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ABSTRACT
Background Predictive models have been used in clinical 
care for decades. They can determine the risk of a patient 
developing a particular condition or complication and 
inform the shared decision- making process. Developing 
artificial intelligence (AI) predictive models for use in clinical 
practice is challenging; even if they have good predictive 
performance, this does not guarantee that they will be used 
or enhance decision- making. We describe nine stages of 
developing and evaluating a predictive AI model, recognising 
the challenges that clinicians might face at each stage and 
providing practical tips to help manage them.
Findings The nine stages included clarifying the clinical 
question or outcome(s) of interest (output), identifying 
appropriate predictors (features selection), choosing relevant 
datasets, developing the AI predictive model, validating and 
testing the developed model, presenting and interpreting 
the model prediction(s), licensing and maintaining the 
AI predictive model and evaluating the impact of the AI 
predictive model. The introduction of an AI prediction model 
into clinical practice usually consists of multiple interacting 
components, including the accuracy of the model predictions, 
physician and patient understanding and use of these 
probabilities, expected effectiveness of subsequent actions 
or interventions and adherence to these. Much of the 
difference in whether benefits are realised relates to whether 
the predictions are given to clinicians in a timely way that 
enables them to take an appropriate action.
Conclusion The downstream effects on processes and 
outcomes of AI prediction models vary widely, and it is 
essential to evaluate the use in clinical practice using an 
appropriate study design.

INTRODUCTION
Healthcare systems worldwide generate enor-
mous amounts of patient- related health data, 
much of which is electronic in developed 
countries. There is growing interest among 
clinicians and healthcare staff in how they 
could use these data to support patient care.1 
Much of medicine is about anticipating and 
reducing risk, based on current and historical 
experiences. Predictive analytics in healthcare 
can help determine the risk of a patient devel-
oping a particular condition or complication, 
which can inform the shared decision- making 

process between clinicians and patients and 
improve patient satisfaction with their overall 
medical care.2–7 With the new era of artificial 
intelligence (AI), clinical prediction tools can 
help personalise treatment and management 
decisions.

The Transparent Reporting of a multivari-
able prediction model for Individual Prog-
nosis or Diagnosis (TRIPOD) framework was 
published to guide developing multivariate 
predictive models,8 outlining what should be 
reported (eg, data sources, modelling tech-
niques) when written up for publication.9 
However, a recent systematic review high-
lighted how these models’ reporting has been 
rather poor since its publication.10 TRIPOD 
also only focused on regression- based predic-
tion models (although it can be applied to 
AI- generated approaches) and highlighted the 
need for more ‘practical methods’ for devel-
oping models more commonly used in health-
care (ie, supervised learning techniques).11 
The Consolidated Standards of Reporting 
Trials–AI guidelines were published in 2020 
to help readers conceive studies with AI inter-
ventions; however, there was limited guidance 
on how these AI predictive models could be 
developed and usefully applied in clinical 
practice12; clinicians have sought further infor-
mation on this.1 13 Even if a newly developed 
AI model has a good predictive performance, 
this does not guarantee that it will be used in 
clinical practice or enhance clinical decision- 
making, let alone improve health outcomes.14 
The quality criteria important for evaluating 
AI predictive models were described in a 
recent scoping review; however, little informa-
tion was provided on how such tools affect the 
clinical routine of physicians, which may vary 
per physician.15

The nine stages for developing and evaluating 
predictive AI models
Stage 1: clarifying the clinical question or 
outcome(s) of interest (output).
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Stage 2: identifying appropriate predictors (features 
selection).

Stage 3: choosing relevant datasets.
Stage 4: developing the AI predictive model.
Stage 5: validating and testing the developed model.
Stage 5: presenting and interpreting the model 

prediction(s).
Stage 7: licensing the AI predictive model.
Stage 8: maintaining the AI predictive model.
Stage 9: ongoing evaluation of the impact of the AI 

predictive model.
It is vital to seek the input of a multidisciplinary 

team early when developing AI predictive models. This 
includes clinical specialists when deciding how the model 
could potentially enhance clinical decision- making and 
computing scientists when selecting the most appro-
priate algorithm(s).16 Patients and providers should also 
be involved in deciding if the recommendations will be 
presented to them, including what, how and when infor-
mation might be usefully presented (ie, content and 
alerts).2 7 17 Taking each of these stages in turn.

