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Abstract 

Obstructive sleep apnea (OSA) is a highly prevalent condition characterized by episodes of partial or complete breath cessation 
during sleep that induces sleep fragmentation (SF). One of the frequent manifestations of OSA is the presence of excessive daytime 
sleepiness (EDS) associated with cognitive deficits. Solriamfetol (SOL) and modafinil (MOD) are wake-promoting agents commonly 
prescribed to improve wakefulness in OSA patients with EDS. This study aimed to assess the effects of SOL and MOD in a murine 
model of OSA characterized by periodic SF. Male C57Bl/6J mice were exposed to either control sleep (SC) or SF (mimicking OSA) during 
the light period (06:00 h to 18:00 h) for 4 weeks, which consistently induces sustained excessive sleepiness during the dark phase. 
Both groups were then randomly assigned to receive once-daily intraperitoneal injections of SOL (200 mg/kg), MOD (200 mg/kg), or 
vehicle for 1 week while continuing exposures to SF or SC. Sleep/wake activity and sleep propensity were assessed during the dark 
phase. Novel Object Recognition test, Elevated-Plus Maze Test, and Forced Swim Test were performed before and after treatment. SOL 
or MOD decreased sleep propensity in SF, but only SOL induced improvements in explicit memory, while MOD exhibited increased 
anxiety behaviors. Chronic SF, a major hallmark of OSA, induces EDS in young adult mice that is mitigated by both SOL and MOD. SOL, 
but not MOD, significantly improves SF-induced cognitive deficits. Increased anxiety behaviors are apparent in MOD-treated mice. 
Further studies aiming to elucidate the beneficial cognitive effects of SOL are warranted.
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Graphical Abstract 

Statement of Significance

Excessive sleepiness is a frequent if not universal manifestation of sleep fragmentation as occurs in obstructive sleep apnea and 
other sleep disorders. Novel wake-promoting agents have recently emerged, but their sleep, cognitive and behavioral effects have 
not been compared between them. Here, we show that solriamfetol and modafinil reduce sleepiness but induce different effects 
on cognitive and behavioral functions.

Introduction
Obstructive sleep apnea (OSA) affects 9%–38% of the general pop-
ulation and is associated with increased mortality and significant 
morbidities including cardiovascular and metabolic diseases, as 
well as cognitive and behavioral impairments [1–7]. OSA is char-
acterized by increased upper airway resistance and collapsibility 
during sleep. Recurrent collapse of the airway induces both inter-
mittent hypoxia (IH) and episodic arousals, leading to sleep frag-
mentation (SF) [8, 9]. Several human studies have documented 
significant changes in emotional and mood regulation, as well as 
in cognitive function in patients with OSA [10–15]. Although asso-
ciated with excessive daytime sleepiness (EDS), such deficits may 
extend beyond the functional deficits imposed by the underlying 
EDS [13, 14, 16–19]. Classic EDS-induced impairments in daytime 
functioning included reduced attention, cognitive dysfunction, 
impaired performance of psychomotor tasks, reduced health-re-
lated quality of life, and increased risk of motor vehicular and 
workplace accidents [10, 16, 18–21]. Of note, EDS is a prominent 
and frequently presenting symptom of OSA and can persist in a 
large proportion of patients when treated with continuous posi-
tive airway pressure or other therapies [22–27].

To remediate the residual EDS, stimulants or wake-pro-
moting drugs have been commonly used in patients with 
OSA [7]. Traditional stimulants based on amphetamines and 

