H/R) 

[35]. In this model, H/R increases VWF antigen and reduces ADAMTS-13 activity, thereby 

causing acute organ damage and inflammation. Consistent with the article by Shi et al. [32], 

this study found that administration of rADAMTS-13 before H/R attenuated inflammation, 

oxidative stress, and organ damage and reduced the presence of thrombi in the vasculature. 

A limitation of this study is that rADAMTS-13 was only given prophylactically, and future 

studies should focus on administration after a VOE is induced. These 2 recent studies build 

on an earlier observation that heme-induced stasis was reduced by an anti-VWF antibody in 

HbSS mice [36]. Altogether, 3 independent models of VOEs in HbSS mice support a role 

for the VWF–ADAMTS-13 axis. Given the recent advances in the treatment of TTP using 

rADAMTS-13, this is an interesting therapeutic strategy for SCD.
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4 | POTENTIAL IMPACT AND FUTURE DIRECTIONS

Currently, a phase 1 clinical trial is investigating the role of this pathway in SCD. The 

rADAMTS-13 In Sickle Cell Disease (RAISE) study is enrolling adult patients with 

SCD (NCT 03997760). This is a double-blind, placebo-controlled, phase 1 interventional 

study investigating the safety profile of rADAMTS-13 infusion and determining the 

pharmacokinetics of ADAMTS-13 activity and other disease severity markers. The current 

study evaluated the use of rADAMTS-13 both for prophylaxis and the treatment of 

VOEs. Successful treatment of VOEs would fill a much-needed gap in SCD management. 

rADAMTS-13 is also currently being evaluated for its use in individuals with congenital 

TTP in phase 3 trials (NCT03393975 and NCT04683003).

SCD is a hypercoagulable state with a high incidence of venous thromboembolism [3,37] 

and increased levels of plasma biomarkers of coagulation activation, such as thrombin-

antithrombin complexes and D-dimer [38,39]. As noted in the preclinical models described 

earlier in the article, rADAMTS-13 attenuated the formation of fibrin- and platelet-positive 

thrombi in the vasculature of HbSS mice during an experimental VOE [32,35]. Future 

studies should investigate the effects of rADAMTS-13 on the biomarkers of coagulation 

activation and other thrombotic complications as well as the effect of rADAMTS-13 on the 

formation of multicellular aggregates, ACS, and other complications of SCD.

Notably, ADAMTS-13 might not be the only pathway by which VWF is cleaved. Using 

plasma of patients with SCD in an in vitro system, Hunt et al. [40] found ADAMTS-13–

independent cleavage of VWF. Their data suggest that other proteases, such as matrix 

metallopeptidase 9, may also play a role in VWF processing in SCD. Recent work by 

de Maat et al. [41] has also shown the ability of plasmin to cleave VWF, a strategy that 

has been employed to degrade microthrombi. This strategy could feasibly be used for any 

VWF-mediated microvascular process, although it has no preclinical or clinical data on 

SCD.

A functioning VWF–ADAMTS-13 axis is known to maintain endothelial integrity and 

function [14]. It is unknown whether exogenous administration of ADAMTS-13 in persons 

with an elevated inflammatory milieu could adversely affect endothelial health. For example, 

persons with type 3 von Willebrand disease and acquired von Willebrand disease may 

develop arteriovenous malformations, a long-observed clinical phenomenon now understood 

to be explained by the demonstrated role of VWF in the regulation of angiogenesis [42–

44]. Cleaving ULVWF multimers could conceivably lead to bleeding complications as 

well given the primacy of large multimers in hemostasis. However, excessive bleeding 

has not been observed to date in studies evaluating the use of rADAMTS-13 in patients 

with congenital TTP. Although reassuring, the administration of the drug in that case 

represents restoration of a more profoundly perturbed VWF–ADAMTS-13 axis than that 

seen in SCD and warrants careful research [45]. Given the benefits of rADAMTS-13 shown 

in mouse models in recovery after ischemic stroke and correction of hypercoagulability 

associated with COVID-19 [46], it is likewise possible that clot stability could be affected 

because venous thromboembolism in SCD tends to be more resistant to fibrinolysis by 

tissueplasminogen activator [47].
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It is additionally unknown whether alloimmunization to exogenous rADAMTS-13 could 

develop, as in the case of persons with nonsevere hemophilia receiving exogenous 

factor. If one were to develop an inhibitory antibody to rADAMTS-13, a TTP-like 

physiology could potentially be produced iatrogenically in persons without a congenital 

absence of ADAMTS-13 [48]. Although there are concerns with any potentially promising 

therapy, these are largely speculative at this point. Similar concerns existed before the 

clinical adoption of crizanlizumab and voxelotor; however, as others have noted in recent 

commentary, they have not manifested in our patients [49,50].

With promising preclinical data such as these driving the field, we remain cautiously 

optimistic about the potential of therapy to target the VWF–ADAMTS-13 axis in SCD, 

a disease in which mitigating therapies remain potentially critical.
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