STAGE 1: CLARIFYING THE CLINICAL QUESTION OR 
OUTCOME(S) OF INTEREST (OUTPUT)
The clinical question or outcome(s) of interest should 
be clearly defined from the onset. An example of a clin-
ical question might be ‘what is the likelihood of a patient 
developing type 2 diabetes mellitus (T2DM)?’ to modify 
some of the patient’s potential risk factors through life-
style changes and/or prescribing medication.18 It is essen-
tial to consider how we define T2DM here. Kopitar et al 
defined it as a fasting plasma glucose level of 6.1 mmol/L 
or higher without diabetes symptoms.18 This definition 
makes the model a prognostic rather than diagnostic 
predictive model, given that it focuses on predicting a 
future health outcome. It is worth mentioning that this 
definition varies from those presented in different clinical 
guidelines18 and can also change over time, highlighting 
the importance of model upgrading and maintenance. 
Another example of a clinical question could be ‘what 
is the likelihood of a patient developing an infection 

and subsequent sepsis as an inpatient?’. Again, multiple 
definitions of sepsis could be used,19–21 each varying in 
how closely aligned it is with the systemic effects of sepsis 
syndrome (see figure 1).19 20 However, the choice of defi-
nition here is critical as it can directly influence the model 
performance measures, particularly specificity, which we 
will discuss later.22 Clinicians should decide on the most 
accurate clinical definition for the predicted output, with 
the model upgraded to reflect any future changes to this 
definition.

STAGE 2: IDENTIFYING APPROPRIATE PREDICTORS (FEATURE 
SELECTION)
The second step involves identifying appropriate clinical 
predictors (features) related to the outcome of interest. 
Thus, if we take our sepsis- 3 definition (figure 1), the 
next question relates to ‘what clinical variables should we 
use for predicting sepsis?’. These clinical predictors will 
again depend on whether you want to develop a prog-
nostic predictive model (which predicts the likelihood 
of sepsis occurring before the systemic inflammation 
process begins)23 or a diagnostic predictive model (which 
early detects the likelihood of sepsis but after the inflam-
mation process has already begun).24 A review of the 
medical literature can help identify potential predictors 
that might be worth considering; 194 clinical predictors 
have been previously used to train machine learning algo-
rithms for sepsis prediction, 13 of which were used across 
all 17 newly developed algorithms.22 These 13 predictors 
contained a blend of non- modifiable (eg, age, gender) 
and modifiable (eg, blood glucose levels, blood pressure) 
predictors, the latter potentially increasing the applica-
bility of the model in clinical practice.22 It is important to 
consider here how these predictors have been defined and 
selected in previous studies, their source (ie, retrospective 
or real- time data) and whether any were excluded, thus 
recognising any inherent bias.14 25 In terms of predictor 
type, numerical predictors should be given preference 
over categorical predictors, whenever possible.8 26–28 A 
classic example is blood pressure, which can be recorded 
as a numerical (eg, 110 mm Hg) or categorical (eg, high, 

Figure 1 Different definitions of sepsis and their related clinical predictors. *Note that SIRS criteria are non- specific on the type 
of infection. **Note that suspected infection became a requirement to define sepsis. ***Note that clinical parameters are more 
specific to the systemic mechanism of sepsis.
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normal, low) value. The latter assumes that a patient with 
systolic blood pressure of 110 mm Hg has the same level 
of hypotension as another patient with systolic blood 
pressure below 90 mm Hg, which is more characteristic of 
sepsis. In the T2DM example mentioned above, Kopitar 
et al screened the electronic health records (EHRs) 
of patients who went on to develop T2DM to identify 
potentially modifiable (eg, total cholesterol) and non- 
modifiable (eg, age) predictors.18 EHR data can also 
allow exploring variables with predictive potentials that 
might not have been considered.18

The potential clinical predictors are then correlated 
to the model’s outcome of interest (output) using either 
statistical methods or machine learning techniques.29 
Some predictors are likely to correlate strongly to the 
output but may be more suitable for a diagnostic rather 
than a prognostic predictive model. For example, the 
Sequential Oragn Failure Assessment Score (SOFA) 
Score, which reflects multiorgan dysfunction, will have 
a strong correlation with the sepsis diagnosis and would 
be more suitable for developing a diagnostic predictive 
model, whereas lipid profile will have a strong correlation 
to the diabetes prognosis and would be more suitable for 
developing a prognostic predictive model; this is because 
patients with established diabetes are likely to have 
hypercholesterolaemia.18 We suggested using a ‘blended 
approach’ for predictor selection, where the predictors 
are correlated to the model’s output and clinical input is 
also obtained on the choice to support its clinical appli-
cation.19 22 30

