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Abstract

The development of synthetic strategies for the preparation of bioisosteric compounds is a 

demanding undertaking in medicinal chemistry. Numerous strategies have been developed for the 

synthesis of bicyclo[1.1.1]pentanes (BCPs), bridge-substituted BCPs and, bicyclo[2.1.1]hexanes. 

However, progress on the synthesis of bicyclo[3.1.1]heptanes, which serve as meta-substituted 

arene bioisosteres, has not been previously explored. Herein, we disclose the first 

photoinduced [3σ+2σ] cycloaddition for the synthesis of trisubstituted bicyclo[3.1.1]heptanes 

using bicyclo[1.1.0]butanes and cyclopropylamines (CPAs). This transformation not only uses 

mild and operationally simple conditions, but also provides unique meta-substituted arene 

bioisosteres. The applicability of this method is showcased by some derivatization reactions.
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Bicyclic hydrocarbons have demonstrated the ability to replace aromatic rings in therapeutic 

molecules, providing greater solubility and metabolic stability, along with enhanced 

pharmacokinetic properties. Because of these enhanced properties, these bioisosteric 

scaffolds have received considerable attention in drug molecular design.1 One of the most 

studied among small-ring cage hydrocarbons are bicyclo[1.1.1]pentanes (BCPs),2 which 

serve as a bioisosteric replacement of ortho- and para-substituted phenyl rings as well 

as the tert-butyl group.3 Synthetic organic chemists have also made great progress in the 

development of new synthetic methods that provide geometrically complementary meta-

substituted arene bioisosteres. However, these architectures have been explored using mainly 

bridge-substituted BCPs4 and bicyclo[2.1.1]hexanes,4,5 although these motifs do not exactly 

mimic the bond vectors displayed in meta-substituted arenes. The preparation of bioisosteres 

that precisely reproduce the geometrics of meta-substituted arenes is a challenge from a 

synthetic point of view. Recently, the preparation of difunctionalized bicyclo[3.1.1]heptanes 

using [3.1.1]propellane as a feedstock demonstrates that these substructures can serve as 

meta-substituted arene analogues (Figure 1).6

Cyclopropylamines (CPAs) have shown their versatility as building blocks to access highly 

valuable nitrogenated organic motifs.7 They are extremely useful in [3+2] annulation 

reactions with alkenes for the construction of more complex cyclic amines.7c Their 

use as synthetic scaffolds arises from an irreversible ring-opening upon an initial 

oxidation to the nitrogen radical cation.7f In 1998 Cha8 and Iwata9 disclosed the use 

of N,N-dialkyl aminocyclopropanes bearing an alkene group for the construction of 

amino octahydropentalenes. In the development of photochemical [3+2] cycloadditions 

for the synthesis of bicycloaminoalkanes, bicyclic cyclopropylamines were used in 

an intermolecular approach using a ruthenium photocatalyst.7a Later, intra-10 and 

intermolecular11 cycloaddition reactions utilizing amino/iminocyclopropanes and alkenes 

(Figure 2) were reported.

Bicyclo[1.1.0]butanes (BCBs) have received increasing attention12 by the chemistry 

community for the synthesis of small ring systems because of their ability to engage in 

ring-opening reactions with different partners,13 including radical species. We envisioned 

that a photoredox [3σ+2σ] cyclization reaction could be applied using cyclopropylamines 
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and bicyclo[1.1.0]butanes. This reaction design would provide unique functionalized 

bicyclo[3.1.1]heptanes, which expands chemical space because of the several diversifiable 

positions on the bicyclo[3.1.1]heptane ring. Additionally, this bicyclic motif can potentially 

act as a precise meta-substituted arene bioisostere.6 To the best of our knowledge, the 

photoinduced construction of bicyclo[3.1.1]heptanes has never been previously explored. 

This photocatalytic approach would overcome the challenge for the construction of 

multifunctionalized bicyclo[3.1.1]heptanes in a sustainable and straightforward manner.

BCB 1a and CPA 2a were chosen as representative substrates for optimization of reaction 

conditions. First, considering that the choice of photocatalyst significantly impacts the 

product formation, and that the oxidation potential of cyclopropylanilines is around 0.80 

V vs SCE,7a,f we initiated the studies utilizing Ir[dF(CF3)ppy]2(dtbpy)PF6 (E1/2 *IrIII/IrII = 

1.21 V vs SCE)14 in DMSO as solvent. Under these conditions the bicyclic compound 3 was 

obtained in 70% yield (Table 1 entry 1). The exploration of other photocatalysts (Table 1 

entries 2–5) did not provide better efficiency toward the formation of the desired product. 

