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ABSTRACT: Electrochemical energy storage always involves the
capacitive process. The prevailing electrode model used in the
molecular simulation of polarizable electrode−electrolyte systems
is the Siepmann−Sprik model developed for perfect metal
electrodes. This model has been recently extended to study the
metallicity in the electrode by including the Thomas−Fermi
screening length. Nevertheless, a further extension to heteroge-
neous electrode models requires introducing chemical specificity,
which does not have any analytical recipes. Here, we address this
challenge by integrating the atomistic machine learning code
(PiNN) for generating the base charge and response kernel and the
classical molecular dynamics code (MetalWalls) dedicated to the
modeling of electrochemical systems, and this leads to the
development of the PiNNwall interface. Apart from the cases of chemically doped graphene and graphene oxide electrodes as
shown in this study, the PiNNwall interface also allows us to probe polarized oxide surfaces in which both the proton charge and the
electronic charge can coexist. Therefore, this work opens the door for modeling heterogeneous and complex electrode materials
often found in energy storage systems.

1. INTRODUCTION
Electrochemical energy storage systems are indispensable
components for building a sustainable and fossil-free society
with infrastructures such as electric vehicles and energy grids.
In particular, supercapacitors and batteries have attracted an
ever-increasing attention in research going from materials
chemistry to cell manufacturing. This is evinced by the 15 374
and 66 561 research articles published between 2020 and 2022
containing the keywords “supercapacitors” and “batteries,”
respectively (source: the Web of Science), and highlighted by
the 2019 Nobel Prize in Chemistry. On the other hand, to
disentangle such complexity in these systems and to advance
the field through fundamental insight, a physical approach is
clearly needed.

Compared to battery systems, the capacitive charging
process is the dominant one in supercapacitors. Indeed,
electric double-layer capacitors (EDLCs) store energy from the
electrostatic adsorption of ions on the electrode surface, which
leads to a rapid charge−discharge cycle.1 In this case, the
charge-transfer rate is vanishingly small, and the electrode can
be considered as an ideally polarizable electrode.2 This means
that chemical reactions and chemisorptions may be excluded
from the setting;3 therefore, force field-based classical
molecular dynamics (MD) is sufficient to simulate EDLCs.

The standard model for describing the charge distribution of
polarizable electrodes is the Siepmann−Sprik model.4 It was
improved by Reed and Madden5 to model perfect metal

electrodes. Further improvements were done to account for
the metallicity of the electrode material.6 This model has the
advantage over other methods such as the image charge
method7 to allow dealing with complex geometries, such as
porous and disordered ones.8

Despite being successful for describing both the perfect
metal (PM) electrode and the Thomas−Fermi (TF) electrode,
the Siepmann−Sprik model does not naturally account for
chemical heterogeneity.9−14 This is also true when it comes to
the local effects of electrode geometry and atomic lattice
disorder on metallicity. To account for the impact of the
chemical heterogeneity of the electrode material on the
response charge distribution, our approach here is to integrate
machine learning (ML) and atomistic simulation with the
PiNNwall interface, as shown in Figure 1. The purpose of this
interface is to read the electrode structure from the classical
MD code MetalWalls15,16 to compute the charge response
kernel and the base charge with the atomistic ML code PiNN17

and then pass these info back to the MetalWalls for computing
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the response charge at electrode sites and propagating
molecular dynamics simulations. By doing so, we can take
advantage of both the efficient implementation of ML models
in PiNN and the optimized computation of electrostatic
interactions in MetalWalls.

In the following, we will first outline the computational
methods used in this study including the theoretical
formulation. This is followed by the implementation and the
validation of the PiNNwall interface to make sure of its
technical soundness. Then, the PiNNwall interface is applied
to several cases of chemically doped graphene and graphene
oxide where the chemical heterogeneity becomes important. In
particular, we have showcased an example of graphene oxide
terminated with deprotonated carboxylic groups where both
the electronic charge and the proton charge are present.
Finally, we close up with a discussion of future works.