STAGE 3: CHOOSING RELEVANT DATASETS
The existence, choice and access to relevant datasets 
often represent a limiting step for developing predictive 
AI models.1 31 Thousands of organisations hold health 
datasets in the UK, so it can be difficult for clinicians, 
researchers and innovators to discover what datasets 
already exist.32–34 Developers should first look at the rele-
vance, data size and diversity of potential datasets; the 
proposed dataset should ideally represent the targeted 
population where the AI model is intended to be used to 
reduce the risk of inherent bias.35 If the key outcome(s) 
of interest is unidentified, developers may have to decide 
how these available variables are used to define the key 
outcome. Researchers and innovators can search and 
request access to UK health- related datasets through 
‘the Gateway’, a common entry point established by the 
Health Research Authority for nine UK- based health data 
research (HDR) hubs across the country.33 These hubs 
include DATAMIND (mental health data), PIONEER 
(acute care data) and Discover- Now (primary care data), 
the latter being one of the largest primary care datasets 
in Europe. The UK HDR Alliance is also an indepen-
dent alliance of leading healthcare and research organ-
isations united to establish best practices for the ethical 
use of UK health data for research at scale.34 In the UK, 
patients’ information is protected by the General Data 

Protection Regulation and patients can refuse to permit 
their confidential data to be used through the national 
data opt- out service. Deidentification can be challenging, 
specifically with demographic variables, some of which 
can be important predictors when training the model. 
Removing them can potentially risk the efficiency of the 
model performance. A trusted research environment 
with anonymised patient data can be prepared for the 
clinician or researcher, once all the necessary ethical 
approvals have been obtained and the required training 
on data use and security completed.36–39 Alternatively, 
data can be processed in a safe environment either at a 
hospital or university site; however, checks will need to be 
made on the safety of these environments and these data 
not approved for release if they do not meet the HDR 
UK five safes (safe people, safe projects, safe settings, 
safe outputs and safe data).34 The diabetes risk predic-
tion model mentioned above was developed using anony-
mised data collected from 10 diabetes screening clinics 
pooled in a single database.18 Internationally, the Medical 
Information Mart for Intensive Care (MIMIC) database 
has clinical information from more than 40 000 patients 
admitted to critical care units at one tertiary centre (Beth 
Israel Deaconess Medical Centre, Boston, Massachusetts, 
USA). Similarly, healthcare professionals can freely access 
the dataset after completing appropriate data use and 
security training and signing a data usage agreement.36 40 
An important consideration is how these data have been 
collected and recorded. Numerical variables in the chosen 
dataset should ideally be collected and recorded synchro-
nously.37 The MIMIC database developers recognised this 
as a potential limitation of their dataset, with vital signs 
like heart rate and blood pressure recorded at different 
time points, thus potentially impacting the accuracy of 
the model.36 Clinicians should help decide which dataset 
best represents the patient population that this model is 
intended to be used in.

STAGE 4: DEVELOPING THE AI PREDICTIVE MODEL
There are four major types of machine learning algo-
rithms: supervised learning, unsupervised learning, 
semisupervised learning and reinforcement learning.41 
The choice of machine learning algorithm will depend 
on some factors, including the outcome of interest (ie, 
numerical or discrete value); the number of predictors; 
the ‘shape’ of the dataset (ie, size, completeness, unifor-
mity); and the performance measures of the algorithm (ie, 
sensitivity, specificity, accuracy, area under the curve).30 
In the case of the latter, a number of algorithms may need 
to be tried first before finally deciding on the most suit-
able one or combination (ensemble model).41 Supervised 
learning is commonly used for predictive models and can 
be subclassified into regression (ie, numerical output) 
or classification (ie, discrete output) algorithms.42 The 
higher the number of predictors used, the more compu-
tational power needed to train the model and the higher 
the potential risk of overfitting.42 An overfitting model is 
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a model that has high accuracy during the training phase, 
but lower accuracy during the validation and testing 
phase; potential ways to overcome this are described 
below.26 42 43 It is important to remember, however, that 
strong computational correlations primarily depend 
on the entry values (eg, non- extreme vs extreme) and 
amount of missing data. Missing data can be potentially 
managed by statistical methods (ie, multiple imputations) 
or machine learning algorithms (ie, K- nearest neigh-
bours), the choice of which will usually depend on the 
type and extent of missing information.41 44 45

Deep learning and artificial neural networks can 
perform better than conventional machine learning tech-
niques. These networks act as a net of neurons that can 
identify patterns and correlations in a dataset so the model 
can self- learn from these patterns. The ‘deep’ refers to 
the depth of layers in a neural network and the perfor-
mance measures of a deep learning model are directly 
correlated to the data size (ie, the larger the dataset, the 
better the model performance).46 47 However, this can be 
challenging with rare diseases.42 46 48

