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ABSTRACT
Objective Quantitatively evaluate the quality of data 
underlying real- world evidence (RWE) in heart failure (HF).
Design Retrospective comparison of accuracy in 
identifying patients with HF and phenotypic information 
was made using traditional (ie, structured query language 
applied to structured electronic health record (EHR) data) 
and advanced (ie, artificial intelligence (AI) applied to 
unstructured EHR data) RWE approaches. The performance 
of each approach was measured by the harmonic mean of 
precision and recall (F

1 score) using manual annotation of 
medical records as a reference standard.
Setting EHR data from a large academic healthcare 
system in North America between 2015 and 2019, with an 
expected catchment of approximately 5 00 000 patients.
Population 4288 encounters for 1155 patients aged 
18–85 years, with 472 patients identified as having HF.
Outcome measures HF and associated concepts, such 
as comorbidities, left ventricular ejection fraction, and 
selected medications.
Results The average F

1 scores across 19 HF- specific 
concepts were 49.0% and 94.1% for the traditional and 
advanced approaches, respectively (p<0.001 for all 
concepts with available data). The absolute difference in 
F

1 score between approaches was 45.1% (98.1% relative 
increase in F1 score using the advanced approach). The 
advanced approach achieved superior F1 scores for HF 
presence, phenotype and associated comorbidities. Some 
phenotypes, such as HF with preserved ejection fraction, 
revealed dramatic differences in extraction accuracy based 
on technology applied, with a 4.9% F

1 score when using 
natural language processing (NLP) alone and a 91.0% F1 
score when using NLP plus AI- based inference.
Conclusions A traditional RWE generation approach 
resulted in low data quality in patients with HF. While an 
advanced approach demonstrated high accuracy, the 
results varied dramatically based on extraction techniques. 
For future studies, advanced approaches and accuracy 
measurement may be required to ensure data are fit- for- 
purpose.

INTRODUCTION
Heart failure (HF) is a major public health 
problem with significant associated morbidity, 
mortality and cost.1 2 Despite the availability 

of novel drugs and devices, morbidity and 
mortality in HF rivals many malignancies, 
with a 5- year survival rate as low as 50%.3–8 
Randomised controlled trials (RCTs) have 
traditionally been used to assess the safety 
and efficacy of new therapies and repre-
sent a cornerstone for regulatory approval. 
However, RCTs are frequently conducted in 
highly selected populations, typically younger, 
healthier and less diverse than patients treated 
in clinical practice. Furthermore, such trials 
often include patients with an established 
HF diagnosis, receiving guideline- directed 
medical therapy at tertiary centres, and may 
not represent the broader population with 
HF. Because HF is a clinically heterogeneous 
syndrome with numerous aetiologies and 
phenotypes, studying this population can be 
particularly difficult.

Real- world evidence (RWE) has held 
promise as a potential means to assess ther-
apeutic benefit outside of clinical trials, 
with sufficient power to characterise thera-
peutic impact in HF subgroups. Accordingly, 
RWE can complement RCTs, extending the 
findings to patient populations that may 
have been excluded from or insufficiently 
enrolled in pivotal trials. To accelerate these 
and similar precision medicine goals, the 21st 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ Using real- world evidence (RWE) for patients with 
heart failure (HF) requires demonstrating that the 
data source and technologies result in accurate 
data.

 ⇒ Natural language processing alone lacked context 
from the longitudinal record, limiting phenotype 
identification and study validity.

 ⇒ Findings suggest that advanced methods can en-
able high- validity RWE for patients with HF.

 ⇒ The use of data from a single healthcare system 
may limit generalisability to other populations.
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Century Cures Act was passed in 2016, which required the 
United States Food and Drug Administration to develop 
guidance supporting the use of RWE in new drug indi-
cations and postmarketing surveillance.9 In addition, 
payors have increasingly utilised RWE to inform reim-
bursement decisions and are increasingly demanding 
credible evidence.10

Not surprisingly, the quality of RWE hinges on how 
well real- world data are collected, processed11 and used 
to inform study questions. Such is the case in HF, where 
accurate identification of patients in administrative 
and other structured datasets is an ongoing focus.12–14 
Traditional methods of identifying patients with HF 
rely on querying diagnosis codes and structured data in 
the electronic health record (EHR) or medical claims. 
Conversely, artificial intelligence (AI) applied to unstruc-
tured data represents a novel method of analysing the 
medical record. Because of the importance of data reli-
ability in RWE and the potential to use unstructured data 
to achieve data enrichment,15 we sought to compare the 
accuracy achieved by traditional RWE methods versus 
advanced AI approaches in identifying a range of HF- spe-
cific data elements from the medical record.

