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Buffering of genetic dominance by allele-specific
protein complex assembly
Mihaly Badonyi and Joseph A Marsh*

Protein complex assembly often occurs while subunits are being translated, resulting in complexes whose sub-
units were translated from the samemRNA in an allele-specific manner. It has thus been hypothesized that such
cotranslational assembly may counter the assembly-mediated dominant-negative effect, whereby co-assembly
of mutant and wild-type subunits “poisons” complex activity. Here, we show that cotranslationally assembling
subunits are much less likely to be associated with autosomal dominant relative to recessive disorders, and that
subunits with dominant-negative disease mutations are significantly depleted in cotranslational assembly com-
pared to those associated with loss-of-function mutations. We also find that complexes with known dominant-
negative effects tend to expose their interfaces late during translation, lessening the likelihood of cotranslation-
al assembly. Finally, by combining complex properties with other features, we trained a computational model
for predicting proteins likely to be associated with non–loss-of-function disease mechanisms, which we believe
will be of considerable utility for protein variant interpretation.
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INTRODUCTION
Almost half of the proteins with experimentally determined struc-
tures interact with other copies of themselves to form homomeric
complexes (1), and more than one-third of heteromeric complexes
with known structures contain sequence-identical repeated sub-
units (2). Considering the human proteome, about one-fifth of pro-
teins have been detected to cotranslationally assemble in a
simultaneous fashion (3), whereby two subunits interact while
still being translated on the ribosome. Cotranslationally assembling
homomers are thought to predominantly undergo cis-assembly,
yielding allele-specific complexes (3–5). Repeated subunits in a het-
eromeric complex are also more likely to have come from the same
transcript, especially when their assembly is seeded cotranslational-
ly, reducing the chance of a single complex containing subunits
from two alleles. We are beginning to understand the structural
properties that make subunits more likely to undergo assembly on
the ribosome. These include N-terminally exposed interface resi-
dues, a large interface area, a high α-helix content, and the presence
of coiled-coil motifs (3) or domain invasion motifs (6). While many
studies have shed light on the functional and evolutionary aspects of
cotranslational assembly, our understanding of its allele-specific
nature and its impact on genetics is very limited.

Previously, a potential genetic consequence was proposed on
theoretical grounds (5, 7, 8). According to the hypothesis, cotransla-
tional assembly should reduce the likelihood of dominant-negative
(DN) disease mechanisms. A DN effect occurs when expression of a
mutant allele disrupts the activity of the wild-type allele (9, 10),
causing disproportionate function loss and thus a dominant
mode of inheritance. Observational evidence has long suggested
that DN effects are common in homomers (11), likely because in-
corporation of a mutant subunit into a complex along with wild-
type subunits is enough to “poison” it. This assembly-mediated
DN effect can lead to a reduction in functional activity exceeding
the 50% that would be expected for a simple heterozygous loss-

of-function (LOF) mutation. However, cotranslational assembly
can result in complexes whose subunits are allele specific, i.e.,
made up entirely of either wild-type or mutant subunits, potentially
reducing the harmful effects of an otherwise DNmutations (Fig. 1).
This ability of cotranslational assembly can be considered its “buf-
fering capacity” against DN mutations.

Some gain-of-function (GOF) mutations have a molecular
mechanism similar to the assembly-mediated DN effect. At the
protein-level, the phenotypic effect of GOF mutations is the conse-
quence of the mutant protein functioning differently from the wild
type, e.g., through increased protein activity. However, formation of
mixed wild-type:mutant complexes can lead to GOF in a similar
manner to the DN effect, but instead of the mutant blocking the
activity of the wild type, the GOF is conferred to the whole
complex. An example is the L171R mutation in the G protein (het-
erotrimeric GTP-binding protein)–activated inward rectifier potas-
sium channel 2, implicated in the Keppen-Lubinsky syndrome,
which reduces ion selectivity, thus allowing sodium and calcium
to pass the channel (12). This mechanism can be referred to the as-
sembly-mediated dominant-positive effect (13) and, just like the
DN effect, should be subject to genetic buffering via allele-specific
assembly. However, there are far fewer reports of this phenomenon,
so most of this study will be focused on DN effects.

The detectability of genetic buffering against assembly-mediated
DN and dominant-positive effects may be influenced by twomolec-
ular phenomena. First, peri-translational or localized assembly,
which occurs when subunits assemble shortly after translation
near the parent mRNA (7), could also make it more likely that sub-
units of a complex are allele specific. This effect is likely to be more
common in highly abundant proteins, whose transcripts have high
ribosome densities and are translated more efficiently than those of
lowly abundant proteins (14, 15). Second, subunit exchange may in-
crease the entropy of subunit stoichiometry post-assembly via shuf-
fling of wild-type and mutant subunits (16), resulting in
proportions expected from random posttranslational assembly.
However, because the likelihood of subunit exchange is determined
by the dissociation constants of the subunits involved, it should be
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less likely to occur in cotranslationally assembling complexes, which
tend to have larger interfaces (17) and thus generally higher binding
affinities.

Overall, cotranslational assembly may counter the DN effect,
which can have an appreciable impact on how genes with inherited
and de novo missense variants are prioritized in clinical sequencing
pipelines. To address this idea, we used a set of experimentally de-
termined cotranslationally assembling proteins and formulated two
hypotheses based on the above lines of thought. First, genes with an
autosomal dominant (AD) disease inheritance pattern should be
less likely to assemble cotranslationally compared to autosomal re-
cessive (AR) genes, given that a large fraction of them are likely to be
associated with DN effects. Second, protein subunits with known
DN disease mutations should have the lowest rate of cotranslational
assembly compared to other genes with AD inheritance. Here, we
show that both hypotheses are upheld. Examination of the structur-
al properties of complexes associated with DN mutations suggests
that their interfaces are exposed relatively late during translation,
which should strongly disfavor cotranslational assembly. Using a
knowledge-based approach, we trained a regression model to prior-
itize genes whose mutations are expected to be associated with non-
LOF disease mechanisms. We hope that our work will be of interest
to clinical geneticists and accelerate the prediction and discovery of
variant-level molecular mechanisms.