2. COMPUTATIONAL METHODS
2.1. Siepmann−Sprik Model for a Polarizable Elec-

trode. The basis of the Siepmann−Sprik model is to allow the
electrode charges to fluctuate in response to the external
potential. Each response charge of the electrode atoms follows
a Gaussian distribution of magnitude ci centered on the
position of the electrode atom Ri

(1)

where ζi is an adjustable parameter related to the Gaussian
width.

The original model can be written as follows

(2)

where U0 corresponds to the energy of electrode atoms in the
absence of an external potential (field), the term Uq d0−Δν

corresponds to the electrode−electrolyte interaction (so
electrostatic interactions between the atomic charges of
electrolyte atoms and the base charges q0 of electrode atoms
plus their van der Waals interactions), η is the hardness kernel,
describing the interaction between response charges, and Δν is
the potential generated by the electrolyte at the electrode atom
sites. It is worth noting that the formulation of the Siepmann−
Sprik model shown here follows the linear response theory
used in the chemical potential equalization method from York
and Yang.18 This is different from other similar schemes,14,19 in
which the atomic electronegativtiy were introduced to
determine the base charge distribution q0. For historical
developments on this topic and the subtle (yet important)
difference in various schemes, we refer interested readers to
our previous work20 and the atom-condensed Kohn−Sham
DFT approximated to second order (ACKS2) paper21 for
extensive discussion and references.

This energy is minimized with respect to the response
charge c at each MD time step under the constraint of charge
neutrality, which results in a linear relation between the
response charge and the external potential as

(3)

where χ is the charge response kernel (CRK). It is related to
the hardness kernel through22

(4)

where the second term of the right-hand side comes out from
the charge neutrality constraint.

The finite-field extension in the case of a constant external
field E0 is straightforward, which leads to the solution of the
response charge as

(5)

It is worth noting that the external field E0 equals to the
Maxwell field E under periodic boundary conditions (PBCs).23

2.2. Response Charge Predictions from PiNet-χ.
PiNet-χ20 is a graph convolution ML based on PiNet for
predicting the linear response function CRK by regressing the
molecular polarizability, as implemented in PiNN code.17

In this study, we used PiNet-χ which has been trained on the
QM7b dataset24 to reproduce molecular polarizabilities
computed from the density functional theory (DFT)25 with
the B3LYP functional.26,27 Thus, it is suited to model electrode
materials composed of the following elements: C, N, O, H, S,
and Cl, which will be sufficient to study graphene (or graphite)
and its derivatives, being amorphous graphene, nitrogen-doped
graphene, or graphene oxides.

There are four different types of models provided by PiNet-
χ, namely, the electronegativity equalization method (EEM)-
type,28,29 the Local-type,20 the EtaInv-type,20 and the ACKS2-
type.21 In the following, the essence of each model is
summarized, and more details can be found in ref 20.

In the EEM-type model, the hardness matrix η is
approximated by ηe. ηe contains environment-dependent on-
site hardness parameters, as well as the Coulomb kernel due to
electrostatic interactions. From this, χ can be computed
according to eq 4.

Figure 1. Flowchart of the PiNNwall interface. The electrode
structure is passed from MetalWalls to PiNN, which computes the
charge response kernel χ using PiNet-χ and the base charges of the
electrode atoms q0 using PiNet-dipole. From the electrolyte
configuration and the electrostatic boundary conditions, MetalWalls
computes the potential on the electrode sites Δν. By combining χ and
Δν, MetalWalls generates the response charges c at electrode sites,
computes forces, and propagates the dynamics of the system using, for
example, the Verlet algorithm.
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In the Local-type model, the polarizability tensor is
constructed as the sum of atomic contributions αi. Then, the
atomic contributions αi are constructed from atom-centered
predictions χi in a way that ensures translational and
permutational invariance and rotational covariance. χi can be
seen as atomic contributions to the CRK and are used to
construct χ in the end.

In the EtaInv-type model, χ is constructed by predicting
directly the softness matrix η−1. Besides the nearsightedness
character of η−1, this type of models are computational efficient
since the need for a matrix inversion operation is bypassed.

Finally, in the ACKS2-type model, two quantities are
predicted instead, namely, χs and ηe. Here, χs is constructed
as a matrix that is local and trainable using symmetrized
pairwise interactions. ηe is done in the same way as in the EEM
model. These two predicted quantities can then be combined
to construct χ through the Dyson’s equation, as shown in ref
20.