METHODS
The study design is outlined in figure 1. Varied data 
sources and applied technologies were used to assess 
data reliability in patients with risk factors for HF. Lever-
aging manual chart abstraction as the reference standard, 
comparisons were made between the two methods. The 
first method used structured EHR data (eg, diagnosis 
codes and problem lists) and standard query techniques, 
defined as the ‘traditional approach’. The second used 
unstructured EHR data (eg, narratives from primary care 
and specialty notes) and AI techniques, described as the 
‘advanced approach’ (figure 1). The primary objective 
was measurement of the accuracy of identified HF- specific 
elements using traditional and advanced approaches. We 

hypothesised that the advanced approach would better 
identify key HF- specific elements than the traditional 
approach. Data were deidentified before study initiation, 
and the study was determined not to be human subjects 
research. Both natural language processing (NLP) and 
machine- learning inference technologies used in the 
advanced approach were provided by Verantos (Menlo 
Park, California, USA). The core of AI is a deterministic 
NLP layer. This layer is built on top of the GATE NLP 
architecture.16 The architecture is used to construct a 
flexible pipeline for processing incoming text against 
English language syntactical rules augmented with a 
lexicon based on a clinical vocabulary. The AI- based 
inference was applied during data processing. Millions 
of machine- learning and manually curated associations 
enable disambiguation and identification of clinically 
relevant concepts. As an example of AI- based inference, 
a patient with HF on the problem list and a narrative 
encounter describing ‘EF 60%’ would not be interpreted 
by NLP as having HF with preserved ejection fraction 
(HFpEF) since the text does not have sufficient infor-
mation to identify this condition. On the other hand, 
AI- based inference would infer HFpEF based on dispa-
rate information in the record.

EHR data source and processing
EHR data from primary care encounters between 2011 
and 2018 were deidentified and securely transferred to 
a cloud- based server for analysis. The dataset consisted 
of both structured data (eg, medical conditions, proce-
dures performed, medications and problem lists) and 
unstructured data (eg, narrative notes from primary 
care providers and specialists, telephone visits, and other 
narrative text) (figure 2).

As the study aimed to test the accuracy of different RWE 
approaches and not treatment effectiveness, the cohort 
was enriched for patients with suspected HF based on 
comorbidities and medications. Specifically, the following 
filters were applied: records containing both narrative and 

Figure 1 EHR data source and processing. EHR, electronic health record.
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structured components; narrative length 1000 characters 
or more; and at least one of the following problems or 
medications in structured or unstructured data—myocar-
dial infarction, congestive HF or carvedilol (figure 1).

A prespecified set of clinical concepts pertinent to 
patients with HF was extracted using traditional and 
advanced techniques (table 1). Problem lists were 
mapped to Systematised Nomenclature of Medicine 
(SNOMED) ontology, and unadjudicated claims were 
mapped to International Classification of Diseases 
(ICD)- 10 codes. Standard sets of individual codes were 
used to represent each concept. With the advanced 
approach, inference incorporating pattern recognition 
was utilised to identify potentially missing or ignored 
concepts within the text (eg, HF being likely in patients 
with dyspnoea and pitting oedema on a diuretic). Specif-
ically, no narrative coding took place before the AI 
algorithm was used; instead, it was applied directly to 
the narrative text and then mapped by the algorithm to 
the SNOMED ontology. Next, manual chart abstraction 
using the same SNOMED code set was used as a refer-
ence to assess the accuracy of the coding by the AI algo-
rithm. Engineers were blinded to validation data and its 
corresponding chart abstraction.