RESULTS
AD genes are depleted in cotranslationally assembling
subunits
We started with a set of 9053 human proteins, of which 6562 (72%)
physically interact with copies of themselves to form homomeric
complexes. The remaining 2491 (28%) are repeated subunits of het-
eromers, meaning that they are present in heteromeric complexes in

more than one copy. Both types of proteins have the potential to be
associated with assembly-mediated DN or dominant-positive
effects, as the mutant and wild-type proteins can co-assemble
within the same complex. We obtained genetic inheritance modes
from the OMIM database (18) and defined a gene as AD if it had
any disease inherited in an AD pattern, which could possibly be
caused by assembly-mediated DN or dominant-positive mutations.
We defined a gene as AR if it had mutations inherited exclusively in
an AR pattern, which are almost certain to be associated only
with LOF.

Our initial hypothesis was that, among human disease-associat-
ed genes that encode homomers or repeated subunits of heteromers,
those known to exhibit AD inheritance would have lower levels of
cotranslational assembly compared to those with exclusively AR in-
heritance. Although using AD inheritance as a proxy for the DN
effect is a simplification, assembly-mediated DN effects are believed
to play an important role in AD disorders (19). Our analysis shows
that 24% of AD subunits undergo cotranslational assembly com-
pared to 35.6% with AR inheritance (P = 2 × 10−10, hypergeometric
test). We calculated the odds ratio (OR) to assess the strength of the
difference between the groups. Overall, the OR of 0.57 implies that
the odds of cotranslational assembly for a randomly selected AD
subunit are almost half as that for an AR subunit. In Fig. 2A, we
show this analysis grouped by the three main sources of the sub-
units: homomers with experimentally characterized structures
[Protein Data Bank (PDB) homomers], homomers with nonstruc-
tural evidence (other, which includes SWISS-MODEL homology
models and evidence for homo-oligomerization from different da-
tabases), and repeated subunits of heteromers (see Methods). The
strongest effect was found in PDB homomers (OR = 0.46, P = 7.5 ×
10−7), followed by repeated subunits (OR = 0.6, P = 4.4 × 10−4) and
other homomers (OR = 0.61, P = 1.5 × 10−3). We speculate that the
stronger trend in PDB homomers is due to their enrichment in

Fig. 1. Genetic consequence of allele-specific protein complex assembly. Left: Consider a homodimer with one allele of its gene carrying a heterozygous mutation
with DN properties. When complex assembly occurs after the subunits have been fully translated and folded (posttranslational random assembly), the maximum entropy
configuration of subunits dictates that mixed complexes will make up half of all complexes. This means that pure wild-type and mutant complexes form only 25% of the
time. However, when the homodimer cotranslationally assembles, both complexes will form independently of one another in an allele-specific manner, increasing the
ratio of fully functional complexes to virtually 50%. Right: This relationship is illustrated on a phenotype versus function loss landscape diagram. Allele-specific assembly
of homomers and repeated subunit heteromers may alleviate the effects of heterozygous LOF mutations by reducing the mixing between the products of wild-type and
mutant genes.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Badonyi and Marsh, Sci. Adv. 9, eadf9845 (2023) 31 May 2023 2 of 14



biologically important interfaces, making a higher fraction of this
group compatible with the buffering of assembly-mediated effects.
Nonetheless, the results show that the trend is consistent across all
groups, despite slight variations in effect size.

Protein abundance can bias both cotranslational assembly and
its detection. Ribosome density tends to be higher in abundant pro-
teins (14), resulting in more ribosome footprints for sequencing.
Proteins that are more abundant might exhibit a higher level of
peri-translational assembly, which could also affect the degree of
allele-specific complex formation. Therefore, it is important to
control for abundance in our analysis, in case the enrichment of
highly abundant proteins in the cotranslationally assembling
group is affecting our results. We examined the median abundance
of AD and AR homomers and repeated subunits, finding no signifi-
cant difference between them (fig. S1A; P = 0.658, Wilcoxon rank
sum test). We then divided subunits into quartiles based on their
approximate intracellular concentration, ranging from 0.005 nM
to 180 μM, and found that the trend of AD subunits having lower
cotranslational assembly rates than AR subunits held across all

quartiles, with the strongest effect in the highest abundance bin
(OR = 0.43, P = 3.2 × 10−7) (Fig. 2B). These results were mirrored
by a complementary analysis using active ribosome-protected frag-
ment counts specific to human embryonic kidney (HEK) 293 cells
(fig. S1B) (20), used by (3) for the detection of cotranslational as-
sembling proteins.

Symmetry plays an important role in the formation of homo-
mers, with each symmetry group exhibiting unique sequence and
structural features that influence their functional roles (1, 21). The
three most common symmetry groups in the human proteome are
twofold (Schönflies notation: C2), higher-order cyclic (Cn>2), and
dihedral symmetry (Dn>1). In a previous study, we showed that co-
translationally forming complexes tend to have large interfaces
across the symmetry groups (17). However, there are also symme-
try-level differences, withmembers of the cyclic symmetry being the
least likely to undergo cotranslational assembly (fig. S1C). When we
divided the AD and AR homomers based on their symmetry group,
we observed substantial variation in the level of cotranslational as-
sembly (Fig. 2C). For instance, if we randomly select a cyclic

Fig. 2. AD genes are depleted in cotranslationally assembling subunits. (A) Level of cotranslational assembly in homomers and repeated subunits among AD versus
AR genes grouped by subunit source (see Methods). Bar values are percent level of cotranslational assembly; error bars are Jeffrey’s 68% binomial credible intervals. The P
value from the hypergeometric test and the OR (in bold) and its 95% confidence interval are shown above the bars. Labels on bars are the count of cotranslationally
assembling subunits (top) and all other subunits (bottom). (B) to (D) have the same parameters. (B) Level of cotranslational assembly binned into protein abundance
quartiles. Each bin corresponds to 25% of proteins by count, and the corresponding approximate nanomolar concentration intervals are shown in brackets. (C) Level of
cotranslational assembly in genes of homomers and repeated subunits with AD and AR disease inheritance split by symmetry groups: cyclic (Cn>2), twofold (C2), dihedral
(Dn>1), and other. (D) Comparison of the level of cotranslational assembly in genes of homomers and repeated subunits on autosomes or the X chromosome.
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complex with AD inheritance, the odds of cotranslational assembly
are 0.24 times lower compared to an AR cyclic complex (P = 9.6 ×
10−5). In contrast, the odds of cotranslational assembly for a dihe-
dral complex are only 0.51 times lower (P = 0.045). Symmetries that
have a low representation in the human proteome, such as helical,
cubic, and asymmetric homomers, were grouped into the “other”
category. We did not find a significant trend in this group, which
may be due to the heterogeneous properties of their members.