methylphenidate have been extensively used, but even though 
they are effective, rebound hypersomnolence and several major 
side effects related to the drug are commonly present and limit 
their more extensive adoption [28, 29]. Consequently, more novel 
wake-promoting agents have been advocated either palliate EDS 
in untreated patients with OSA or as an adjuvant therapy in 
treated patients with OSA with residual EDS [30, 31]. Modafinil 
(MOD), a low-potency inhibitor of the dopamine transporter, was 
developed to increase wakefulness in the treatment of narco-
lepsy [32] and is extensively used to improve wakefulness in adult 
patients with excessive sleepiness (ES) associated with narcolepsy, 
OSA, or shiftwork disorder [1–10, 33, 34]. Some studies reported 
that MOD induced an improvement in working memory, cognitive 
control, and attention in healthy sleep-deprived volunteers, and 
in rodents [35]. The drug is also extensively used to treat residual 
EDS in patients with OSA [31, 36–41]. However, MOD use is fraught 
with some limitations in OSA whereby 49% of patients with EDS 
fail to respond to this treatment [42, 43]. Efforts to find alterna-
tive options resulted in the development of solriamfetol (SOL), a 
low-potency dopamine and norepinephrine reuptake inhibitor 
[44–46], which has now gone through several extensive clinical 
trials [26, 27, 46–53] and can be used either as initial therapy or as 
replacement therapy in patients who fail treatment or experience 
side effects with other wake-promoting agents or stimulants [26, 
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44, 45, 54–56]. However, there is only scarce information regarding 
head-to-head comparisons between MOD and SOL in a murine 
model of OSA.

In the context of OSA, although both SF and IH likely con-
tribute in a dose-dependent manner to the cognitive deficits, it 
is virtually impossible to extricate their relative contributions in 
patients with OSA because SF and IH are concurrently present 
[57]. To overcome this problem, a mouse model of SF patterns 
mimicking the episodic arousals recorded in patients with OSA 
has been generated, and exhibit deficits across several standard 
behavioral tests in exposed animals [57–69]. Thus, the objectives 
of this study were primarily to assess effects of MOD and SOL on 
sleep and sleep propensity in mice exposed to chronic SF and as 
secondary outcomes evaluate the impact of such drugs on cog-
nition (Novel Object Recognition test; NOR), depression (Forced 
Swim Test; FST), and anxiety (Elevated Plus Maze Test; EPMT).

Methods
All experiments were approved by the Institutional Animal Care 
and Use Committee (IACUC) of the University of Missouri (IACUC 
9720).

One hundred and thirty-five male C57BL/6 J mice (8-week-
old) were purchased from Jackson Laboratory (Bar Harbor, ME). 
Animals were housed in a controlled environment with 12 h 
light-dark cycles (06:00 h to 18:00 h) at constant temperature 
(24 ± 0.2°C) with ad libitum access to food (normal chow) and 
water. All animals were allowed to recover and fully acclimate 
within the animal care facility for at least 7 days upon arrival. 
Animals were then randomized into two different groups, namely 
SF or sleep control (SC). Each exposure group and corresponding 
controls were randomly assigned to receive SOL, MOD, or vehicle 
(VEH) at the beginning of the dark phase upon completion of the 
daily SF exposures conducted during daylight for 9 days.

SF
The SF device used to induce sleep disruption has been previously 
described [58, 60, 70–72]. Briefly, mice were housed in custom-de-
signed cages containing the SF apparatus (Model 80391; Lafayette 
Instruments, Lafayette, IN). Sleep arousals were induced by a 
mechanical horizontal bar sweeping just above the cage floor 
from one side to the other side of a standard mouse laboratory 
cage, which was operated by a nearly silent motorized system. To 
apply SF patterns that mimic OSA, 2-minute intervals between 
each sweep (i.e. 30 events/h) were applied during the murine rest 
period (06:00 h to 18:00 h) for a total period of 5 weeks (4 weeks 
before treatment followed by 9 days during the drug treatment). 
Between behavioral tests, animals were maintained in the SF or 
SC conditions.

Treatment
Animals received once-daily intraperitoneal (i.p.) injections 
of SOL (200 mg/kg), MOD (200 mg/kg), or VEH (5 mL/kg) at the 

beginning of the dark phase (6:00 pm) for 9 days while continuing 
to undergo either the SF or SC exposure. MOD (TRC; Toronto, ON, 
Canada) was freshly dissolved in dimethyl sulfoxide (DMSO), 10%, 
Tween 20 15%, and phosphate buffered saline (PBS) 75% (V/V/V) 
[73]. SOL (provided by Jazz Pharmaceuticals; Palo Alto, CA) was 
dissolved in PBS. DMSO was purchased from ATCC (Manassas, VA), 
and Tween 20 and PBS from Thermo Fischer Scientific (Waltham, 
MA). PBS was used as control treatment (VEH). The treatments 
were injected at 18:00 h at the end of the SF and before the begin-
ning of the dark (active) phase of the mice.

