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Abstract

To understand the architecture of human language, it is critical to examine diverse languages; 

yet most cognitive neuroscience research has focused on a handful of primarily Indo-European 

languages. Here, we report an investigation of the fronto-temporo-parietal language network 

across 45 languages and establish the robustness to cross-linguistic variation of its topography 

and key functional properties, including left-lateralization, strong functional integration among its 

brain regions, and functional selectivity for language processing.

Approximately 7,000 languages are currently spoken and signed across the globe1. These 

are distributed across more than 100 language families—groups of languages that have 

descended from a common ancestral language, called the proto-language—which vary in 

size from 2 to over 1,500 languages. Certain properties of human languages have been 

argued to be universal, including their capacity for productivity 2 and communicative 
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efficiency3. However, language is the only animal communication system that manifests in 

so many different forms4. The world’s languages exhibit striking diversity4, with differences 

spanning the sound inventories, the complexity of derivational and functional morphology, 

the ways in which the conceptual space is carved up into lexical categories, and the rules 

for how words can combine into phrases and sentences. To truly understand the nature 

of the cognitive and neural mechanisms that can handle the learning and processing of 

such diverse languages, we have to go beyond the limited set of languages used in most 

psycho- and neuro-linguistic studies5,6. This much needed step will also foster inclusion and 

representation in language research7.

Here, in a large-scale fMRI investigation, we evaluate the claim of language universality 

with respect to core features of its neural architecture. In the largest to date effort to sample 

many diverse languages, we tested native speakers of 45 languages across 12 language 

families (Afro-Asiatic, Austro-Asiatic, Austronesian, Dravidian, Indo-European, Japonic, 

Koreanic, Atlantic-Congo, Sino-Tibetan, Turkic, Uralic, and an isolate—Basque, which is 

effectively a one-language family). To our knowledge, about a third of these languages have 

never been investigated with functional brain imaging (or only probed in clinical contexts), 

no experimental paradigm has been tested with more than four languages at a time8, and 

no attempts have been made to standardize tasks / language network definitions across 

languages, as needed to enable meaningful comparisons across studies (Supp. Table 1).

Using a powerful individual-subject analytic approach9, we examined the cross-linguistic 

generality of the following properties of the language network: i) topography (robust 

responses to language in the frontal, temporal, and parietal brain areas), ii) lateralization 

to the left hemisphere, iii) strong functional integration among the different regions 

of the network as assessed with inter-region functional correlations during naturalistic 

cognition, and iv) functional selectivity for language processing. All these properties have 

been previously shown to hold for English speakers. Because of their robustness at the 

individual-subject level10, and in order to test speakers of as many languages as possible, we 

adopted a ‘shallow’ sampling approach—testing a small number (n=2) of speakers for each 

language. The goal was not to evaluate any particular hypothesis/-es about cross-linguistic 

differences in the neural architecture of language processing (see discussion toward the 

end of the paper for examples), but rather to ask whether the core properties that have 

been attributed to the ‘language network’ based on data from English and a few other 

dominant languages extend to typologically diverse languages. Although we expected this to 

be the case, this demonstration is an essential foundation for future systematic, in-depth, and 

finer-grained cross-linguistic comparisons. Another important goal was to develop robust 

tools for probing diverse languages in future neuroscientific investigations.

Each participant performed several tasks during the scanning session. First, they performed 

two language ‘localizer’ tasks: the English localizer based on the contrast between reading 

sentences and nonword sequences9 (all participants were fluent in English; Supp. Table 3), 

and a critical localizer task, where they listened to short passages from Alice in Wonderland 
in their native language, along with two control conditions (acoustically degraded versions 

of the native language passages where the linguistic content was not discernible and 

passages in an unfamiliar language). Second, they performed one or two non-linguistic 
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tasks that were included to assess the functional selectivity of the language regions11 (a 

spatial working memory task, which everyone performed, and an arithmetic addition task, 

performed by 67 of the 86 participants). Finally, they performed two naturalistic cognition 

paradigms that were included to examine correlations in neural activity among the language 

regions, and between the language regions and regions of another network supporting high-

level cognition: a ~5 min naturalistic story listening task in the participant’s native language, 

and a 5 min resting state scan.