We also considered the genetic dominance of mutations on au-
tosomes and the X chromosome. Autosomal genes typically exist in
two copies, either homozygous or heterozygous, with one allele on
each chromosome. Genes on the X chromosome, on the other hand,
are hemizygous in males and present in two copies in females,
where one allele is usually silenced, excluding a subset of genes
that escape X-inactivation in a tissue-specific manner. This means
that cotranslational assembly is unlikely to be effective in buffering
X-linked dominance, since there is no wild-type allele to counteract
the phenotype. Our findings support this idea, as we did not find a
significant difference in the level of cotranslational assembly
between X-linked dominant and recessive genes of homomers
and repeated subunits (Fig. 2D; OR = 1.06, P = 0.639).

Finally, we examined a range of confounding variables to ensure
the robustness of the results, including protein length, presence of
coiled-coil motifs, and the confidence-based classification of co-
translationally assembling proteins (3). Our analyses suggest that
none of these factors have a significant impact on the trend (Supple-
mentary Text), reinforcing the idea that the allele-specific assembly
of protein complex constituents can act as a buffer for certain dom-
inant mutations.

Subunits with DN disease mutations are less likely to
assemble cotranslationally than subunits with
heterozygous LOF mutations
Given the lower occurrence of cotranslational assembly in AD genes
compared to AR genes, we sought to investigate further the molec-
ular mechanisms underlying this trend. Nearly all mutations with
dominant inheritance cause disease via one of three broad mecha-
nisms: heterozygous LOF (or haploinsufficiency), GOF, and DN
(13). We hypothesized that subunits with DN disease mutations
should show a reduction in cotranslational assembly compared to
genes with LOFmutations. This is because cotranslational assembly
reduces the mixing of wild-type and mutant subunits, therefore
lessening the likelihood that the mutant will interfere with the func-
tion of the wild type and inflict a DN effect.

To begin, we classified 1185 AD genes (66% of known AD genes,
listed in table S1) into LOF, GOF, and DN mechanisms using text-
mining approaches and manual curation of the corresponding evi-
dence (detailed in Methods). For example, a DN mutation in the
ferritin light chain complex, which stores iron in a readily available
form, has been linked to neurodegenerative disorders associated
with iron accumulation in the brain (22). Specifically, the
F167SfsX26 mutation replaces a C-terminal short helix with a
stretch of disordered residues, which is thought to have a DN
effect by creating large pores in the complex (Fig. 3A), thus affecting
its iron storage ability. Although the mutation has severe functional
consequences, it does not impede assembly. By contrast, the LOF
mutation L2067P in neurofibromin 1, observed in spinal neurofi-
bromatosis (23), affects the protein’s folded core and dimer

interface (Fig. 3A). Mutations like these may escape nonsense-me-
diated decay and either lead to aggregation of the protein before as-
sembly can occur or render its interface incompatible with
assembly, hence have no effect on the wild type.

We first evaluated the suitability of the gene sets for analysis by
examining properties known to be associated with the different mo-
lecular mechanisms, such as the change in Gibbs free energy (ΔΔG)
upon pathogenic mutations and their clustering in three-dimen-
sional (3D) space (24). It was previously observed in a subset of
membrane proteins that DN mutations tend to have low predicted
ΔΔG values, consistent with the fact that the mutant protein needs
to remain stable enough to assemble into complexes (25). In agree-
ment with this, we found that DN mutations in homomers and re-
peated subunits have significantly lower predicted ΔΔG values
compared to LOF mutations (fig. S2A; P = 1.3 × 10−16, Wilcoxon
rank sum test). In terms of 3D clustering, non-LOF mutations are
often concentrated in specific regions of a protein, such as interfaces
and functional sites, while LOFmutations tend to bemore dispersed
throughout the structure (24). Consistent with this, DN mutations
in our data exhibit higher 3D clustering than LOF mutations (fig.
S2B; P = 4.7 × 10−4, Wilcoxon rank sum test) and are enriched at
homomeric interfaces (fig. S2C; P = 1.3 × 10−18, hypergeomet-
ric test).

We next directly addressed our hypothesis by calculating the
fraction of cotranslationally assembling subunits in each molecular
mechanism group, shown in Fig. 3B. As expected, the fraction is
markedly lower among DN (20.9%) compared to LOF subunits
(32.4%; OR = 0.55; P = 1.5 × 10−3, hypergeometric test) and AR
subunits (35.6%, OR = 0.49, P = 6.9 × 10−8). At the molecular
level, AR and heterozygous LOF mutations are very similar in
their effect. Recessive disorders are almost always due to biallelic
(homozygous or compound heterozygous) LOF, with a few rare ex-
amples of biallelic GOF (26–28). Our results indicate that the level
of cotranslational assembly in subunits with monoallelic and bial-
lelic LOF mutations is similar, but subunits with DN mutations are
observed to assemble cotranslationally less frequently. Therefore,
allele-specific protein complex assembly may prevent some muta-
tions from the clinical manifestation of a phenotype caused by
certain heterozygous variants. While there is no statistically signifi-
cant difference in cotranslational assembly between the GOF and
LOF classes (26.5% versus 32.4%, P = 0.11), we observed a signifi-
cant depletion in the GOF class relative to AR (26.5% versus 35.6%,
OR = 0.65, P = 4.7 × 10−3). We speculate that this discrepancy may
be due to the assembly-mediated dominant-positive effect that
often underlies GOF mutations (13).

Cyclic symmetry is found at a much higher frequency in GOF
homomers than in the LOF class (fig. S2D; 21.3% versus 6.4%; P
= 3.9 × 10−3, Fisher ’s exact test). This symmetry group has the
lowest level of cotranslational assembly (18.4%) in comparison to
twofold homodimers (27.3%) and dihedral complexes (31.2%)
(fig. S1C). For this reason, we investigated the potential confound-
ing effect of structural symmetry and found distinct preferences
among the molecular mechanisms (fig. S2D). DN homomers,
similar to GOF, are enriched in cyclic symmetry relative to LOF
(20.4% versus 6.4%; P = 4 × 10−3, Fisher’s exact test). However, di-
hedral symmetry is markedly enriched in AR homomers compared
to DN homomers (12.6% versus 4.8%; P = 1.3 × 10−3, Fisher’s exact
test). We suspect that these symmetry group compositions are re-
flective of biases in protein function, because the relationship