Study end points and statistical analysis
The primary endpoint was the F1 score for traditional and 
advanced approaches. The F1 score is an accuracy measure 
that combines recall and precision; more specifically, it 
is the weighted harmonic mean of these two measures. 
Secondary endpoints were recall (ie, the proportion of 
patients correctly identified as having the condition, akin 
to sensitivity) and precision (ie, the proportion of patients 
with HF and its subtypes correctly identified divided by the 
total number of patients identified in each cohort akin 
to positive predictive value)17 18 for the traditional and 
advanced approaches. The reference standard used to eval-
uate accuracy of the traditional and advanced approaches 
was manual chart abstraction. For each encounter, two 
independent clinical annotators labelled each concept and 
all metadata for that concept. Annotators were blinded to 
each other’s annotations, and inter- rater agreement was 
measured by Cohen’s kappa score. Further description 
of the reference standard methodology is provided in the 
online supplemental material. Results were summarised 
using descriptive statistics, and percentages were calculated 
for categorical variables. Differences in F1 scores between 
traditional and advanced approaches were analysed using 
the χ2 test; associated p- values were reported.

Figure 2 Comparison of traditional and advanced real- world evidence approaches. EHR, electronic health record.

Table 1 Prespecified HF- specific concepts extracted from the electronic health record

High priority conditions Comorbidities Symptoms Findings Medications

Congestive HF Myocardial infarction Angina LVEF Carvedilol

HF with reduced EF Atrial fibrillation Chest pain Lisinopril

HF with mid- range EF Aortic regurgitation Dyspnoea Metoprolol

HF with preserved EF Mitral regurgitation Fatigue Furosemide

Tricuspid regurgitation Palpitations

EF, ejection fraction; HF, heart failure; LVEF, left ventricular ejection fraction.

https://dx.doi.org/10.1136/bmjopen-2023-073178
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Patient and public involvement
Data were deidentified before study initiation, and the 
study was determined not to be human subjects research. 
As a result, no patients were recruited for study partic-
ipation. The research question and study goal of high-
lighting methods for improving RWE use were driven by 
recognition that improvements in use of RWE to inform 
new drug indications, postmarketing surveillance, and 
reimbursement decisions would ultimately result in 
patient benefit.

RESULTS
A total of 4288 encounters for 1155 patients were exam-
ined, of which 472 patients with HF were identified. 
Of these, 382 had HF with reduced ejection fraction 
(HFrEF), 35 had HF with mildly reduced ejection fraction 
(HFmrEF) and 55 had HFpEF. The reference standard 
Cohen’s kappa score was 0.95, suggesting high validity.

Online supplemental table 1 reports the F1 score, recall 
and precision results achieved with both approaches. 
Figure 3 graphically presents F1 scores for HF diagnoses 
and figure 4 includes F1 scores for symptoms, medications 
and comorbid conditions. Overall, accuracy was signifi-
cantly greater for the advanced approach (AI applied to 
unstructured EHR data) than for the traditional approach 
(structured query language applied to structured EHR 
data) (online supplemental table 1; figures 3 and 4), with 
an absolute difference of 45.1%.

With the traditional approach, recall for any HF diag-
nosis was 46.9% (ie, 53.1% of patients with HF were 
missed entirely) and precision was 95.4%, resulting in 
an F1 score of 62.9% (p<0.001). In contrast, with the 
advanced approach, recall for any HF diagnosis was 

96.0% and precision was 94.7%, resulting in an F1 score 
of 95.3% (p<0.001 when F1 scores for the two approaches 
were compared) (online supplemental table 1; figure 3). 
Among HF phenotypes, recall with the advanced 
approach was highest with HFrEF, followed by HFpEF 
and HFmrEF; precision was 100% for all phenotypes. 
With the traditional approach, F1 scores could not be 
calculated for HFrEF, HFmrEF and HFpEF because only 
less granular HF codes were used (online supplemental 
table 1).

Accuracy in identifying left ventricular ejection fraction 
(LVEF) was similarly high with the advanced approach, 
with an F1 score of 96.7%. Data could not be extracted 
for LVEF with the traditional approach because no such 
codes were available within the EHR, nor did a mecha-
nism to encode LVEF within the problem list or unadjudi-
cated claims exist (online supplemental table 1; figure 3).