Consistent with prior investigations of a subset of these languages (e.g., Supp. Table 1), 

the activation landscape for the Native-language>Degraded-language contrast, which targets 

high-level language processing and activates the same set of brain areas as those activated 

by a more commonly used language localizer based on reading sentences versus nonword 

sequences (see 12 for a direct comparison; also Extended Data Figure 1), is remarkably 

consistent across languages and language families. The activations cover extensive portions 

of the lateral surfaces of left frontal, temporal, and parietal cortex (Figures 1, 2; see 

Extended Data Figure 2 and Supp. Figure 1 for right hemisphere (RH) maps, and Extended 

Data Figure 3 for volume-based maps). In the left-hemisphere language network (defined 

by the English localizer; see Extended Data Figure 4 for evidence that similar results 

obtain in functional regions of interest (fROIs) defined by the Alice localizer), across 

languages, the Native-language condition elicits a reliably greater response than both 

the Degraded-language condition (2.13 vs. 0.84 % BOLD signal change relative to the 

fixation baseline; t(44)=21.0, p<0.001) and the Unfamiliar-language condition (2.13 vs. 

0.76; t(44)=21.0, p<0.001) (Figure 3a; see Extended Data Figure 5, Supp. Figures 2,3 

for data broken down by language, language family, and fROI, respectively; see Supp. 

Table 2 for analyses with linear mixed effects models). Across languages, the effect sizes 

for the Native-language>Degraded-language and the Native-Language>Unfamiliar-language 
contrasts range from 0.49 to 2.49, and from 0.54 to 2.53, respectively; importantly, for 

these and all other measures, the inter-language variability is comparable to, or lower than, 

inter-individual variability (Extended Data Figure 6, Supp. Figures 4,5).

The Native-language>Degraded-language effect is stronger in the left hemisphere fROIs 

than the right hemisphere ones (2.13 vs. 1.47; t(44)=7.00, p<0.001), and more spatially 

extensive (318.2 vs. 203.5 voxels; t(44)=6.97, p<0.001; Figure 3b). Additionally, in line 

with prior data from English13, the regions of the language network (here and elsewhere, 

by ‘regions’ we mean individually defined fROIs) exhibit strong correlations in their 

activity during naturalistic cognition, with the average LH within-network correlation of 

r=0.52 during story comprehension and r=0.41 during rest, both reliably higher than zero 

(ts(44)>31.0, ps<0.001) and phase-shuffled baselines (ts(44)>10.0, ps<0.001; Figure 3c; 

see Extended Data Figure 7 and Supp. Figure 6 for data broken down by language). 

The correlations are stronger during story comprehension than rest (t(44)=−6.34, p<0.01). 

Further, as in prior work in English13, and mirroring lateralization effects in the strength and 

extent of activation, the inter-region correlations in the LH language network are reliably 

stronger than those in the RH during both story comprehension (0.52 vs. 0.35; t(44)=8.00, 

p<0.001) and rest (0.41 vs. 0.28; t(44)=8.00, p<0.001; Figure 3c).
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Finally, brain regions that support language processing have been shown to exhibit strong 

selectivity for language over many non-linguistic tasks, including executive function tasks, 

arithmetic processing, music perception, and action observation11,14. This selectivity appears 

to be robustly present across speakers of diverse languages. Responses to the Native-
language condition are significantly higher than those to the spatial working memory (WM) 

task (2.13 vs. −0.01; t(44)=20.7, p<0.001), and the math task (2.13 vs. 0.03; t(40)=21.5, 

p<0.001; Figure 3a, Extended Data Figures 4,5, Supp. Figures 2,3). Furthermore, as in 

English13, the language regions are robustly dissociated in their intrinsic fluctuation patterns 

from the regions of the bilateral domain-general multiple demand (MD) network implicated 

in executive functions15: within-network correlations are reliably greater than between-

network correlations both during story comprehension (0.43 (language network, across 

the left and right hemisphere), 0.40 (MD network) vs. −0.01 (language-MD); ts(44)>23, 

ps<0.001), and during rest (0.34 (language, across hemispheres), 0.43 (MD) vs. −0.03 

(language-MD), ts(44)>20, ps<0.001; Figure 3c, Extended Data Figure 7, Supp. Figure 6).

In summary, we have here established that key properties of the neural architecture of 

language hold across speakers of 45 diverse languages spanning 12 language families; 

and the variability observed across languages is comparable to, or lower than, the inter-

individual variability among speakers of the same language10 (Extended Data Figures 6,8, 

Supp. Figures 4,5). Presumably, these features of the language network, including a) its 

location with respect to other—perceptual, cognitive, and motor—systems, b) lateralization 
to the left hemisphere (in most individuals), c) strong functional integration among the 

different components, and d) selectivity for linguistic processing, make it well-suited to 

support the broadly common features of languages, shaped by biological and cultural 

evolution.