(6)

2.3. Base Charge Predictions from PiNet-Dipole.
PiNet-dipole30 is a graph convolution ML based on PiNet as
implemented in the PiNN code.17 The principle behind the
PiNet-dipole model is to regress dipole moment/polarization
data instead of atomic charge data, as the latter cannot be
uniquely determined.

Here, a variant of PiNet-dipole trained on the QM7b
dataset24 was used to be compatible with PiNet-χ. The model
was trained using the following loss function

(7)

where Ri is a 3 × Ni matrix of the atomic coordinates of the
configuration i for a molecular configuration containing Ni
atoms, qi represents a column vector of the atomic charge, and
Mi is the corresponding dipole moment.

During the charge prediction phase, the base charge q0 is
obtained by

(8)

This means that the total charge after charge prediction is
evenly spread over all of the atoms in the system, resulting in a
zero total charge in q0.

In the case of protonated and deprotonated carboxyl groups,
the total charge of q0 of each carboxyl group is either +1 or −1.
This constraint was implemented by adjusting the base charge
of the carbon atom in the carboxyl groups.

Details of the validation and the implementation of base
charges predicted from PiNet-dipole can be found in Section B
of the Supporting Information.

2.4. Molecular Dynamics Simulations with Metal-
Walls. The MetalWalls code15,16 was used as the MD engine,
which was built for simulating electrochemical systems with
Siepmann−Sprik-type models. The box lengths in the different
directions are Lx = 31.974 Å, Ly = 34.080 Å, and Lz = 70.124 Å.
We use 3D PBCs, with Ewald summation used to compute
electrostatic interactions with a real-space cutoff of 15.99 Å,
the same cutoff being used for the Lennard-Jones interactions.

The electrode consists in 7 graphene layers with an
interlayer spacing of 3.354 Å, resulting in 2912 carbon
atoms, which leaves a 50 Å space along the z direction for

the electrolyte. For each dopant type, we investigated, on top
of the pristine case, two surface coverages: 10 and 20%. Only
the graphene layers at the interface with the electrolyte are
functionalized. In the case of nitrogen substitution, the atoms
are placed randomly under the constraint that two nearest
neighbor atoms cannot be substituted. For the doping with
epoxy and hydroxyl groups, we used the rules for the
amorphous graphene oxide model described in ref 31.
Lennard-Jones parameters of electrode atoms were taken
from the OPLS-AA force field32 with the use of the Lorentz−
Berthelot mixing rules to compute the cross pair parameters
with the electrolyte.

The simulation setup for the case of graphene oxide with the
carboxyl termination is very similar to the case of the protonic
double layer at metal oxide/electrolyte interfaces, as studied
previously with finite-field DFTMD,33,34 in which two sides of
an electrode take the same amount but opposite types of
proton charge.

As for an electrolyte, we used an aqueous potassium chloride
solution with a concentration of 1 mol/L, whose initial
configuration has been generated with fftool35 and PACK-
MOL.36 This results in 1901 water molecules and 35 ion pairs.
Water was modeled with the TIP3P model,37 and the ion
models of aqueous K+ and Cl− were taken from ref 38, which
have been validated for high salt concentrations.39

The potential dependence is controlled through the finite-
field methods adapted to the Siepmann−Sprik model,40 using
E field values corresponding to potential differences across the
simulation cell of 0 and 2 V. Each simulation consists in an
equilibration run of 2 ns, followed by a production run of 10
ns. We used a time step of 2 fs in the NVT (constant number
of particles, constant volume, and constant temperature)
ensemble using the Nose−́Hoover thermostat41,42 with a
relaxation time of 0.1 ps and a temperature of 300 K.