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Badonyi and Marsh, Sci. Adv. 9, eadf9845 (2023) 31 May 2023 4 of 14



between disease mechanisms and protein function is well estab-
lished. For example, disorders caused by genes encoding enzymes
are primarily recessive (29), genes encoding transcription factors
are more likely to be haploinsufficient (30), and those of membrane
channels commonly give rise to non-LOF disease mechanisms (31).
These admittedly broad functional classes have been linked to struc-
tural properties, with metabolic enzymes being enriched in dihedral
symmetry, transcription factors in twofold symmetry, and mem-
brane channels in cyclic symmetry (1, 21, 32). Our investigation
into protein functional classification confirmed these assumptions
(fig. S2E). Metabolic enzymes are overrepresented in AR subunits
(AR versus all other; OR = 4.27; P = 3.9 × 10−40, Holm-Bonferroni
corrected Fisher’s exact test) and membrane transporters among
GOF and DN subunits (OR = 2.96, P = 4.8 × 10−9 and OR =
1.99, P = 4.8 × 10−6, respectively), and transcription factors have
6.9-fold higher odds to be associated with the LOF class than a
subunit sampled randomly from the disease gene pool (P = 2.15
× 10−19). When homomers in the different molecular mechanism
classes are grouped by their symmetry, the level of cotranslational
assembly is consistently lower among DN subunits than in LOF or
AR subunits (fig. S2F). The only exception is the LOF class with
cyclic symmetry, where the rate of cotranslational assembly
cannot be reliably estimated because no cotranslationally assembl-
ing member has been identified.

Last, we split the analysis into homomers and repeated subunits
of heteromers. We found that repeated subunits with DNmutations
exhibit a nonsignificant reduction in cotranslational assembly rela-
tive to the LOF class (fig. S2G; OR = 0.74, P = 0.188) and a signifi-
cant reduction relative to the AR class (OR = 0.55, P = 3.3 × 10−3).
As expected, homomers with DN disease mutations are more
strongly depleted in cotranslational assembly compared to these
classes (OR = 0.44, P = 1.1 × 10−3 and OR = 0.43, P = 2 × 10−6,

respectively). Overall, the results demonstrate that the genetic buf-
fering capacity of cotranslational assembly, despite evident differ-
ences in structural symmetry, is neither confounded by symmetry
nor exclusive to homomers, but extends to repeated subunits of het-
eromeric complexes.

Interfaces of homodimers with DN disease mutations are C-
terminally shifted
To further understand the observation that subunits with DN
disease mutations are less likely to undergo cotranslational assem-
bly, we investigated the impact of interface area, which we have pre-
viously established as an important correlate of cotranslational
assembly (17). Homomeric complexes with larger subunit contact
areas are more hydrophobic and experience a stronger drive to as-
semble early on the ribosome. Because of the known confounds of
structural symmetry, we performed the analysis split by homomeric
symmetry groups. The analysis revealed that subunits associated
with DN mutations do not have smaller interfaces than other
disease-related subunits (fig. S3A). On the contrary, the interfaces
of LOF homomers are significantly smaller relative to DN subunits
across the main symmetry groups. This finding is consistent with
the enrichment of pathogenic mutations at interfaces of DN sub-
units (fig. S2C), which, assuming a random mutation model,
would be less likely to occur if the interfaces were small.
However, larger interface areas for GOF, DN, and AD/AR subunits
could also reflect the biological importance of their interfaces, given
that their molecular mechanisms depend on complex formation.
Conversely, subunits in the LOF group may have a higher propor-
tion of crystallographic interfaces, which are typically smaller (33).

We next examined the interface location of the subunits, because
the idea that N-terminal regions of proteins are more likely to be
involved in cotranslational interactions has received strong

Fig. 3. Subunits with DN diseasemutations are less likely to assemble cotranslationally than subunits with heterozygous LOFmutations. (A) Known examples of
protein-level genetic disease mechanisms. Top: Structure of the p.Phe167SerfX26 mutant ferritin light chain complex (PDB ID: 4v6b) overlaid on the wild type (2ffx).
Bottom: Structure of the wild-type neurofibromin 1 dimer (7mp6) shown as surface (top subunit) and as cartoon (bottom subunit), with the LOF mutation–associated
residue Leu2067 highlighted. (B) Level of cotranslational assembly in homomers and repeated subunit heteromers according to dominant molecular mechanisms and AR
inheritance. Bar values are percent level of cotranslational assembly; error bars are Jeffrey’s 68% binomial credible intervals. The P value from the hypergeometric test and
the OR (in bold) and its 95% confidence interval are shown for the DN versus LOF comparison. Labels on bars are the count of cotranslationally assembling subunits (top)
and all other subunits (bottom).
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experimental support (3, 34–36). We hypothesized that interfaces of
homomeric subunits with DN disease mutations should be C-ter-
minally shifted, reflective of their lower tendency to assemble co-
translationally. To test this, we calculated the relative interface
location for all homomeric subunits and the average interface loca-
tion for the different symmetry groups (fig. S3B) (17). We found
that the interfaces of homodimers with DN disease mutations are
significantly more C-terminal compared to what is expected from
the symmetry group (P = 0.025, Holm-Bonferroni corrected Wil-
coxon rank sum test against basemean). To quantify this difference,
we resampled the homodimer dataset with replacement, stratified
by molecular mechanisms, and calculated confidence intervals.
Figure 4A shows the bootstrap distribution of the relative interface
shift, i.e., distance from the symmetry mean (raw relative interface
location values are shown in fig. S3C). The relative interface shift
can be interpreted as a percentage, where +5% indicates that the in-
terface is C-terminal to its expected value by 5% of the protein’s
length. According to this, subunits of homodimers with DN
diseasemutations are 6%more C-terminal compared to the symme-
try group mean (P = 7 × 10−3, resampling P value).

We exemplify this finding in Fig. 4B. The retinoid isomerohy-
drolase (RPE65) is an enzyme critical for phototransduction in
the retinal pigment epithelium. Retinitis pigmentosa has been
linked to both recessive and dominant mutations in RPE65,
making heterozygous mutations in the gene less likely to be
caused by simple LOF mechanisms. The DN mutation D477G
was found to exert a DN effect and delay chromophore regeneration
(37). Notably, the interface of RPE65 during translation is exposed
22.6% later than what would be expected from an average homo-
dimer, which creates a condition that disfavors cotranslational as-
sembly. The observation is consistent with the absence of
cotranslational assembly in RPE65 (3) and supports a model
whereby subunits that expose their interfaces later in the translation
process are less likely to assemble cotranslationally and are, in turn,
more susceptible to DN mutations.