Behavioral testing
Sleep recordings.
Sleep/wake activity was monitored using a validated, computer-
ized piezoelectric system (PiezoSleep; Signal Solutions, Lexington, 
KY)). This noninvasive system, automatically scores sleep and 
waking states in mice (SleepStat; Signal Solutions, Lexington, KY) 
[74–78]. Briefly, a piezoelectric film able to detect pressure var-
iations is placed under the cage floor. For all sleeping postures 
of the mouse, pressure variations from breathing are detected. 
Sleep states are characterized by quasi-periodic signals with low 
variations in amplitude, whereas wakefulness and rest states are 
characterized by irregular transient and high amplitude pressure 
variations corresponding to body movements and weight shifting. 
Signal features sensitive to the differences between the sleep and 
wake states are extracted from short-time pressure signal seg-
ments, and classification is automatically performed every 2 s. 
Sleep/wake activity was recorded and scored for each treatment.

The system records pressure changes using a piezoelectric film, the 
duration and intensity of which are automatically scored by computer 
algorithms and classified as wake or sleep states. The Piezo system 
exhibits 90% accuracy compared to electroencephalogram/electromy-
ogram-based sleep acquisition methodologies and scoring approaches 
[78] and have been previously validated against standard polysomno-
graphic methods [9]. Data collected were binned over 5 min using a 
rolling average of percentage sleep, and by individual wake bout length 
from which the mean of bout lengths was calculated. Wake bouts were 
defined by any contiguous wake pattern that remained uninterrupted 
by sleep periods for more than 30 s. In addition, bout length counts 
were only initiated when a 30-second interval contained greater than 
50% wake and were terminated when a 30-second interval contained 
less than 50% wake [79].

Behavioral tests.
Behavioral experiments were performed by operators who were 
blinded to the various treatments and conducted by three observ-
ers (Figure 1). The behavioral test battery consisted of the NOR 
test, EPMT, and FST. Throughout the duration of the experiments, 
the experimental set-ups were cleaned with ethanol 70% to pre-
vent odor cues. All mazes were purchased at Maze Engineers 
(Cambridge, MA). EPMT and NOR were recorded from a vertical 
point of view with a video camera suspended above the experi-
mental area. For the FST, a horizontal point of view was selected. 

Figure 1.  Schematic representation of the experimental design. All experiments were conducted in the same order, but the order of the experimental 
groups was randomized.
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All experiments were interfaced with a video tracking system 
(Noldus Ethovision XT16 Software, Leesburg, VA). Behavioral tests 
were conducted after 4 weeks of SF exposures and repeated after 
1 week of SOL, MOD, or VEH treatment during the dark phase 
immediately upon completion of the daily SF exposures.

NOR test.

The NOR test was based on the tendency for mice to explore 
novelty as described previously [64, 72, 80], and is used to meas-
ure explicit memory based on the preference for novelty. The 
task was performed in a blue opaque open-field plastic cham-
ber (40L × 40W × 30H cm per chamber). For each trial, mice 
were placed at the center of the arena. Two habituation trials 
were conducted for each animal, which consisted of a 10-min-
ute exploration period in an empty arena. On the second day, 
identically shaped blocks were used as familiar objects and dif-
ferent colors were used as unfamiliar objects. Each mouse was 
exposed to two tower blocks in the same color (Supplemental 
Figure 1A). Objects were placed 5 cm from the side walls in the 
center of the arena. The mice were allowed to freely explore 
the objects for 5 min. One hour later, one object was replaced 
by a novel object. Different objects in different colors, shapes, 
and sizes were used as novel objects (Supplemental Figure 1B) 
The mice were allowed to freely explore the objects for 5 min. 
Positive exploration by the mouse was defined as touching 
the object with the nose. The time spent exploring the objects 
was analyzed and quantified by the tracking software and was 
supervised by a blinded operator. The total exploration time for 
both objects was recorded. Results were reported as preference 
score using the following formula [72, 80, 81]:

Preference score =
Time spent near to novel object
Time spent near to all objects

× 100

The ratio between the time spent to explore new object and the 
familiar object was also analyzed.