Accurate identification of HF symptoms was greater 
with the advanced approach (p<0.001) (online supple-
mental table 1; figure 4A). Although identification of 
commonly prescribed HF medications was high with both 
approaches (online supplemental table 1; figure 4B), 
identification of cardiovascular comorbidities was higher 
in all cases with the advanced approach (p<0.001) (online 
supplemental table 1; figure 4C).

Data concept extraction with the advanced approach 
greatly depended on the technology used. For example, 
NLP, which ends at the sentence boundary, was only 
able to identify HFpEF with an F1 score of 4.9% because 
‘HFpEF’ or ‘heart failure with preserved ejection frac-
tion’ was rarely written. Conversely, inference, which can 
find related items from the longitudinal record, was able 
to identify both ‘HF’ and ‘normal ejection fraction’ as 

Figure 3 F1 scores for HF diagnoses. 0% reflects a measured value and indicates the availability of the diagnosis code in the 
EHR dropdown versus N/A, which refers to a diagnosis without available code in the relevant codeset. *F1- score could not be 
calculated due to lack of data for precision. †Structured data recall is not applicable for ejection fraction because no code was 
available within the problem list. HF, heart failure; HFmrEF, heart failure with mildly- reduced ejection fraction; HFpEF, heart failure 
with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LVEF, left ventricular ejection fraction; N/A, 
not applicable.
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Figure 4 F1 scores for (A) symptoms, (B) comorbid conditions and (C) medications. *F1 score could not be calculated due to a 
lack of data for precision.
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separate annotations for HFpEF with an F1 score of 91.0% 
(online supplemental table 1; figure 3).

DISCUSSION
The utilisation of RWE has grown substantially in recent 
years, driven in part by its perceived value by clinicians, 
regulators and payors, particularly in light of the limita-
tions of trial populations.19 As RWE is increasingly used 
to refine care standards through clinical, regulatory and 
reimbursement pathways, its accuracy has come under 
increased scrutiny. This is particularly important for 
complex medical conditions, such as HF.20 Accordingly, in 
this analysis, chart abstraction was used to quantitatively 
evaluate traditional and advanced approaches to define 
HF- specific data elements. This enabled rigorous eval-
uation of whether commonly used techniques are suffi-
ciently accurate for observational studies, comparative 
effectiveness research and post- approval safety studies.

In this study, (1) the use of an advanced, AI- based 
approach consistently identified HF phenotypes (ie, 
HFrEF, HFmrEF and HFpEF) more accurately than a 
traditional approach; (2) common HF symptoms and 
comorbid conditions were consistently and accurately 
identified using an advanced approach; and (3) medi-
cations for HF were accurately identified using both 
advanced and traditional approaches. While studies have 
previously leveraged an AI- based approach to identify 
patients with HF,21–24 the findings presented here high-
light the discrepancy between traditional EHR query 
methods and an AI- based approach standardised against 
a manual reference. Given that the accuracy of the dataset 
and appropriateness of the applied technology are not 
tested in many RWE studies, there is a high potential 
for error.25–28 The current findings highlight this while 
also reinforcing the impact that specific AI technologies 
(eg, NLP vs NLP plus inference) can have on phenotype 
generation and study validity.

Accurate phenotyping is paramount in any RWE study 
that includes patients with HF. With varying aetiolo-
gies and multiple phenotypes, HF is a clinically diverse 
syndrome, with outcomes that may vary between and 
even within subgroups.29 30 In addition, patients with HF 
may have different trajectories, highlighting some of the 
limitations of using structured data. For example, LVEF 
may fluctuate throughout a patient’s disease course, with 
some patients experiencing recovery of their LVEF with 
the use of guideline- directed medical therapy. Accord-
ingly, accurate phenotyping of patients with HF usually 
requires the incorporation of data that crosses clinical 
encounters. In addition, although symptoms are an essen-
tial reflection of clinical status, they are poorly captured 
in structured data. Suboptimal recognition of comorbid-
ities like valvular heart disease can also impact disease 
trajectory and risk for future cardiovascular events.