In spite of their shared features, languages do exhibit remarkable variation4. How this 

variation relates to the neural implementation of linguistic computations remains a largely 

open question. By establishing broad cross-linguistic similarity in the language network’s 

properties and making publicly available the ‘localizer’ tasks (https://evlab.mit.edu/aliceloc) 

for 46 languages (to be continuously expanded over time), this work lays a critical 

foundation for future in-depth cross-linguistic comparisons along various dimensions of 

interest. In contrast to the shallow sampling approach adopted here (testing a small 

number of speakers across many languages), such investigations will require testing large 

numbers of speakers for each language / language family in question, while matching the 

groups carefully on all the factors that may affect neural responses to language. Such 

‘deep’ sampling of each language / language family is necessary because cross-linguistic 

differences in the neural implementation of language processing are likely to be relatively 

subtle and they would need to exceed the (substantial) variability that characterizes 

speakers of the same language in order to be detected10,16. The language localizer tasks 

enable narrowing in on the system of interest—the fronto-temporo-parietal network that 

selectively supports linguistic processing—thus yielding greater statistical power17, critical 

for detecting small effects, and interpretability, and leading to a robust and cumulative 

research enterprise. Future investigations of cross-linguistic similarities and differences may 

also call for i) more fine-tuned/targeted paradigms (cf. the broad language contrast examined 

here), ii) multivariate analytic approaches, and iii) methods with high temporal resolution, 
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like MEG or intracranial recordings (e.g., see 18–20 for past reports of cross-linguistic 

differences as measured with EEG).

What might hypotheses about cross-linguistic differences in neural implementation of 

language look like? Some examples include the following: i) languages with relatively 

strict word orders, compared to free-word-order languages, may exhibit a higher degree 

of left lateralization, given the purportedly greater role of the left hemisphere in auditory 

and motor sequencing abilities21,22, or stronger reliance on the dorsal stream, for similar 

reasons23; ii) tonal languages may exhibit stronger anatomical and functional connections 

between auditory areas that process pitch24 and the higher-level language areas given the 

need to incorporate pitch information in interpreting word meanings (see 25 for evidence of a 

cross-linguistic difference in the lower-level speech perception cortex between speakers of a 

tonal vs. a non-tonal language); and iii) languages where utterances tend to underdetermine 

the meaning, like Riau Indonesian26, may place greater demands on inferential processing to 

determine speaker intent and thus exhibit stronger reliance on brain areas that support such 

processes, like the right hemisphere language areas27 and/or the system that supports mental 

state attribution28.

Another class of hypotheses might come from the field of natural language processing 

(NLP). Recent advances in artificial intelligence have given rise to artificial neural network 

(ANN) models that achieve impressive performance on diverse language tasks29 and capture 

neural responses during language processing in the human brain30. Although, like cognitive 

neuroscience, NLP has been dominated by investigations of English, there is growing 

awareness of the need to increase linguistic diversity in the training and evaluation of 

language models31, and some work has begun to probe cross-linguistic similarities and 

differences in the models’ learned representations32. A promising future direction is to relate 

these cross-linguistic differences to neural differences observed during language processing 

across languages in an effort to illuminate how language implementation—in silico or in 

biological tissue—may depend on the properties of a particular language. More generally, 

because searching for cross-linguistic neural differences is a relatively new direction for 

language researchcf. 5,6, it will likely require a combination of top-down theorizing and 

bottom-up discovery. But no matter what discoveries about cross-linguistic differences in 

neural implementation lie ahead, the ability to reliably identify the language network in 

speakers of diverse languages opens the door to investigations of linguistic phenomena that 

are present in a small subset of the world’s languages, to paint a richer picture of the human 

language system.