Genes associated with non-loss-of-function molecular
disease mechanisms can be computationally predicted
Many studies have aimed at understanding the properties of hap-
loinsufficient genes (38–43). However, comparatively little effort

has been channeled into exploring the characteristics of genes that
give rise to dominant disorders in amanner not explained by simple
LOF. Recently, we have shown that state-of-the-art variant effect
predictors show worse performance in genes associated with non-
LOF mechanisms (24). This observation emphasizes the impor-
tance of considering alternative molecular mechanisms in our col-
lective attempt to annotate human pathogenic variation. While the
text-mining strategy we used here was able to provide likely molec-
ular mechanism assignments for 1185 dominant disease genes,
many others remain unknown. Moreover, for as-of-yet undiscov-
ered disease genes, there is a strong possibility that we could miss
pathogenic mutations associated with DN or GOFmechanisms due
to the difficulties in computationally predicting their effects. To fa-
cilitate future variant-level molecular mechanism prediction and
aid clinical geneticists in evaluating the potential of mutations to
inflict a non-LOF consequence on the protein, we built a classifier
with the goal of prioritizing genes most likely to be associated with
non-LOF mechanisms over those primarily associated with LOF.

We first reviewed the literature to identify properties of LOF
genes and then trained a logistic regression model with lasso
penalty using a range of diverse features. These features encom-
passed cotranslational assembly (3), the functional and structural
characteristics evaluated in this study, population-level mutational
constraints (40), as well as evolutionary, sequence-based, interac-
tion network–based attributes (39, 42, 43) and experimental data
(44, 45) (detailed in Methods). Measured on the test set, the classi-
fier achieves an area under the receiver operating characteristic
(ROC) curve of 0.74 (Fig. 5A), an F1 score of 0.8, and a Matthews
correlation coefficient of 0.24 (detailed performance profile in fig.
S4). Cotranslational assembly was found to be a discriminating
feature in the model, ranking 12th out of 30 features and being
roughly one-fourth as important as the top predictor, which is the
ratio of nonsynonymous-to-synonymous substitutions (dN/dS) in
the coding sequence of human relative to macaque genes (39)
(Fig. 5B). Notably, the second and third most important predictors
in the model are transporter/channel function and the number of
paralogs of the gene. It has been observed before that haplosuffi-
cient genes have higher average sequence identity to the closest
paralog than LOF genes (39), suggesting functional compensation
by closely related proteins. It is possible that due to this functional

Fig. 4. Interfaces of homodimers with DN disease mutations are C-terminally shifted. (A) Bootstrap distributions of the difference between the relative interface
location of the symmetry mean and the observed value for C2 symmetric homodimers in the different classes. Error bars represent 95% confidence intervals of the
percentile method, and the P value was calculated from the resamples. (B) Cumulative interface exposure of the enzyme RPE65 during the translation process. Half
of its final interface area (1604 Å2) is reached 22.6% later than what is expected from in the C2 symmetry group.
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redundancy, AD genes withmany paralogs are simplymore likely to
be associated with non-LOF mechanisms. For example, ion channel
genes are known to have undergone multiple gene duplication
events (46), which is consistent with their enrichment among DN
and GOF subunits (fig. S2, D and E). In cyclic complexes with more
than one unique subunit, paralogous copies typically sequester in
the same complex (47), suggesting that information on paralogs is
a valuable proxy for non-LOF mechanisms in homomers as well as
in heteromers.

We derived two probability thresholds for the predictions (fig.
S4E). The threshold of P = 0.82 (T1) was selected on the basis of
the maximum value of Youden’s J statistic (48) [test set confusion
matrix: 68/68 (50%) non-LOF versus 5/57 (8%) LOF]. A second
threshold of P = 0.92 (T2) was chosen as the value at which the

specificity of the model reaches 100%, i.e., no ground-truth LOF
genes are classified as non-LOF at the cost of classifying more
ground-truth non-LOF genes as LOF [29/107 (21%) non-LOF
versus 0/62 (0%) LOF]. We provide predictions for 9051 proteins
covering ~44% of the proteome (table S2) that have at least partial
structures in the PDB. Of these, 880 (9.7%) are above T2 and 3315
(36.6%) are above T1. Of the latter, 2840 have no dominant disease
association recorded in OMIM.

As an unbiased approach to assess the model, we analyzed the
ΔΔG of pathogenic mutations and their extent of disease clustering
(EDC) after removing genes used for training, and AR genes, whose
biallelic LOF mutations would bias the trend. In Fig. 5C, we show
the result of this analysis at threshold T2, demonstrating that mis-
sense mutations in predicted non-LOF genes exhibit a milder

Fig. 5. A computational model for identifying genes most likely to be associated with non-LOFmolecular mechanisms. (A) Receiver operating characteristic (ROC)
curve of the lasso regression model measured on the test set. AUC ± bootstrap (n = 1000) SE is shown. (B) Variable importance calculated as the absolute values of the β
coefficients scaled to the [0,1] interval. The y-axis labels are colored according to the type of the variable: sequence-derived or evolutionary variables (blue), functional
annotations (green), mutational constraint metrics (red), structural properties (black), interaction network–based property (pink), and experimental data (orange). Bars are
colored based on the sign of β. (C) Differences in Gibbs free energy change (ΔΔG, left) and EDC (right) of pathogenic mutations between genes predicted to be non-LOF
versus all other genes at threshold T2. Genes that were used for training the model as well as known AR genes were excluded. Boxes denote data within 25th and 75th
percentiles, the middle line represents the median, the notch contains the 95% confidence interval of the median, and the whiskers extend from the upper and lower
quartiles to a distance of 1.5 times the interquartile range. Labels indicate the number of variants (for ΔΔG) or the number of genes (for EDC) in the groups. The P values
were calculated with the Wilcoxon rank sum test.
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impact on protein structure (24, 25). Moreover, pathogenic variants
in predicted non-LOF genes show strong 3D clustering in their re-
spective protein structures, consistent with previous observations
(24). In fig. S4 (F and G), we provide further support that,
between thresholds T1 and T2, both ΔΔG and EDC exhibit the ex-
pected trend with an increasing effect size.