Next, other solvents were examined using the optimal photocatalyst, but no improvement 

was achieved (Table 1 entries 6–9). The photochemical nature of this transformation was 

confirmed when the reaction was performed either in the absence of photocatalyst (Table 

1, entry 10) or light (Table 1, entry 11). Finally, the presence of the radical scavenger 

TEMPO in the reaction completely inhibited the formation of compound 3 (Table 1, entry 

12) and unreacted 1a was observed by GCMS analysis (see Supporting Information). Of 

note, this transformation provides unprecedented access to functionalized, fully assembled 

bicyclo[3.1.1]heptane 3 in a single step from readily available BCB15 1a and CPA 2a.

Once the optimization reaction conditions were suitable for the development of this 

[3σ+2σ] cyclization reaction, the scope of the process using different CPAs was explored. 

This transformation works especially well with electron-withdrawing groups in the aryl 

ring of the N-cyclopropylaniline. The p-chlorophenyl-substituted CPA gave the desired 

compound 4 in 36% yield, but the presence of a fluorine atom in the meta position (5) 

as well as in the ortho- and para positions (6) provided the desired products in much 

higher yield. The presence of strongly deactivating groups such as trifluoromethyl (7) and 

difluoromethyl (8) gave the corresponding aminobicyclo[3.1.1]heptanes in 63 and 65%, 

respectively. Incorporation of the medicinally relevant trifluoromethoxy group afforded 

access to compound 9 in 62% yield. Of note, detailed NMR studies as well as the 

single crystal X-ray analysis of compound 9 (see Supporting Information) confirm the 

3-dimensional structures of the 4-aminobicyclo[3.1.1]heptanes. Phenyl- and 1,3-dioxolanyl-

substituted CPAs provided 10 and 11, respectively, in moderate yields. An electron-rich 

methoxy-substituted derivative group showed reactivity, although the desired product (12) 

was accessed in low yield. This result is not surprising given that the more electronically rich 

cyclopropylanilines are known to promote easier SET, while at the same time undergoing 

CPA ring-opening at a slower rate.16 Alkyl groups in the para- or ortho position showed 

good reactivity (13 and 14). Finally, some heteroarene-based amines were tested because of 

their outsized use in medicinal chemistry. Of note, benzothiophene (15) and benzofuran (16) 

motifs were well tolerated, providing the desired products in 51 and 47% yield, respectively. 

To explore further the use of heterocycles in this transformation, quinoline (17) and pyridine 
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(18) derivatives were incorporated, although the desired products were isolated in lower 

yields.

Subsequently, the scope was further extended to the modification of the BCB ring. 

In general, we observed good reactivity toward the formation of the desired 4-

aminobicyclo[3.1.1]heptanes when the BCB was tethered to an electron-poor arene. Thus, 

the presence of fluorine (20 and 21) and chlorine (22) substituents, as well as the 

p-trifluoromethylphenyl derivative (23), gave the corresponding products in good yields. 

Finally, m-CF3 (24) and more electronically rich substituents (25-28) furnished the final 

compounds in moderate yields.

Given previous literature precedents,10,11,17 a mechanism for the presented photoinduced 

aminobicyclo[3.1.1]heptane synthesis is postulated in Scheme 1. After photoexcitation of 

the IrIII photocatalyst by blue light irradiation, the photoexcited state (IrIII*) (E1/2 *IrIII/IrII 

= 1.21 V vs SCE) is accessed.14 Single-electron transfer to the cyclopropylaniline (2) (E1/2 

= 0.80 V vs SCE)7a,f induces the formation of the radical cation species (I) followed by 

ring opening via β-scission to the distonic radical cation (II). Subsequent addition of this 

reactive intermediate to BCB 1 furnishes another relatively stabilized distonic radical cation 

where the radical is localized in a secondary benzylic position (III). Subsequently, this 

species (III) undergoes cyclization, providing access to the radical cation (IV). At this stage, 

(IV) could be reduced by the IrII species generated in the reductive quenching photoredox 

cycle or it can be reduced by the presence of the cyclopropylaniline 2a. Given these two 

mechanistic scenarios, we explored the photochemical quantum yield of this transformation. 