Two limitations of the current investigation are worth noting. First, all participants were 

bilingual (fluent in English, in addition to their native language), which was difficult to avoid 

given that the research was carried out in the U.S. Some have argued that knowledge of two 

or more languages affects the neural architecture of one’s native language processing33, but 

this question remains controversial34. More generally, finding ‘pure’ monolingual speakers 

with no knowledge of other languages is challenging, especially in globalized societies, and 

is nearly impossible for some languages (e.g., Dutch, Galician, Kashmiri). The approach 

advocated here—where the language network is defined in each individual participant and 

individual-level neural markers are examined—allows taking into account and explicitly 

Malik-Moraleda et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2023 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modeling inter-individual variability in participants’ linguistic profiles (and along other 

dimensions), as will be important when evaluating specific hypotheses about cross-linguistic 

differences in future work, as discussed above. Another limitation is the over-representation 

of Indo-European languages (31 of the 45 languages). The analysis in Supp. Figure 2, 

which shows that the key statistics hold across language families, ameliorates this concern 

to some extent. Nevertheless, development of language localizers and collection of data for 

non-Indo-European languages remains a priority for the field. Our group will continue to 

develop and release the localizers for additional languages (https://evlab.mit.edu/aliceloc), 

and we hope other labs across the world will join this effort.

In conclusion, probing human language in all its diverse manifestations is critical for 

uncovering additional shared features, understanding the cognitive and neural basis of 

different solutions to similar communicative demands, characterizing the processing of 

unique/rare linguistic properties, and fostering diversity and inclusion in language sciences.

Methods

Participants.

Ninety-one participants were recruited from MIT and the surrounding Boston community. 

Participants were recruited on the basis of their native language (the language acquired 

during the first few years of life; Supp. Table 3). All participants were proficient in 

English (Supp. Table 3). Data from 5 participants were excluded from the analyses due to 

excessive in-scanner motion or sleepiness. The final set included 86 participants (43 males) 

between the ages of 19 and 45 (M=27.52, SD=5.49; Supp. Table 4). All participants were 

right-handed, as determined by the Edinburgh Handedness Inventory35 (n=83) or self-report 

(n=3), and had normal or corrected-to-normal vision. All participants gave informed written 

consent in accordance with the requirements of MIT’s Committee on the Use of Humans as 

Experimental Subjects (COUHES) and were paid for their participation.

Participants’ native languages spanned 12 language families (Afro-Asiatic, Austro-Asiatic, 

Austronesian, Dravidian, Indo-European, Japonic, Koreanic, Atlantic-Congo, Sino-Tibetan, 

Turkic, Uralic, Isolate (Basque)) and 45 languages (Supp. Table 3). We tested 2 native 

speakers per language (one male, one female) when possible; for 4 of the 45 languages 

(Tagalog, Telugu, Slovene, and Swahili), we were only able to test one native speaker.

Experimental Design.

Each participant completed i) a standard language localizer task in English9, ii) the 

critical language localizer in their native language, iii) one or two non-linguistic tasks 

that were included to assess the degree of functional selectivity of the language regions 

(a spatial working memory task, which everyone performed, and an arithmetic addition 

task, performed by 67 of the 86 participants), and iv) two naturalistic cognition paradigms 

that were included to examine correlations in neural activity among the language regions, 

and between the language regions and regions of another network supporting high-level 

cognition—the domain-general multiple demand (MD) network15 (a ~5 min naturalistic 

story listening task in the participant’s native language, and a 5 min resting state scan). 
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With the exception of two participants, everyone performed all the tasks in a single scanning 

session, which lasted approximately two hours. One participant performed the English 

localizer in a separate session, and another performed the spatial working memory task in 

a separate session. (We have previously established that individual activations are highly 

stable across scanning sessions10, see also 36.)

Standard (English-based) language localizer—Participants passively read 

English sentences and lists of pronounceable nonwords in a blocked design. The 

Sentences>Nonwords contrast targets brain regions that support high-level linguistic 

processing, including lexico-semantic and combinatorial syntactic/semantic processes37–39. 

Each trial started with 100 ms pre-trial fixation, followed by a 12-word-long sentence or 

a list of 12 nonwords presented on the screen one word/nonword at a time at the rate of 

450 ms per word/nonword. Then, a line drawing of a finger pressing a button appeared for 

400 ms, and participants were instructed to press a button whenever they saw this icon, and 

finally a blank screen was shown for 100 ms, for a total trial duration of 6 s. The simple 

button-pressing task was included to help participants stay awake and focused. Each block 

consisted of 3 trials and lasted 18 s. Each run consisted of 16 experimental blocks (8 per 

condition), and five fixation blocks (14 s each), for a total duration of 358 s (5 min 58 s). 