To avoid bias, we used a set of different novel objects, with 
the new object being placed randomly either on the left or on 
the right side of the arena, and the choice of familiar versus 
novel object was also randomly allocated. The objects were 
different between the experiments before and after drug treat-
ments to avoid any residual memory biases. Mice who did not 
explore objects were removed from the experiment. Animals 
were considered to have an explicit preference for novelty if 
their preference score was > 50%.

EPMT.

The EPMT is the most frequently utilized animal model for 
assessing anxiety-like behaviors [67, 82]. This task exploits the 
counterbalance between two innate rodent behaviors, the avoid-
ance of open space exposure and the tendency to explore novel 
environments as described previously [72, 83]. Fearful mice spend 
less time in the open arms of EPMT, and conversely, when more 
time is spent in open arm this can be reflect a less fearing animal 
with hyperactivity or high impulsivity [63, 72, 83]. The apparatus 
consists of an elevated cross (56 cm above the floor) formed by 
two open arms and two closed arms radiating from a central plat-
form to form a plus-sign. Animals were placed in the central area 
facing one open arm and allowed to explore the maze for 5 min.

FST.

The FST is a behavioral test used for evaluation of depressive-like 
states in rodent. The task was performed in transparent cylindrical 
containers with a depth of 15 cm of water at 25 ± 2°C as described 

previously [72]. Mice were individually placed and forced to swim 
in the cylinder for a total duration of 6 min. The immobility time, 
defined as the absence of escape-oriented behaviors, was scored 
for a total period of 4 min (the last 4 min) [60]. Each mouse was 
deemed as being immobile when it made only movements neces-
sary to keep its head above water. Not moving was defined as the 
duration of time when the velocity of mouse motion decreased 
below 2 cm/s [84]. At the end of the experiment, mice were dried 
and placed under a red heat lamp until their fur was completely 
dry. Animals exhibiting panic behavior, that is, excessive swim-
ming for the first few minutes and then not being able to keep 
their heads above water, were excluded from the experiments.

Statistical analysis
Statistical analysis was performed using Prism 9.2 for windows 
(GraphPad Software, San Diego, CA, www.graphpad.com). Two-
way ANOVA with Sidak post hoc tests were used to compare treat-
ments in SF and SC groups for sleep studies. Mixed effect model 
with Sidak and Tukey post hoc tests were used for unpaired and 
paired analyses. The data were expressed as mean ± SD. A two-
tailed p-value < 0.05 was considered statistically significant.

Results
After 4 weeks, SF significantly increased sleep percentages during 
the dark period when compared to SC in all randomized groups 
(group 1: 40.9 ± 7.7% vs 26.6 ± 10.5%, p = 0.0076 − group 2: 42.3 ± 
11.9 vs 27.8 ± 15.5, p = 0.0071 − group 3: 40.9 ± 14.4 vs 26.4 ± 10.9, p 
= 0.0071) (Figure 2A) and significantly reduced wake bout lengths 
in all randomized groups (group 1: SF: 869 ± 693 s vs SC: 1867 ± 
1027 s, p = 0.0251 − group 2: SF: 959 ± 818 s vs SC: 1876 ± 959 s, p 
= 0.0452 − group 3: SF: 889 ± 695 s vs SC: 1795 ± 1310 s, p = 0.0486) 
(Figure 2B). The changes in bi-hourly sleep percentages and wake 
bout durations induced by SF indicated that ES occurred prefer-
entially during the first half of the dark phase (Figure 2, C and D).

SF in VEH-treated mice significantly increased the percentage 
of time spent in sleep during the dark period when compared to 
SC (35 ± 7% vs 18.9 ± 7%, p < 0.0001). Sleep percentages during 
the dark phase were significantly reduced in mice treated either 
with SOL or MOD (SOL: 19 ± 6%, MOD: 24 ± 8%) when compared 
to VEH-treated animals (35 ± 7%, vs SOL p < 0.0001; vs MOD p = 
0.012) (Figure 3A). Bi-hourly sleep percentages showed evidence 
of improved wakefulness after SOL or MOD treatments and fur-
ther indicated that increased sleep propensity occurred mostly 
during the first half of the dark phase (Figure 3B–D).