3. IMPLEMENTATION AND VALIDATIONS OF
PINNWALL

3.1. Passing the Charge Response Kernel from PiNN
to MetalWalls. To test that the CRK χ is properly passed to
MetalWalls through the PiNNwall interface, we consider the
system described on Figure 2a: a nitrogen-doped graphene
layer with 3D PBCs. A unit test charge is placed away from the
surface on top of the defect with a distance d. Then, the
response charges were computed with the same EEM-type
models using PiNet-χ and MetalWalls. Results are shown in
Figure 2b. One can see that the response charges agree very
well with each other when the test charge is further away from
the surface and only atoms that are second neighbor to the
defect and beyond are considered. This indicates that the CRK
is indeed successfully passed from PiNet-χ to MetalWalls via
the PiNNwall interface. The discrepancies in other cases
actually come from how the Ewald summation for computing
the electrostatic potential due to the test charge was
implemented. In PiNN, the electrode−test charge interaction
was computed as a point charge−point charge interaction; in
MetalWalls, the electrode−test charge interaction was
computed as a Gaussian charge−point charge interaction
instead. Nevertheless, such difference is immaterial and does
not affect the passing of the CRK from PiNN to MetalWalls at
all. Indeed, one can obtain a perfect agreement when choosing
a smaller Gaussian width (Section A in the Supporting
Information). It is worth noting that there is no need to choose
the Gaussian widths when using the PiNNwall interface for

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00359
J. Chem. Theory Comput. 2023, 19, 5199−5209

5201

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00359/suppl_file/ct3c00359_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00359/suppl_file/ct3c00359_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00359?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


practical applications (Section 4) as the Gaussian widths that
were optimized in PiNet-χ (EEM) will be passed to
MetalWalls for computing the electrostatic interactions.
Therefore, there is no risk of double-counting of the screening
effect and the implementation is self-consistent.

3.2. Forces and the Total Energy from the Charge
Response Kernel. In contrast to the original Siepmann−
Sprik model and its TF variant, the CRK instead of the
hardness kernel η is the key quantity used in PiNet-χ. This
means forces and the total energy in MetalWalls, that are
formulated based on the hardness kernel, may not coincide
with the CRK passed from PiNet-χ. Thus, we have to check
the dependence on the hardness kernel of the quantities
needed to run the MD and correct them if necessary.

To show whether these quantities depend on the hardness
kernel or not, we use parameter sets of both PM and TF metals
for constructing the hardness kernels η but only the parameter
set of a TF metal for constructing the charge response kernel χ.
Therefore, if the quantity in interest does not depend on η,
then the results will lie perfectly along the diagonal line in the
parity plot. As all of these tests were done with MetalWalls, we
have used a system shown in Figure 3a: a unit test charge is put
on top of a graphene layer over the center of a six-membered
ring, at a distance d of the layer.

The forces caused by the interactions between the response
charges and the electrolyte atoms at position ri are given by

(9)

According to eq 3, the response charges depend only on the
CRK. Since the external potential Δν does not depend on the
hardness kernel either, neither should the forces. Indeed, as
shown in Figure 3b, the forces (acting along the perpendicular
direction) are the same regardless of what η is used.

Next, we look at the total energy. According to eq 2, the
total energy should depend on both the hardness and the
charge response kernel. This is born out, as shown in Figure
4a. Therefore, one needs to resolve this discrepancy by
rewriting the total energy expression in terms of Δν and χ only.

As shown previously,43 the following equality holds under
the variational condition

(10)

Thus, we can replace cTηc with −ΔνTc and add a correction
to the total energy as

(11)

If the η − χ relation as defined by eq 4 is fulfilled, this term
should be 0. A non-zero term arises when they are not self-
consistent.

When applying this correction, the total energy does not
depend anymore on the hardness used by the MD engine, as
expected (Figure 4b). Thus, we now have everything checked
to run MD properly with an ML-derived CRK via the
PiNNwall interface.

3.3. Benchmarking on the Perfect Metal Electrode. As
a first test, a unit charge is put on top of the middle of a carbon
ring of the interfacial plane and moved in the vacuum space
between the two planes (Figure 5a). The total energy as a
function of the charge position for the different models
(MetalWalls, ACKS2, EEM, EtaInv, and Local) is displayed on
Figure 5b along with the theoretical line. The ACKS2 and
EEM are found more close to the theoretical line, which makes
them the candidates for the next test. Note that MetalWalls
(PM) throughout this work refers to simulations done with the

Figure 2. Passing the charge response kernel. (a) Nitrogen-doped
graphene layer with 3D PBCs. A unit test charge is put at a distance d
away from the surface on top of the defect. (b) Response charges
predicted by MetalWalls via the PiNNwall interface against the
prediction from PiNN using the same kernel PiNet-χ (EEM).