We observed a quantum yield (ϕ) value of 0.47. Although the quantum yield is lower 

than 1, it does not guarantee a closed catalytic cycle.18 Given that single-electron transfer 

processes with amines are highly influenced by post-oxidation reactivity, a propagative 

mechanistic pathway is a more likely process because the reduction of IV by 2a is an 

enthalpically-driven step.19 This artificially low quantum yield value was also observed in 

other photochemical [3+2] cycloadditions reactions based on the use of CPA.10a

To showcase the applicability of the preparation of bicyclo[3.1.1]heptanes toward further 

functionalization, we prepared four different 4-anilinyl bicyclo[3.1.1]heptane derivatives 

(Scheme 2, 29-32), forming new C-C, C-O and C-N bonds. First, compound 25 was 

functionalized to the corresponding 3-oxobutanenitrile 29 in 73% yield using a combination 

of acetonitrile and LDA. This functional unit, containing α-methylene active protons, offers 

further opportunities for postfunctionalization. Subsequently, 25 was hydrolyzed to the 

corresponding carboxylic acid (30) in excellent yield, which was further coupled with 

estrone to provide 31 in 80% yield. Additionally, 30 was transformed to amide 32 in 85% 

yield. This Weinreb-type20 amide 32 serves as a carbonyl precursor for the formation of 

ketones, aldehydes, or alcohols.

In summary, a general and highly practical method for the construction of 4-

aminobicyclo[3.1.1]heptanes under mild conditions has been developed. The well-

orchestrated and serialized mechanism steps furnished new bicyclo[3.1.1]heptanes 

containing a wide range of functional groups. Derivatization to other functional groups 

has also been achieved. Overall, the photochemical [3σ+2σ] annulation reaction presented 
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herein enables access to unprecedented 4-aminobicyclo[3.1.1]heptanes assembled from 

BCBs and CPAs. These structures appear likely to serve as useful meta-disubstituted arene 

bioisosteres in the drug discovery field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of para- and meta-substituted arene ioisosteres
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Figure 2. 
Photocatalytic [3+2] annulations of alkenes using aminocyclopropanes for the construction 

of bicyclic systems.
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Scheme 1. 
Proposed reaction mechanism for the photoinduced synthesis of 4-

aminobicyclo[3.1.1]heptanes.
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Scheme 2. 
Derivatization reactions of 25. Reaction conditions: a) LiOH in MeOH, then HCl 1 M. b) 

LDA (2.2 equiv) and MeCN (2 equiv). c) Estrone (1 equiv), DMAP (0.05 equiv), DIC (1.2 

equiv) in CH2Cl2. d) N,O-dimethylhydroxylamine (1 equiv), DMAP (0.05 equiv), DIC (1.2 

equiv) in CH2Cl2. See Supporting Information for more details.
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Table 1.

Exploration of the reaction conditionsa for the photochemical synthesis of functionalized 

bicyclo[3.1.1]heptanes.

Entry Solvent PC Yield of 3 (%)b

1 DMSO Ir[dF(CF3)ppy]2(dtbpy)PF6 72 (70)e

2 DMSO Ir(ppy)3 <10

3 DMSO Ru(bpy)3(PF6)2 30

4 DMSO MesAcr traces

5 DMSO 4CzIPN 27

6 DMA Ir[dF(CF3)ppy]2(dtbpy)PF6 46

7 MeCN Ir[dF(CF3)ppy]2(dtbpy)PF6 40

8 1,4-dioxane Ir[dF(CF3)ppy]2(dtbpy)PF6 0

9 MeNO2 Ir[dF(CF3)ppy]2(dtbpy)PF6 traces

10 DMSO none 0

11c DMSO Ir[dF(CF3)ppy]2(dtbpy)PF6 0

12d DMSO Ir[dF(CF3)ppy]2(dtbpy)PF6 0

a
Reaction conditions: 1a (0.1 mmol, 1 equiv), 2a (0.2 mmol, 2 equiv), photocatalyst (2 mol % metal-based PC or 5 mol % organic based PC), in 

dry and degassed solvent (0.2 M) under blue Kessil irradiation (λmax = 427 nm) at rt.

b
Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as internal standard.

c
Reaction in the absence of light irradiation.

d
Reaction as in entry 5 but in the presence of 5 equiv of TEMPO.

e
Isolated yield from 0.2 mmol scale.
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Table 2.

Substrate Scope Exploration for the Synthesis of Bicyclo[3.1.1]heptanesa

a
Reaction conditions: BCB 1 (0.2 mmol, 1 equiv), CPA 2a (0.4 mmol, 2 equiv), Ir[dF(CF3)ppy]2(dtbpy)PF6 (2 mol %), in dry and degassed 

DMSO (0.2 M) under blue Kessil irradiation (λmax = 427 nm) at room temperature.
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