Each participant performed two runs. Condition order was counterbalanced across runs. (We 

have previously established the robustness of the language localizer contrast to modality 

(written/auditory), materials, task, and variation in the experimental procedure.9,12,40)

Critical (native-language-based) language localizer

Materials.: Translations of Alice in Wonderland41 were used to create the materials. We 

chose this text because it is one of the most translated works of fiction, with translations 

existing for at least 170 languages42, and is suitable for both adults and children. Using 

the original (English) version, we first selected a set of 28 short passages (each passage 

took between 12 and 30 sec to read out loud). We also selected 3 longer passages (each 

passage took ~5 min to read out loud) to be used in the naturalistic story listening task 

(see below). For each target language, we then recruited a native female speaker, who was 

asked to a) identify the corresponding passages in the relevant translation (to ensure that 

the content is similar across languages), b) familiarize themselves with the passages, and 

c) record the passages. In some languages, due to the liberal nature of the translations, 

the corresponding passages differed substantially in length from the original versions; in 

such cases, we adjusted the length by including or omitting sentences at the beginning 

and/or end of the passage so that the length roughly matched the original. We used female 

speakers because we wanted to ensure that the stimuli would be child-friendly (for future 

studies), and children tend to pay better attention to female voices43. Most speakers were 

paid for their help, aside from a few volunteers from the lab. Most of the recordings were 

conducted in a double-walled sound-attenuating booth (Industrial Acoustics). Materials for 3 

of the languages (Hindi, Tamil, and Catalan) were recorded outside the U.S.; in such cases, 

recordings were done in a quiet room using a laptop’s internal microphone. We ensured that 

all recordings were fluent; if a speaker made a speech error, the relevant portion/passage 

were re-recorded. For each language, we selected 24 of the 28 short passages to be used 

in the experiment, based on length so that the target passages were as close to 18 s as 
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possible. Finally, we created acoustically degraded versions of the target short passages 

following the procedure introduced in Scott et al.12. In particular, for each language, the 

intact files were low-pass filtered at a pass-band frequency of 500 Hz. In addition, a noise 

track was created from each intact clip by randomizing 0.02-second-long periods. In order 

to produce variations in the volume of the noise, the noise track was multiplied by the 

amplitude of the intact clip’s signal over time. The noise track was then low-pass filtered 

at a pass-band frequency of 8,000 Hz and a stop frequency of 10,000 Hz in order to soften 

the highest frequencies. The noise track and the low-pass filtered copies of the intact files 

were then combined, and the level of noise was adjusted to a point that rendered the clips 

unintelligible. The resulting degraded clips sound like poor radio reception of speech, where 

the linguistic content is not discernible. In addition to the intact and degraded clips in 

their native language, we included a third condition: clips in an unfamiliar language (Tamil 

was used for 75 participants and Basque for the remaining 11 participants who had some 

exposure to Tamil during their lifetime). All the materials are available from the Fedorenko 

lab website: https://evlab.mit.edu/aliceloc.

Procedure.: For each language, the 24 items (intact-degraded pairs) were divided across 

two experimental lists so that each list contained only one version of an item, with 12 

intact and 12 degraded trials. Any given participant was presented with the materials 

in one of these lists. Each list additionally contained 12 unfamiliar foreign language 

clips (as described above) chosen randomly from the set of 24. Participants passively 

listened to the materials in a long-event-related design, with the sound delivered through 

Sensimetrics earphones (model S14). The Native-language condition was expected to elicit 

stronger responses compared to both the Degraded-language condition12 and the Unfamiliar-
language condition40 in the high-level language processing brain regions9. These language 

regions appear to support the processing of word meanings and combinatorial semantic/

syntactic processes37–39, and these processes are not possible for the degraded or unfamiliar 

conditions. Each event consisted of a single passage and lasted 18 s (passages that were a 

little shorter than 18 s were padded with silence at the end, and passages that were a little 

longer than 18 s were trimmed down). We included a gradual volume fade-out at the end of 

each clip during the last 2 s, and the volume levels were normalized across the 36 clips (3 

conditions * 12 clips each) in each set. The materials were divided across three runs, and 

each run consisted of 12 experimental events (4 per condition), and three fixation periods 

(12 s each), for a total duration of 252 s (4 min 12 s). Each participant performed three runs. 

Condition order was counterbalanced across runs.