Figure 3. Forces from the charge response kernel. (a) A unit test
charge is put on top of a graphene layer over the center of a six-
membered ring, at a distance d of the layer, ranging from 0.5 to 5.5 Å.
(b) Total contribution to the force acting on the test charge along the
direction perpendicular to the surface. The subscript χTF − ηTF

indicates both χ and η come from the Thomas−Fermi model. The
subscript χTF − ηPM indicates χ comes from the Thomas−Fermi
model, while η results from the perfect metal electrode.
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default Gaussian width parameters as implemented in the code
and originated from the work of Reed, Lanning, and Madden.5

In the second test, we used the same graphite system as in
Figure 5a and computed the corresponding capacitance by
varying the size of the vacuum slab. When the graphite model
behaves like a PM with the dielectric constant of infinity, the
total capacitance will be only determined by the size of the
vacuum. Its capacitance for the different models (MetalWalls,
ACKS2, and EEM) as a function of the electrode separation is
computed by applying a finite-field that leads to a potential bias
of 2 V, and the results are displayed on Figure 6. In this case,
the EEM kernel shows a metallic behavior and follows almost
exactly the theoretical line, compared to ACKS2. The results of
ACSK2 indicate that the electric field inside the graphite model
is finite, which leads to a smaller polarization and a lower
integral capacitance.

Based on these tests, we will employ the EEM kernel
generated from PiNet-χ in the following case studies of
chemically doped graphene and graphene oxide electrodes. In
order to separate the effects of the local geometry and the
chemical heterogeneity on polarizability, we will also employ a
PiNet-χ model by considering all of the atoms as carbon atoms
for the computation of the CRK, which is referred as PiNet-χ
(EEM all C).

4. APPLICATION TO CHEMICALLY DOPED
GRAPHENE AND GRAPHENE OXIDE ELECTRODES

4.1. Nitrogen-Doped Graphene Electrode. The sim-
plest way to introduce chemical heterogeneity in the graphene
layers is through the chemical doping, such as nitrogen, which
shows a significant improvement on electrochemical activ-
ities.44,45 Due to its valence, nitrogen substitution does not
induce an out-of-plane change in the layer structure itself
(Figure 7a).

It is found that substituting carbon by nitrogen has a very
limited impact on the Helmholtz capacitance (Figure 7b). This
is also reflected in the charge density profile of ions next to the
electrode as well as the dynamics of electrode charge (Figure
7c,d respectively).

Figure 4. Hardness dependence of the total energy. Using the
simulation setup of Figure 3a. (a) Without the correction term in eq
11, the total energy expression depends on both the hardness and the
charge response kernel. (b) With the correction term in eq 11, the
total energy depends only on the charge response kernel. The
subscripts χTF − ηTF and χTF − ηPM follows the same convention used
in Figure 3.

Figure 5. Electrostatic energy of a test charge between two sides of a
graphite electrode. (a) The graphite electrode in vacuum under 3D
PBCs is used as the model for representing a perfect metal electrode.
(b) The total electrostatic energy of the system when moving the test
charge between two sides of electrode. The solid line corresponds to

the theoretical result , where L is the size of the

vacuum slab and z the distance between the test charge and the
electrode surface.

Figure 6. Inverse capacitance 1/C of an empty capacitor as a function
of the vacuum slab size L. The system under consideration is the one
shown in Figure 5a (without the test charge). The solid line
corresponds to the theoretical result 1/C = L/ϵ0.
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We also notice that regardless of the model, the asymmetry
in the Helmholtz capacitance between the positive and
negative electrode remains, in which the capacitance of the
negative electrode has a much higher capacitance at the same
surface density. This is in accord with the observation that the
cation distribution is more close to the electrode surface than
that of anions.

4.2. Graphene Oxide Electrode with Epoxy Termi-
nations. Epoxy, hydroxyl, and carboxylic acid functional
groups are commonly found in the graphene oxide.46 In this
section, we will look at how the Helmholtz capacitance will
change upon introducing epoxy termination in the graphene
oxide. This adds one layer of complexity as it also changes the
roughness of the surface (Figure 8a).