Python is one of the most common programming 
languages for developing AI predictive models and is freely 
available.49 After importing the dataset into program-
ming software, you usually divide it into two portions: 
training the algorithm (70%) and internal validation 
(30%).41 43 As described in stage 2 above, each predictor 
is then correlated to the outcome of interest (feature 
selection) using the training set and the performance 
measures of the algorithm calculated. This includes the 
specificity, sensitivity, receiver operating characteristic 
(ROC) curve and the area under the ROC curve (AUROC 
curve). The AUROC curve measures the distinctive ability 
of the algorithm to predict the outcome, with a value of 
>0.9 considered excellent.22 50 AI systems learn to make 
decisions based on these training data, which may reflect 
human biases or social inequities, even if predictors such 
as race or gender have been removed.51 It is beneficial 
to have the input of a programming specialist when 
preparing/revising the codes and judging the perfor-
mance measures of any resulting models.

STAGE 5: VALIDATING AND TESTING THE AI PREDICTIVE MODEL
After developing the model, its predictive accuracy is reas-
sessed using a validation dataset (internal validation) and 
again in a completely new, unseen dataset (ie, externally 
validated), ideally from another site. This comparison of 
performance measures is important for evaluating the 
risk of over/underfitting and widening the generalis-
ability of the model, considering the diversity and repre-
sentation of the patient population.52 The testing phase 
usually involves running the model in a silent clinical 
environment, where the output is not shared with clini-
cians but compared with conventional clinical judgement 
and diagnosis. The T2DM prediction model was tested 
in a silent clinical environment over 6 months to assess 
its performance, before ‘going live’ to support clinical 

decision- making.18 It is important to recognise that not 
all data are equal in quality; laboratory values may be 
coded differently or missing for some or all of an entire 
predictor in validation and training datasets. Complete 
case analysis is a method that can handle missing data 
and involves removing all missing patient cases; however, 
this requires a large sample size and may introduce selec-
tion bias. Alternatively, mean imputation can be used 
for missing numerical predictors, but can be sensitive to 
outliers (ie, extreme values).53

STAGE 6: PRESENTING AND INTERPRETING THE MODEL 
PREDICTION(S)
It is essential to consider how the model prediction(s) is 
presented to target users (patients/clinicians) and whether 
a recommendation accompanies it. The predicted prob-
ability (output) can be presented to users without any 
corresponding recommendations; this assistive presenta-
tion format allows clinicians to combine these predictions 
with clinical judgement.54 55 In contrast, a directive predic-
tion model provides the physician with a recommenda-
tion in addition to the predicted probability; this, in turn, 
can potentially increase the ease of use of the AI predic-
tion model, especially if integrated into the electronic 
ordering system.56 57 Clinicians should be informed of the 
underlying assumptions of the model, including which 
predictors were included and why, any inherent bias (eg, 
if groups are over- represented or under- represented in 
the training data) and how patients with specific outcome 
risk profiles might be affected by different recommen-
dations.14 For example, the inclusion of health costs as 
a proxy for health needs could potentially introduce 
racial bias, as less money is spent on black patients who 
have the same level of need in the USA; in other words, 
the algorithm could falsely conclude that black patients 
are healthier than equally sick white patients.58 There is 
some evidence that clinicians in English- speaking coun-
tries have felt more legally supported when using deci-
sion support tools because they can provide documented 
evidence for the rationale behind their decisions.59 Chua 
et al proposed an AI–human interface, where clinicians 
identify which patients might be eligible to use the tool, 
and the algorithm identifies (more accurately) which 
patients have serious illness communication needs and 
promotes upstream data collection.7 Target users should 
contribute to the design of the model interface, ensuring 
that it is user- friendly, and any outputs and recommenda-
tions are easy to understand.

STAGE 7: LICENSING THE AI PREDICTIVE MODEL
In the UK, AI- based tools are classified as medical 
devices and therefore need the Medicines and Health-
care products Regulatory Agency (MHRA) approval. 
Before Brexit, approved tools required either the ‘United 
Kingdom Conformity Assessed’ (UKCA) or ‘Conformité 
Européenne’ logo to be marketed in Europe.60 However, 
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from July 2023, only tools with the UKCA logo will be 
allowed to be marketed in the UK.61 In Europe, AI- based 
software and tools are regulated by the EU Medical 
Device Regulation (EU MDR),31 62 63 whereas in the 
USA, AI- based tools are regulated by the Food and Drug 
Administration.64