VEH-treated mice exposed to SF exhibited significantly reduced 
wake bout lengths (SF: 733 ± 364 s vs SC: 2227 ± 1246 s, p = 0.0009). 
Wake bout lengths were significantly increased in both treatment 
groups (SOL: 2564 ± 1080 s, MOD: 2041 ± 811 s) when compared to 
VEH-treated group values (733 ± 364 s, vs SOL p < 0.0001, vs MOD 
p = 0.0089) (Figure 4A). Bi-hourly wake bout durations showed evi-
dence of improved wakefulness after both treatments and indi-
cated that increases in sleep propensity occurred mostly during 
the first half of the dark phase (Figure 4B–D).

Before treatment, the NOR preference scores for all groups of 
mice exposed to SF were significantly lower when compared to 
SC (69 ± 26 % vs VEH: 36 ± 27, p = 0.0045; vs MOD: 37 ± 28%, p = 
0.0063; vs SOL: 35 ± 28% p = 0.0044). Intriguingly, after treatment 
NOR preference scores were significant increased only for SOL-
treated mice (77 ± 18%) when compared to NOR findings in the 
same mice before treatment (35 ± 28%, p = 0.0001). NOR pref-
erence scores for mice treated with SOL were also significantly 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad057#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad057#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad057#supplementary-data
http://www.graphpad.com
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higher than VEH-treated mice (47 ± 24%, p = 0.0157) (Figure 5). 
No differences in NOR scores emerged for MOD treatment group. 
We used also the ratio of time spent exploring the novel objects 
and the familiar objects to confirm our findings (Supplemental 
Data #2). All treatments in the SC condition induced no modifi-
cations in the NOR scores (Supplemental Data 3A).

Before treatment, the time spent in open arms of the EPMT for 
all groups of mice exposed to SF was significantly higher when 
compared to SC (27 ± 8% vs VEH: 35 ± 9, p = 0.0367; vs MOD: 35 ± 9, 
p = 0.0217; vs SOL: 36 ± 5, p = 0.0196). The time spent in open arms 
was significantly reduced in all groups after treatment. However, 
animals subjected to SF spent more time in the open arms after 
SOL treatment in comparison with MOD-treated mice (20 ± 3% vs 
12 ± 1%, p = 0.012) (Figure 6A).

Regarding the frequency in open arms, no differences emerged 
between treatments. All conditions exhibited a reduction of the 
frequency in open arms (Figure 6B, p < 0.001) and such findings 
are also observed in SC-exposed animals (Supplemental Data 3C, 
p < 0.001).

In the context of FST, neither SF exposures nor treatments 
were associated with significant differences in either dura-
tion of immobility when compared to SC or to the pretreat-
ment responses (Figure 7). No differences emerged in SC mice 
treated with SOL, MOD, or VEH (Supplemental Data 3C). In ani-
mals exposed to SF treated with MOD we had to exclude sev-
eral mice from the experiment due to the emergence of panic 
behaviors.

Discussion
This study shows and further corroborates the previous findings 
that chronic SF simulating the episodic arousals in the context of 
OSA induces substantial increases in sleep propensity during the 
dark phase in mice in the absence of sleep curtailment [58, 59, 70] 
Furthermore, and as previously reported [58, 59, 70], chronic SF also 
manifested as explicit memory declines and changes in behavioral 
anxiety. However, the major findings reported herein revolve around 
the relatively similar improvements in sleep propensity elicited by 
treatment with either SOL or MOD, but the discrepant effects of 
these two drugs on cognitive and behavioral functions.

The presence of EDS, which constitutes the most common 
symptom among patients with OSA, results not only in the inher-
ent difficulty of remaining awake during the day, but also imposes 
additional deleterious consequences affecting multiple end-organ 
systems [58, 85–89], and more particularly is fraught with both 
cognitive and behavioral dysfunction, even after treatment is ini-
tiated and adherently implemented. Thus, improved interventions 
aimed at OSA-induced EDS and residual EDS that also improve the 
associated cognitive impairments is an important public health 
issue, particularly considering the overall aging trends in the pop-
ulation and the anticipated increase in the prevalence of OSA, 
indirectly resulting in an increase in the number of patients with 
cognitive decline [90–92].