In contrast to the case of the graphitic substitution as shown
in the previous section, the doping with oxygen under the form
of epoxy groups will modify the capacitance significantly
(Figure 8b). Both PiNet-χ (EEM all C) and MetalWalls (PM)
treat electrode atoms as carbon atoms regardless of element
types, and yet PiNet-χ (EEM all C) shows a more rapid
increment in the capacitance with the surface coverage
compared to MetalWalls (PM). This highlights the fact that
the CRK implemented in PiNet-χ does take into account the
change in the “metallicity” due to the local geometry.

When comparing PiNet-χ (EEM all C) and PiNet-χ (EEM),
the effect of chemical heterogeneity in the polarizability at
atomic site comes into play. This in turn decreases the
capacitance due to a smaller polarizability of oxygen and
hydrogen atoms compared to that of carbon atoms. Therefore,
the gain in the capacitance due to the surface roughness and
the local geometry is canceled out by introducing the chemical
heterogeneity.

As shown in Figure 8c,d, the charge density profiles of ions
and the correlation function of the electrode charge do
correlate with the observed capacitance. For instance, PiNet-χ
(EEM all C), which has the highest capacitance, shows a
strongest first peak of charge density for both positive and
negative electrodes and the longest relaxation time. Never-
theless, this correlation is not perfect, in which the first peak
height of charge density next to the negative electrode does no
decrease in the same order as that in its capacitance. This
suggests that the ion population in the second peak of charge
density also contributes to the resulting capacitance.

4.3. Graphene Oxide Electrode with Hydroxyl
Terminations. Next, we also looked into the case of the
hydroxyl-terminated graphene oxide, as shown in Figure 9a.

In general, the trends for the capacitance (Figure 9b), the
charge density profile of ions (Figure 9c), and the time

Figure 7. Nitrogen-doped graphene electrode. (a) Snapshot of the electrode surface with a 10% surface coverage (electrolyte solution is not shown
for clarity). (b) Helmholtz capacitance for the positive and negative electrodes as a function of the surface coverage. Dashed lines correspond to the
positive electrode while dotted lines correspond to the negative electrode. (c) Total charge density of ionic species as a function of the distance to
the negative/positive electrode under an applied potential of 2 V. The distance is taken from the position of the carbon plane. (d) Time correlation
function of the electrode charge under an applied potential of 0 V.
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correlation function of the electrode charge (Figure 9d) look
similar to those observed in the case of the epoxy-terminated
graphene oxide. Nevertheless, there are also considerable
differences between the two cases. The capacitance obtained in
the case of the hydroxyl-terminated graphene oxide is much
higher than the epoxy case for the same surface coverage.
Notably, the corresponding charge densities of ions at both
positive and negative electrodes also have much higher
intensities (Figure 9c). This suggests that by increasing the
surface coverage of OH groups, the electrode surface becomes
more hydrophilic and ion populations next to the electrode
surface increase because of a more favorable solvation
environment.

4.4. Graphene Oxide with Proton Charge. Examples in
previous sections focus on the interplay between the
geometrical effect on metallicity and the chemical hetero-
geneity in polarizability by comparing the perfect metal model
in MetalWalls, PiNet-χ (EEM), and PiNet-χ (EEM all C). In
this section, we will apply PiNet-χ (EEM) to probe the surface
acid−base chemistry of electrode materials instead.

In graphene oxide, both surface carboxylic and hydroxyl
groups can undergo protonation/deprotonation depending on
the solution pH. It has been reported that the pKa is about 6.6
for the carboxylic group and 9.8 for the hydroxyl group in

graphene oxide.47 This means that, at the neutral pH, the most
relevant ionizable group in graphene oxide is the carboxylic
group and the most probable acid−base reaction is the one
shown in eq 12. Therefore, in this section, we will explore the
PiNNwall interface for modeling the protonic double layer at
the graphene oxide surface terminated with carboxylic groups
(Figure 10a)

(12)

(13)

As shown in Figure 10b, by changing the applied potential,
one can identify the point of zero free charge (PZFC) due to
the electronic polarization. This “titration” procedure is similar
to the one used before in modeling charged insulator/
electrolyte interfaces for eliminating the finite-size effect.48 It
is worth noting that the slope of Figure 10b yields a
capacitance of value 4.7 μF/cm2, which is comparable to that
of pristine graphene (see Figure 7b for the case of 0% surface
coverage).