To licence an AI predictive tool in the UK, the MHRA 
must ensure that it complies with certain ‘conformity 
assessment’ standards, described by the National Insti-
tute for Health and Care Excellence (NICE) in 2018 and 
updated in 2021.65 It is worth mentioning that NICE frame-
work is designed for AI tools with fixed algorithms (ie, 
no change over time) rather than AI tools with adaptive 
algorithms (ie, continually and automatically change)65; 
the latter are covered by separate standards (including 
principle 7 of the code of conduct for data- driven health 
and care technology).65 Higher- risk AI tools are classified 
as those that either target vulnerable patient populations, 
have serious consequences with errors or system failure, 
are used solely by patients without healthcare profes-
sionals’ support or require a change in clinical workflow.65 
For EU- approved tools, the tool should comply with the 
general safety and performance requirements stated by 
the EU MDR.66 67 Clinicians should be aware of the appro-
priate approvals that need to be obtained, especially with 
the growing adoption of these tools.

STAGE 8: MAINTAINING THE AI PREDICTIVE MODEL
Maintenance of the model and knowledge management 
are critical.68 It may be necessary to update the model as 
populations, diseases and treatments change and include 
an expiry date.68 In the UK, NICE data framework recom-
mends a regression test be done when the model is 
updated to ensure that any new changes do not have a 
negative impact on its performance, reliability and func-
tionality.65 Model developers should also keep users (clini-
cians and patients) informed when releasing new model 
versions. In the USA, model recertification is needed 
when AI predictive models are updated,15 although the 
US FDA is currently working on a framework that allows 
repeated updating of an AI predictive model without 
recertification through a change control plan.69

STAGE 9: ONGOING EVALUATION OF THE IMPACT OF THE AI 
PREDICTIVE MODEL
Introducing an AI prediction model into clinical prac-
tice can be considered a complex intervention; it usually 
consists of multiple interacting components including 
the accuracy of the model predictions, physician and 
patient understanding and use of these probabilities, 
expected effectiveness of subsequent actions or interven-
tions, and adherence to these. A new framework has now 
replaced the UK Medical Research Council’s guidance 
for developing and evaluating complex interventions. It 
focuses on recent developments in methods and the need 
to optimise the efficiency, use and impact of research.70 

The downstream effects on patient outcomes of using 
an AI prediction model are not always predictable. For 
example, Kappen et al described no decrease in the inci-
dence of postoperative nausea and vomiting, despite an 
increase in the administration of prophylactic antiemetics 
in the cluster- randomised trial of the AI prediction model 
(using an assistive presentation format).56 This may indi-
cate that either the predictive performance of the model 
was insufficient, the impact on physician decision- making 
was too small (eg, too few prophylactic drugs were admin-
istered despite high predicted probabilities), the anti-
emetic drugs were not as effective as thought, and/or 
patients chose not to take them.56 Collecting additional 
data (observations and interviews) may help improve our 
understanding of these study results.

When designing an impact study before applying to 
licensing, a clinician needs to consider whether the 
complex intervention will have an individual effect on 
patients or whether it induces a more group- like effect.56 
A prediction model often aims to affect the clinical 
routine of a physician, which may vary per physician; this 
could lead to clustering of the effect per physician or 
practice (hospital) when the AI model use is compared 
across providers or practices.19 31 56 After repeated expo-
sure to the predictions, clinicians may also become 
better at estimating the probability in subsequent similar 
patients, even when those patients are in the control 
group.19 31 56 This likely dilutes the effectiveness and thus 
impact of the model use.48 56 As Kappen et al highlights, 
the effects of a learning curve may be minimised, though 
not completely prevented, by randomisation at a cluster 
level, for example, physicians or hospitals.52 56

CONCLUSION
We have provided a road map which clinicians and others 
developing algorithms can use to develop and evaluate 
AI predictive models to inform clinical decision- making. 
We described the nine stages, recognising the challenges 
that clinicians might face at each stage and practical tips 
to manage them. A ‘blended approach’ should be consid-
ered for clinical predictor selection, and the proposed 
dataset clearly represents the targeted population where 
the AI model is intended to be used. Comparing perfor-
mance measures between the different training, validation 
and unseen clinical datasets are important for evaluating 
the risk of over/underfitting and widening the generalis-
ability of the model. The format of the predictive model 
(assistive or directive) should be carefully chosen and 
designed. The maintenance of the model is important as 
populations, diseases and treatments change. The down-
stream effects on patient outcomes of using an AI predic-
tion model are not always predictable, and it is important 
to evaluate its use in clinical practice using an appropriate 
study design.
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