The SF model implemented in our current study is a well-val-
idated approach that recapitulates the recurring arousals 

Figure 2.  Sleep patterns during the dark phase after 4 weeks of SF during the light phase. (A) Sleep percentage in the three randomized groups before 
injection of treatment. (B) Wake bout durations in the three groups before injection of treatment. (C and D) Bihourly sleep percentages and wake bout 
durations. SC corresponds to control mice not subjected to SF. Data are presented as mean ± SD, n = 13–15/group for A and B and n = 40–45/group for 
C and D, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad057#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad057#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad057#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad057#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad057#supplementary-data
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experienced by patients with OSA, and also faithfully and repro-
ducibly leads to the emergence of increased and long-lasting 
sleep propensity in mice. Furthermore, we now show that long-
term SF also induces cognitive impairments in the context of the 
NOR test, suggesting the emergence of dysfunctional ability to 
generate explicit memories [72]. In parallel, increased impulsivity 
is also apparent in this rodent model [72], such that the current 
observations before initiation of any drug treatment intervention 
are congruent with previous findings involving implementation 
of several models of sleep disorders in rodents [58–60, 72, 93–100].

The reduction of percentages of time spent in sleep state and 
the reciprocal increases in the wake bout lengths after treatment 
with either MOD or SOD in SF-exposed mice strongly suggest that 

both drugs led to reductions in sleep propensity, which for the 
sake of convenience we will designate as EDS. The reductions in 
EDS were anticipated since they gave been previously demon-
strated using alternative rodent models of EDS and have also 
been extensively explored in clinical trials [7, 37, 42, 44, 46, 53, 55, 
101, 102]. Notwithstanding, although both SOL and MOD atten-
uated EDS, the differences were more pronounced after treat-
ment with SOL, suggesting that SOL may have a bigger impact 
on improving wakefulness and reducing sleepiness than MOD, as 
previously mentioned in reviews and analysis of extant clinical 
studies [7, 28, 44, 52]. In contrast with such indirect comparisons, 
the present study performed a head-to-head comparison of SOL 
and MOD effects, and to the best of our knowledge, this is the first 

Figure 3.  Sleep percentage during the dark (active) phase. Mice were subjected to 4 weeks of SF during the light (rest) phase of the illumination 
cycle and then treated with solriamfetol (200 mg/kg, i.p.), modafinil (200 mg/kg, i.p.), or vehicle (5 mL/kg, i.p.) for 9 days. SF was continued during 
the treatment. SC represent values of control mice not subjected to SF. (A) Sleep percentage during the dark phase. (B–D) Bihourly sleep percentages 
across the dark phase. Data are presented as mean ± SD (n = 12–15/experimental group), *p < 0.05, **p < 0.01, ****p < 0.0001.
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study to directly examine this issue. However, it remains unclear 
whether the nature and duration of the sleep perturbation lead-
ing to EDS, for example, sleep deprivation (SD) versus fragmenta-
tion versus IH plays a role in the magnitude of the EDS reversal 
or reduction response to either SOL or MOD, and whether specific 
and predictable subgroups of patients with OSA with EDS will 
more likely respond to one of the wake-promoting drugs com-
pared to the other.

Numerous publications have shown improvements in quality 
of life as well as reduced risk of motor vehicular and workplace 
accidents in patients with OSA after treatment with wake-pro-
moting agents [7, 26, 41, 44, 52, 54]. Additional studies also showed 
increases in attention span and improvements in working memory 
task performance, work productivity, reaction times, logical rea-
soning, mental addition exercises, and in overall vigilance when 
evaluated in healthy participants, healthy participants exposed 
to SD, and in patients with OSA [7, 26, 41, 103–110]. However, there 