DISCUSSION
Cotranslational assembly of homomers is thought to result in com-
plexes whose subunits originate from the same allele (3, 4, 49). A
possible consequence of this mechanism is that subunits harboring
pathogenic heterozygous mutations may be sequestered into half of
the protein complex pool rather than mixing with the wild type and
inflicting functionally harmful effects. By comparing the fraction of
cotranslationally assembling subunits associated with Mendelian
diseases, we showed that genes of homomers and repeated subunits
withmutations inherited in an AD pattern are significantly depleted
in this mode of assembly compared to AR genes. Moreover, among
AD genes of homomers, those that exert a DN effect are the least
likely to cotranslationally assemble compared to other protein-
level molecular mechanisms of disease, but importantly, to those
that predominantly harbor heterozygous LOF mutations. Our
results therefore reveal a previously hypothesized genetic buffering
mechanism (7, 8), whereby complexes undergoing cotranslational
assembly are to some extent protected from the deleterious conse-
quences of DN mutations.

We observe AR complexes to have consistently high levels of co-
translational assembly regardless of their structural symmetry. It
was first proposed by Wright (50) and Haldane (51), whose ideas
were developed further by Hurst and Randerson (52), that recessiv-
ity is a consequence of selection for larger amounts of protein,
because the high abundance of enzymes is a “safety factor” (53)
that increases their robustness to dominant mutations. It is possible
that the abundance and the structural properties of metabolic
enzymes, such as their preference for dihedral symmetry (1), neces-
sarily lead to frequent cotranslational assembly events, representing
an additional safety factor against the deleteriousness of dominant,
especially DN, mutations. Although the evolution of protein oligo-
meric state can arise from nonadaptive processes (54, 55), it is not

implausible that biological phenomena such as this impose weak
selection.

Our results hint at the extraordinary regulation of protein
complex assembly within cells. Allele-specific assembly in homo-
mers may emerge from the inherent colocalization of their
nascent chains, although certain protein structural features appear
to predispose subunits to the process. We also observed repeated
subunits of heteromeric complexes to exhibit genetic buffering by
cotranslational assembly. According to one hypothesis, subunits
may combine information in their mRNAs and protein sequences
to increase the efficiency of assembly mediated by RNA binding
proteins (56–58). A range of membraneless compartments have
been put forward as putative sites of intense protein complex assem-
bly under physiological conditions, including TIS granules (59), as-
semblysomes (60), and translation factories (61), which may well
represent the same type of organelles [reviewed in (62)].

Across diverse proteomes, interface contacts of homomers are
enriched toward the C terminus, which is thought to be the
product of evolutionary pressure on folding to happen before as-
sembly (35). By contrast, N-terminal protein interfaces have been
found to favor cotranslational assembly (3, 17, 34–36). Our structur-
al analysis suggests that interfaces of homodimers with DN disease
mutations are significantly shifted toward the C terminus relative to
what is expected from their symmetry group. As a possible conse-
quence, their interfaces become exposed in nascent polypeptides
relatively late during translation, strongly reducing the likelihood
of cotranslational assembly, as illustrated in Fig. 6. This observation
represents a survivorship bias so that we tend to observe that sub-
units cause disease via a DN mechanism when they “escape” co-
translational assembly and subsequently co-assemble with wild-
type subunits.

Ongoing efforts to develop variant effect predictors focusing on
the molecular consequences of protein-coding variants should con-
sider whether the subunit assembles cotranslationally or, providing
that structural data are available, the properties of interfaces to pri-
oritize those with a possible DN effect. As demonstrated in this
study, a substantial fraction of subunits with mutations inherited
in an AD pattern display a DN phenotype, likely including many
of those that have not yet been characterized and classified under
one of the molecular mechanism classes. Additionally, current clin-
ical sequencing pipelines frequently identify inherited and de novo

Fig. 6. Mechanistic interpretation of C-terminally shifted interfaces in homodimers with DN mutations. Schematic representation of a structural trend underlying
pathogenic DN effects. A mutant subunit is more likely to assemble posttranslationally when it exposes its interface residues late in the translation process, which can
increase the level of mixing with the wild-type subunit.
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heterozygous variants in recessive genes, which are ranked lower
under the assumption that they would not be pathogenic in a het-
erozygous state (63–68). However, a DN effect is possible if the gene
encodes a homomer or repeated subunit heteromer (13), and espe-
cially if its complex does not assemble cotranslationally. Here, cov-
ering almost half of the human proteome, we provide predictions of
genes most likely to be associated with non-LOF mechanisms to ex-
pedite the discovery of variants associated with alternative molecu-
lar disease mechanisms.

Ultimately, our results shine light onto the fascinating connec-
tion between inheritance, which determines the genetic traits of an
individual, and protein complex assembly, which takes place only
after the genetic information has been decoded. Further research
is needed to measure directly the effect of allele-specific assembly
on wild-type and mutant subunits in vivo.

METHODS
Structural data
We searched the PDB (https://www.rcsb.org/) on 18 February 2021
for all polypeptide chains >50 amino acids and >90% sequence
identity to human canonical sequences in the UniProt proteome
UP000005640. For genes that map to multiple chains, we selected
a single chain ranking by sequence identity, the number of
unique subunits in the complex, and the number of atoms
present in the chain. In every case, we used the first biological as-
sembly and its symmetry assignment was taken from the PDB. The
interface area was calculated at residue-level between all pairs of
subunits with AREAIMOL from the CCP4 suite (https://www.
ccp4.ac.uk/), using a probe radius of 1.4 Å. The interface was
defined as the difference between the solvent-accessible surface
area of the subunit in isolation and within the context of the full
complex. Subunits with interfaces >400 Å2 were considered for
analysis to exclude potentially crystallographic interfaces.

We extended the PDB dataset with homology models of human
homomeric complexes in the SWISS-MODEL repository (https://
swissmodel.expasy.org/repository/) (UniProt release 2022_02).
Models based on isoform sequences were excluded. The software
AnAnaS (https://team.inria.fr/nano-d/software/ananas/) was run
on default settings to determine the number of subunits and the
symmetry group of the complexes. In rare cases when symmetry
was not detected, we assigned the symmetry group of the PDB tem-
plate used to model the complex. If a protein was found in multiple
homology models, we selected the one with the largest number of
subunits followed by the length of the modeled chain. The interface
area was calculated at residue level between all pairs of subunits with
FreeSASA 2.0.3 (http://freesasa.github.io/) using a probe radius of
1.4 Å. We performed pairwise alignments between the modeled
chain and the paired UniProt sequence to confirm residue corre-
spondence to the canonical sequence, because any mismatch in
residue numbering could influence the relative interface location
metric. Similarly to the PDB structure data, only subunits with in-
terfaces >400 Å2 were included in the analyses. When the SWISS-
MODEL dataset was pooled with the PDB dataset, we prioritized
the homomeric subunit with the larger interface area.