The findings presented here represent an important 
advance for RWE studies that include HF patients. 
Notably, the only way to ascertain comparative accuracy 

between data sources and technologies in a domain is 
to test it. Accuracy consists of both recall and precision, 
and in the case of many health conditions, recall can fall 
below 50% when one relies solely on the problem list.31 32

In the current study, use of the F1 score enabled anal-
ysis of both precision and recall. Despite availability 
of SNOMED codes for HFrEF and HFpEF, along with 
a similar code for HFmrEF, such codes were rarely 
included. Documentation of a HF code using structured 
data was only found 46.9% of the time when there was 
clear evidence of HF in the chart. The low accuracy of 
structured data for disease subtypes may, at least partially, 
relate to how the data are likely to be used. A physician 
may look within notes to understand HF subtype. Infor-
mation entered into problem lists and claims may be 
more to provide a high- level understanding of disease 
burden. Granular billing codes may be a low priority for 
physicians if claims are reimbursed with the non- granular 
HF code. Furthermore, because addition of diagnoses 
to the problem list is not a requirement, the problem 
list may not be specific or updated. This contrasts with 
clinical notes, where detailed documentation is usually 
performed to communicate a care plan and is a medical- 
legal requirement.

When low- accuracy and non- granular data are utilised, 
there are several potential consequences. Missingness 
can result in selection bias, particularly if sicker patients 
have more frequent encounters, higher rates of specialty 
care and more complete documentation. Depending on 
the study question, use of structured data alone to iden-
tify certain subgroups may be inadvisable, since these 
data have a low recall for specific clinical concepts such 
as ST- elevation myocardial infarction and HFrEF.33 Even 
advanced approaches (eg, NLP) may result in poor accu-
racy, as illustrated in this study, where HFpEF required 
AI- based inference for proper identification. Collectively, 
this highlights that not all data sources and technologies 
are the same; therefore, accuracy testing may be required 
for rigorous RWE generation.34 Furthermore, given the 
growth in RWE to support new drug indications, postmar-
keting surveillance, and decision- making regarding reim-
bursement, it is imperative for clinicians to understand 
that such inaccuracies may have a profound impact on 
large numbers of patients.

Even though standard dictionaries and clinical terms 
related to cardiovascular medicine were used, there is 
a need to test the two analytic methods using different 
EHRs across a broader set of community and referral prac-
tices. With numerous EHRs available and practitioner- to- 
practitioner variability in documentation accuracy, efforts 
like the one described here represent an important 
means of strengthening data quality.

Importantly, this study has several limitations. First, 
data from a single health system was used and results may 
not be generalisable to other populations. Second, the 
study protocol required the selection of patients enriched 
with cardiovascular disease to make the study feasible, 
with manual chart abstraction conducted to ensure the 

https://dx.doi.org/10.1136/bmjopen-2023-073178
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accuracy of results. While selection criteria were applied 
to both structured and unstructured data, it is possible 
that this could have biased results in a way that favoured 
structured data since a larger proportion of patients with 
HF on the problem list may have been included than if 
the sample had been created randomly. In addition, the 
specific filters used likely led to a higher- than- expected 
proportion of patients with HFrEF (compared with those 
with HFmrEF and HFpEF). Second, the study required 
laborious manual annotation of thousands of records. 
Such a sample size is adequate for high- prevalence 
conditions, but would likely require adjustment for low- 
prevalence conditions with low concept occurrence rates. 
Finally, the study did not include clinical outcome assess-
ment; rather, it was designed to compare data sources and 
processing methods.

CONCLUSION
As RWE is increasingly used to analyse patient subgroups, 
inform clinical decision- making and influence regula-
tory and reimbursement decisions, data reliability and 
evidence validity are of critical importance. Use of a tradi-
tional approach was associated with low data accuracy. 
While much greater accuracy was observed with AI- based 
methods, it depended on the technology utilised. These 
findings highlight the importance of using data fit- for- 
purpose to the research question posed. In addition, 
they suggest that accuracy testing should be part of any 
EHR- based study that includes patients with HF. Finally, 
unstructured data and a technology- based approach 
to data extraction may be required in some studies to 
achieve sufficient accuracy, depending on the clinical 
assertion being tested.
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