is only a paucity of studies on cognitive functions after treatment 
with SOL or MOD in either patients with OSA or in rodents. We 
selected the NOR test because it can be repeated with due pre-
cautions without generating a substantial learning bias [80, 111], 
making the test a valid approach in pharmacological studies [64, 
80]. Our a priori assumptions posited that the degree of improve-
ment in NOR performance, if any, would be associated with paral-
lel reductions in EDS induced by the drugs. Surprisingly, we found 
that SOL, but not MOD, significantly improved SF-induced NOR 
deficits despite the fact that both drugs reduced EDS when com-
pared to VEH-treated mice exposed to chronic SF. As such, there 
were no discernible correlations between the degree of improve-
ment in EDS and the changes in NOR performance. Of note, our 
findings, although not comparable to existing previous studies, 
contradict these studies which indicated that MOD ameliorates 
cognitive impairments induced by sleep disturbance [39, 40, 102, 
112–114]. However, these publications explored the effects of MOD 

Figure 4.  Wake bout durations during the dark (active) phase. Mice were subjected to 4 weeks of SF during the light (rest) phase of the illumination 
cycle and then treated with solriamfetol (200 mg/kg, i.p,), modafinil (200 mg/kg, i.p.), or vehicle (5 mL/kg, i.p.) for 9 days. SF was continued during 
the treatment. SC reflect measures in control mice not subjected to SF. (A) Wake bout duration during the dark. (B–D) Bihourly wake bout durations 
during the dark phase. Data are presented as mean ± SD (n = 12–15/experimental group), *p < 0.05, **p < 0.01, ****p < 0.0001.
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Figure 5.  Preference score performance in the NOR test. Mice were subjected to 4 weeks of SF during the light (rest) phase of the illumination cycle 
and then treated with solriamfetol (200 mg/kg, i.p.), modafinil (200 mg/kg, i.p.), or vehicle (5 mL/kg, i.p.) for 9 days. SF was continued during the 
treatment. SC represent values of control mice not subjected to SF treated with VEH. The NOR test was conducted twice (before and after 1-week 
treatment) during the light phase. Mixed-effects analysis with Sidak and Tukey post hoc tests were used for unpaired and paired analyses. Data are 
presented as mean ± SD (n = 11–14/experimental group).

Figure 6.  Cumulative durations (A) and frequencies (B) in the EPMT open arms. Mice were subjected to 4 weeks of sleep fragmentation (SF) during the 
light (rest) phase of the illumination cycle and then treated with solriamfetol (200 mg/kg, i.p.), modafinil (200 mg/kg, i.p.), or vehicle (5 mL/kg, i.p.) for 
9 days. SF was continued during the treatment. SC represent values of control mice not subjected to SF treated with VEH. The EPMT was conducted 
twice (before and after treatment) during the light phase. Mixed-effects analysis with Sidak and Tukey post hoc tests were used for unpaired and 
paired analysis. Data are presented as mean ± SD (n = 12–15/experimental group).
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in rodents exposed to different sleep perturbations that incorpo-
rated substantial stress, for example, separation, REM SD, along 
with a variety of learning and memory test paradigms, such as 
NOR [39, 114], Morris Water Maze [40, 102, 112, 113], and T-Maze 
[113] after or during acute SD. Of note, other publications have 
shown beneficial effects of MOD on control rodents who have not 
been exposed to any sleep manipulation [104, 115–117]. However, 
neither SOL nor MOD elicited any behavioral changes in the con-
trol mice (Supplemental Data 2 and 3). This can be interpreted as 
indicative that the wake-promoting agents do not improve cog-
nition in otherwise unaffected mice, but have an effect in frag-
mented mice. Based on aforementioned findings, more extensive 
evaluation of the beneficial effects of SOL on explicit memory 
performance and the underlying mechanisms of such improve-
ments seem warranted.