Relative interface location
The relative interface location is a value between 0 and 1 indicating
the location of the interface relative to the protein termini (N = 0
and C = 1), and it was calculated as previously described (17). To
ensure that the analysis is not biased by homologous proteins, we
generated a distance matrix based on the sequences of the chains
from the structures using Clustal Omega version 1.2.4 (http://
www.clustal.org/omega/). The distances were converted to
percent identities, and the matrix was filtered to below 50% using
a redundancy-filtering algorithm. Only those structures were in-
cluded in the analysis that passed the homology cutoff.

FoldX free energy calculation
FoldX 5.0 (https://foldxsuite.crg.eu/) was used to calculate the
change in Gibbs free energy of ClinVar (69) missense mutations
in AlphaFold predicted structures of human proteins (https://
alphafold.ebi.ac.uk/). The “RepairPDB” command was first run to
minimize structures followed by the “BuildModel” command on
the repaired structures. The final Gibbs free energy change was cal-
culated as the average of 10 replicates, and in subsequent analyses,
residues with per-residue conficence scores (pLDDT) < 50, which
are predicted to be disordered in solution (70), were excluded.

3D clustering of missense pathogenic mutations
The EDC metric expresses the proximity of every disease nonasso-
ciated protein residue to a known disease-associated residue, and it
was calculated as previously described from AlphaFold predicted
structures (24). Briefly, for each residue with pLDDT > 50, we cal-
culated the α-carbon distance to all other residues with a known
ClinVar disease mutation, selecting the shortest distance. The
final metric is derived as the ratio of the common logarithm of non-
disease and disease average distances. Values ≤1 indicate that the
mutations are dispersed, and those >1 suggest a degree of spatial
clustering. Only proteins with at least three pathogenic or likely
pathogenic missense mutations in ClinVar were included.

α-Helix content
The percentage of α-helix residues was calculated from the Alpha-
Fold predicted structures of human proteins using DSSP version
2.2.1 (https://swift.cmbi.umcn.nl/gv/dssp/).

Gene-level inheritance patterns
Gene-disease inheritance relationships were obtained from OMIM
(18). Gene-specific XML files were retrieved via the OMIM API in
four batches over consecutive days ending on 7 July 2022. Inheri-
tances were extracted from the “phenotypeInheritance” node of
each XML file.

Gene set of homomers and repeated subunits
We extended the gene set of homomers identified by our structural
mapping pipeline with genes that have nonstructural evidence to
form homo-oligomers or are present in >1 copy in a complex. For
homomers, we used UniProt (71), EMBL-EBI ComplexPortal (72),
CORUM (73), the OmniPath database (74), as well as single span-
ning membrane homodimers from the Membranome 3.0 database
(75). For repeated subunits, we extracted protein chains that appear
in multiple copies in the biological units of complexes in the PDB
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(2), and included proteins that have a stoichiometry of >1 in the
OmniPath database. Homomers were removed from the repeated
subunit list to create a nonredundant dataset.

Gene-level classification of dominant molecular
mechanisms
We classified AD genes into molecular disease mechanisms via text-
mining PubMed (https://pubmed.ncbi.nlm.nih.gov/) titles and ab-
stracts and OMIM XML gene entries. We searched PubMed using
the keywords “dominant negative” for the DN mechanism, “gain of
function” OR “activating mutation” for the GOF mechanism, and
“haploinsufficiency” OR “haploinsufficient” OR “dosage sensitiv-
ity” OR “dosage sensitive” OR “heterozygous loss of function” for
the LOF mechanism. The same workflow was applied to OMIM
entries. The resulting corpus was tokenized into sentences, and to
facilitate downstream data curation, we filtered for lines that explic-
itly mention the keywords, thus keeping the most descriptive lines
for each gene. The LOF class was appended with genes annotated in
the ClinGen database (https://clinicalgenome.org/) as “Sufficient
evidence for dosage pathogenicity” (as of 7 July 2022), and a sup-
porting evidence was added from the ClinGen entry. The raw evi-
dence lines were manually reviewed, and obvious false positives
were removed. For example, in the LOF class, a line may be: “… in-
dividuals harboring a heterozygous deletion in ATAD3A are unaf-
fected suggesting a dominant-negative pathogenic mechanism or a
gain-of-function mechanism for de novo missense variants rather
than haploinsufficiency” (76), which explicitly dismisses haploin-
sufficiency as a molecular mechanism. We noticed that a large pro-
portion of GOF and DN evidence lines pertained to artificial
constructs used in biological research and were not linked to
human disease, requiring additional manual curation for verifica-
tion. In overlap cases, when genes belong to multiple categories,
we used a hierarchical strategy to create a nonredundant gene list:
DN > GOF > LOF. We made available the genes of different molec-
ular mechanism classes (table S1), containing also the evidence lines
and the relevant PubMed identifiers.

Protein functional classes
Functional classification of proteins was retrieved from PANTHER
version 17.0 (http://www.pantherdb.org/). In the category “Trans-
porter,” we included the classes “transporter,” “transmembrane
signal receptor,” and “membrane traffic protein.” In the category
“Metabolic enzymes,” we grouped “nucleic acid metabolism
protein” and “metabolite interconversion enzyme.” Finally, the cat-
egory “TF/chromatin regulator” represents the combined classes of
“gene-specific transcriptional regulator” and “chromatin/chroma-
tin-binding, or -regulatory protein.”

Protein abundance
Protein abundances were obtained from the integrated human
dataset (version 2021) of PAXdb (https://pax-db.org/). Parts per
million (ppm) values were converted to molar concentration
based on the equation given by (77).

HEK293 active ribosome profile
Normalized active ribosome protected fragments in the Human
Embryonal Kidney 293 lineage were determined by (20). The data

are available via the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/) under accession GSE112353. Values were averaged over the
two biological replicates, and transcripts with values <1 were ex-
cluded from the analysis.

Cotranslationally assembling proteins in HEK293 cells
The gene set was downloaded from the supplemental material
of (3).

Coiled-coil motif–containing proteins
Coiled-coil motif–containing proteins were retrieved fromUniProt,
using the following search terms: (keyword:KW-0175) AND (or-
ganism_id:9606) AND (reviewed:true).