Once the PZFC is identified, the integral capacitance can be
computed readily using the dq/dVPZFC formula, in which q is
the proton charge that we introduced through the protonation
and deprotonation of carboxyl groups. The result of the

Figure 8. Graphene oxide electrode with epoxy terminations. (a) Snapshot of the electrode surface with a 10% surface coverage (electrolyte
solution is not shown for clarity). (b) Helmholtz capacitance for the positive and negative electrodes as a function of the surface coverage. Dashed
lines correspond to the positive electrode, while dotted lines correspond to the negative electrode. (c) Total charge density of ionic species as a
function of the distance to the negative/positive electrode under an applied potential of 2 V. The distance is taken from the position of the carbon
plane. (d) Time correlation function of the electrode charge under an applied potential of 0 V.
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computed Helmholtz capacitance due to the proton charge at
the PZFC is shown in Figure 10c. What is surprising is that the
resulting Helmholtz capacitance for the hydroxylated surface
with deprotonated carboxyl groups can be as large as 100 μF/
cm2. This is one order of magnitude higher compared to those
found in pristine graphene but very similar in magnitude as
those reported for metal oxide.33,34 Therefore, this finding
provides a clue why the Helmholtz capacitance found in metal
oxide is much higher than that found in the metal, as often
seen in experiments.49

5. CONCLUSIONS AND OUTLOOK
In this work, we have integrated the atomistic ML code
(PiNN) and the MD simulation code (MetalWalls) to model
heterogeneous electrode surfaces. PiNN was used to generate
the response kernel and the base charge from ML models
PiNet-χ and PiNet-dipole, respectively. Then, this information
was passed to the MetalWalls to carry out efficient
computations of electrostatic interactions and to propagate
the dynamics.

Through validation and verification, we have identified
PiNet-χ (EEM) as the candidate for practical applications,
which shows almost identical results for pure carbon electrodes
compared to the original Siepmann−Sprik model. Thanks to

the flexibility of PiNet-χ (EEM) for modeling any electrode
materials composed of C, N, O, H, S, and Cl, we were able to
study both chemically doped graphene electrode and graphene
oxide with various terminations.

It is found that while the surface roughness and hydro-
philicity can potentially increase the capacitance, these
beneficial effects are attenuated by a smaller polarizability of
elements (N, O, and H) involved in the chemical
heterogeneity. On the other hand, we showed that the proton
charge due to the surface acid−base chemistry at graphene
oxide surfaces can lead to a significant increment in
capacitance, which is comparable in magnitude (100 μF/
cm2) to those reported in metal oxide-based systems.

Given that the capacitance is so different depending on
whether the electronic or the protonic charge dominates, it
would be interesting to study the transition between these two
cases in future works, which can shed light on the
electrochemical behavior of the “polarized oxide surfaces”.50

Reparameterizing PiNet-χ for transition-metal oxides or
transition-metal dichalcogenides would allow us to investigate
an even broader range of complex electrode materials in
contact with both aqueous and nonaqueous electrolytes. In
terms of the development of PiNNwall, future works can also
be considered in the direction to pass the forces from PiNN to

Figure 9. Graphene oxide electrode with hydroxyl terminations. (a) Snapshot of the electrode surface with a 10% surface coverage (electrolyte
solution is not shown for clarity). (b) Helmholtz capacitance for the positive and negative electrodes as a function of the surface coverage. Dashed
lines correspond to the positive electrode, while dotted lines correspond to the negative electrode. (c) Total charge density of ionic species as a
function of the distance to the negative/positive electrode under an applied potential of 2 V. The distance is taken from the position of the carbon
plane. (d) Time correlation function of the electrode charge under an applied potential of 0 V.
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MetalWalls. In combination with the ML potential for
modeling the electrode materials,51−53 this will enable us to
study the electrode dynamics and its role in the electro-
chemical energy storage.
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