Symptoms of both anxiety and depression are prevalent 
among patients with OSA [19, 118]. In the current study, SF 
promoted increases in impulsivity similar to those previ-
ously described in rodents exposed to a variety of models of 
sleep disorders [72, 99, 100, 119, 120]. Currently, no behavio-
ral tests in rodents that putatively measure anxiety allow for 
clear separation of impulsivity from anxious behaviors [72, 
99]. Notwithstanding, all conditions (treatment and controls) 
showed a decrease in the time spent in the open arms in the 
second iteration of the EPMT test, which is likely the result 
of the repetition of the test within one week from each other. 
Indeed, the EPMT exploits the counterbalance between two 
innate rodent behaviors, the inherent tendency of avoidance of 
open space exposures and the drive to explore novel environ-
ments [72, 83]. In the circumstance of our experimental design, 
the changes are not related to any novelty, and the effect in 
all groups is the same. However, SOL and MOD appear to exert 
opposite effects. SOL-treated mice spent more time in the open 
arms in comparison to the MOD-treated mice. Thus, we inter-
pret these findings as reflecting some degree of increased anxi-
ety induced by MOD with opposite effects of SOL in this regard. 
MOD has heterogeneous effects on anxiety in humans and 
anxiety-like behaviors in animal models [121–123]. However, 
although SOL and MOD differ from each other, they do not show 
significant differences with SF animals treated with VEH, sug-
gesting that SOL may have an anxiolytic effect. Whereby some 
studies have shown anxiogenic effects in humans, while others 
have shown anxiolytic effects. It will be important to further 
examine whether such phenomena emerge in the context of 

clinical settings for SOL. In one of the trials, 7% reported anxi-
ety as an adverse effect when treated with SOL [44].

During the FST, a test based on the natural tendency of 
rodents to escape from water [124] no evidence of depressive-like 
behaviors emerged following SF as previously described [72, 97] 
and no changes occurred after the various treatments. However, 
we observed, albeit inconsistently, that several animals treated 
with MOD had to be removed from the FST apparatus because 
their swimming patterns were “panic like” and they could not 
sustain their heads above water. None of the mice treated with 
SOL exhibited this behavior. In addition, some studies have 
indicated that MOD may have different antidepressant effects 
depending on the stress and concentration of the treatment [115, 
125]. However, few publications on the effects of MOD during FST 
in rodents are available, and such studies concern either healthy 
or stressed animals. In these studies, decreases in the depres-
sive like behaviors occurred in MOD-treated mice [126, 127]. 
Such effects of MOD did not occur in the present study. To our 
knowledge, there are no publications focused on the effects of 
SOL during FST.

Before we conclude, several limitations of the present study 
deserve mention. We treated animals with a single daily dose 
and examined only one duration of treatment (9 days). It is 
therefore necessary to expand such observations to multiple 
daily dosages and to variable durations of treatment to gener-
ate a more comprehensive therapeutic profile. Indeed, in human 
studies, the effects of wake-promoting agents may vary depend-
ing on the dose and duration of treatment [41, 44, 115]. Moreover, 
patients with OSA with residual ES may be difficult to treat and 
may need a combination of different drugs [7, 28, 42]. For obvi-
ous reasons related to the large number of mice that would be 
required, extending our experiments to include different dos-
ages, varying duration, and combination of treatments was pre-
cluded. In addition, we evaluated only male mice who were also 
relatively young when exposed to SF. Consequently, the effects of 
such exposures in female, aging, or in very young mice remain 
unexplored.

Conclusion
Chronic SF, a major hallmark feature of OSA, induces EDS in 
young adult mice that is mitigated by SOL and MOD, with SOL 
displaying comparable and possibly improved efficacy to MOD 
as a wake-promoting agent, at least when EDS is prompted by 

Figure 7.  Time spent immobile during the FST. Mice were subjected to 4 weeks of SF during the light (rest) phase of the illumination cycle and then 
treated with solriamfetol (200 mg/kg, i.p.), modafinil (200 mg/kg, i.p.), or vehicle (5 mL/kg, i.p.) for 9 days. SF was continued during the treatment. 
SC displays values of control mice not subjected to SF treated with VEH. The FST was conducted twice (before and after treatment) during the light 
phase. Mixed-effects analysis with Sidak and Tukey post hoc tests were used for unpaired and paired analysis. Data are presented as mean ± SD (n = 
14–15/experimental group).

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad057#supplementary-data
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SF. SF induces cognitive NOR impairments in mice along with 
reduced anxiety behaviors. SOL, but not MOD, significantly 
improves SF-induced NOR deficits but seems to have no effects 
on EPMT or FST performance in comparison to SF-VEH-treated 
mice.
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