Position of genes on chromosomes
Genes were mapped to chromosomes using the consensus coding
sequence (CCDS) database (78) downloaded via the NCBI FTP site.

Molecular graphics
Visualization of structures was performed with UCSF ChimeraX
version 1.5 (79).

Statistical analyses
Data exploration and statistical analyses were carried out in RStudio
“Elsbeth Geranium” release, using R version 4.2.2. The R packages
used for analyses were as follows: tidyverse, tidytable, rsample,
rstatix, scales, ggridges, and ggbeeswarm. Error bars in bar charts
represent 68% Jeffrey’s binomial confidence intervals, and the prob-
abilities between the proportions of cotranslationally assembling
subunits were calculated from the hypergeometric distribution.
The 95% confidence interval for the OR was calculated with the
SE method, where the value of the 97.5th percentile point of the
normal distribution (~1.96) was derived as stats::qnorm(0.975) in
R. In Wilcoxon rank sum tests, the effect size was defined as the z
score computed from the P value over the square root of sample size.
In multiple comparisons, the Holm-Bonferroni method was used to
correct for familywise error rate. In the bootstrap analysis, data were
stratified for molecular mechanisms in 10,000 resamples. The P
value was calculated by determining the fraction of point estimates
indicating a C-terminal interface shift, with correction for finite
sampling. The 95% confidence intervals of the bootstrap estimates
were derived using the percentile method.
Lasso regression—Feature selection
To prioritize genes that mainly give rise to non-LOFmutations over
those that harbor LOF mutations, the following variables were in-
cluded in the model:

1) gnomAD mutational constraint metrics (40):
• pLI—Probability that transcript falls into the distribution of

haploinsufficient genes.
• pRec—Probability that transcript falls into distribution of re-

cessive genes.
• oe_lof—Observed over expected ratio for predicted LOF vari-

ants in transcript.
2) Sequence-derived or evolutionary variables:
• Protein-length—As per UniProt canonical isoform.
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• Number of paralogs (39)—Paralogs of human genes were
called from Ensembl via the biomaRt R package.
•Maximum identity to paralog (39)—We calculated the protein

sequence identity of each gene to every one of its paralogs using
Clustal Omega version 1.2.4, and the maximum identity was kept.
•Human-macaque (Macaca mulatta) dN/dS (39)—The ratios of

nonsynonymous to nonsynonymous substitutions between human-
macaque orthologs were called from Ensembl via the biomaRt
R package.
• ncGERP++—The phylogenetic conservation values of the

genes’ regulatory sequences as derived from GERP++ scores were
acquired from (80).
• Number of domains (39)—The number of domains was taken

from the human proteome–specific Pfam release 15 Novem-
ber 2021.

3) Membrane propensity—We calculated from protein sequenc-
es the mean value of the scale NAKH900110 “Normalized compo-
sition of membrane proteins” from the AA index database (https://
www.genome.jp/aaindex/).

4) Interaction network–based property:
• Betweenness centrality—This measure was calculated from the

human protein interaction network of the STRING database
version 11.5 at the default score threshold of 400 using the
STRINGdb and igraph R packages.

5) Structural properties:
• Structural symmetry (monomer, heteromer, and homomeric

symmetry groups: C2, Cn>2,Dn>1, and other homomeric symmetry),
interface size, and number of subunits.
• Structure isoelectric point—as previously described in (17).
• Absolute contact order—We calculated the contact order from

the AlphaFold predicted human structures using the perl script
written by Eric Alm available at https://depts.washington.edu/
bakerpg/contact_order/contactOrder.pl.

A copy of the script can be found in the OSF repository linked to
this manuscript.
• Mean structure pLDDT and α-helix content.
6) Functional properties:
• Protein functional classification from this study. Proteins with

functions other than those introduced earlier were classified as
“known other function,” and those lacking a functional annotation
were classed as “unknown function.”

7) Experimental data:
• Protein abundance.
• Cotranslational assembly annotations.
8) RNA expression variance—We accessed the rna_tissue_con-

sensus.tsv.zip file from the Human Protein Atlas (https://www.
proteinatlas.org/) on 1 September 2022 and calculated the variance
in expression per gene across the 54 tissues.
Lasso regression—Data preparation
We assembled a dataset of 9051 genes with the above features. Genes
of monomers in the PDB were assigned an interface size of 0, a rel-
ative interface location of 0, and a number of subunits of 1 and were
assumed not to undergo cotranslational assembly even if they were
detected by (3). Missing data in 10 variables were imputed using five
nearest neighbors. The missing value rates were the following
(percent missing in brackets): ncGERP++ (9.7); human-macaque
dN/dS (9.3); pLI, pRec, and oe_lof (7.3); betweenness centrality
(5.6); protein abundance (4.2); number of domains (2.7); structure
isoelectric point (2.1); RNA expression variance (1.3). Last, all

nominal variables were one-hot encoded and numeric data were
normalized to have an SD of one and a mean of zero.
Lasso regression—Model building and performance
evaluation
Logistic regression with lasso (least absolute shrinkage and selection
operator) is a solution to fitting a model in which only certain var-
iables play a role. The algorithm applies increasingly larger penalties
to multivariable regression coefficients, shrinking those of less im-
portant variables to zero, causing their sequential dropout (L1 reg-
ularization) and thus retaining only informative features. First, to
avoid inflating the model’s performance by the presence of homo-
logs, we performed redundancy filtering at 50% sequence identity
on the full canonical protein sequences using the method described
in the “Relative interface location” section. This procedure removed
88 from the 879 genes with experimentally available structure data
and dominant molecular mechanism classifications. The remaining
791 genes, of which 543 (69%) are non-LOF and 248 (31%) are LOF,
were split into 75% training and 25% test sets with 10-fold cross-
validation performed on the training set and repeated three times.
The model was tuned using 18 values of the λ parameter, generated
to be log-linearly distributed between 0 and 1. The final value of λ =
0.00501 was chosen on the basis that it yielded the highest predic-
tion accuracy in the assessment folds of the cross-validation. The
model was finalized on the entire training set and evaluated on
the test set. The similarity of ROC areas under the curve (AUCs)
measured on the cross-validation folds (0.735) versus on the test
set (0.743) suggested that the model had not been overfitted. Vari-
able importance was computed as the absolute values of the β coef-
ficients scaled to the [0,1] interval. Model building and evaluation
was performed using the tidymodels Rmetapackage. Thresholds T1
and T2 were derived using the threshold_perf() function from the R
package probably.
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