Non-linguistic tasks—Both tasks were chosen based on prior studies of linguistic 

selectivity11. In the spatial working memory task, participants had to keep track of four 

(easy condition) or eight (hard condition) locations in a 3 × 4 grid11. In both conditions, 

participants performed a two-alternative forced-choice task at the end of each trial to 

indicate the set of locations that they just saw. Each trial lasted 8 s (see 11 for the 

timing details). Each block consisted of 4 trials and lasted 32 s. Each run consisted of 

12 experimental blocks (6 per condition), and 4 fixation blocks (16 s in duration each), for a 

total duration of 448 s (7 min 28 s). Each participant performed 2 runs. Condition order was 
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counterbalanced across runs. Note that in the main analyses of this task and the math task, 

we averaged across the hard and easy conditions (but see Extended Data Figure 9).

In the arithmetic addition task, participants had to solve a series of addition problems 

with smaller (easy condition) vs. larger (hard condition) numbers. In the easy condition, 

participants added two single-digit numbers. In the hard condition, participants added two 

numbers, one of which was double-digits. In both conditions, participants performed a 

two-alternative forced-choice task at the end of each trial to indicate the correct sum. Each 

trial lasted 3 s. Each block consisted of 5 trials and lasted 15 s. Each run consisted of 16 

experimental blocks (8 per condition), and 5 fixation blocks (15 s in duration each), for a 

total duration of 315 s (5 min 15 s). Most participants performed 2 runs; 12 participants 

performed 1 run; 19 participants did not perform this task due to time limitations. Condition 

order was counterbalanced across runs when multiple runs were performed.

Naturalistic cognition paradigms—In the story listening paradigm, participants were 

asked to attentively listen to one of the long passages in their native language. The selected 

passage was 4 min 20 s long in English. Recordings in other languages were padded with 

silence or trimmed at the end, to equalize scan length across languages. The same 2 sec 

fade-out was applied to these clips, as to the shorter clips used in the critical experiment. 

In addition, each run included 12 s of silence at the beginning and end, for a total duration 

of 284 s (4 min 44 s). In the resting state paradigm, following Blank et al. (2014)13, 

participants were asked to close their eyes but to stay awake and let their mind wander for 5 

minutes. The projector was turned off, and the lights were dimmed.

fMRI data acquisition.

Structural and functional data were collected on the whole-body 3 Tesla Siemens Trio 

scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging Center at 

the McGovern Institute for Brain Research at MIT. T1-weighted structural images were 

collected in 179 sagittal slices with 1 mm isotropic voxels (TR = 2,530 ms, TE = 3.48 ms). 

Functional, blood oxygenation level dependent (BOLD) data were acquired using an EPI 

sequence (with a 90° flip angle and using GRAPPA with an acceleration factor of 2), with 

the following acquisition parameters: thirty-one 4mm thick near-axial slices, acquired in an 

interleaved order with a 10% distance factor; 2.1 mm × 2.1 mm in-plane resolution; field of 

view of 200mm in the phase encoding anterior to posterior (A >> P) direction; matrix size of 

96 × 96; TR of 2,000 ms; and TE of 30 ms. Prospective acquisition correction44 was used to 

adjust the positions of the gradients based on the participant’s motion one TR back. The first 

10 s of each run were excluded to allow for steady-state magnetization.

fMRI data preprocessing and first-level analysis.

fMRI data were analyzed using SPM12 (release 7487), CONN EvLab module (release 

19b), and other custom MATLAB scripts. Each participant’s functional and structural data 

were converted from DICOM to NIFTI format. All functional scans were coregistered and 

resampled using B-spline interpolation to the first scan of the first session. Potential outlier 

scans were identified from the resulting subject-motion estimates as well as from BOLD 

signal indicators using default thresholds in CONN preprocessing pipeline (5 standard 
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deviations above the mean in global BOLD signal change, or framewise displacement 

values above 0.9 mm). Functional and structural data were independently normalized into 

a common space (the Montreal Neurological Institute [MNI] template; IXI549Space) using 

SPM12 unified segmentation and normalization procedure with a reference functional image 

computed as the mean functional data after realignment across all timepoints omitting 

outlier scans. The output data were resampled to a common bounding box between 

MNI-space coordinates (−90, −126, −72) and (90, 90, 108), using 2 mm isotropic voxels 

and 4th order spline interpolation for the functional data, and 1mm isotropic voxels and 

trilinear interpolation for the structural data. Last, the functional data were smoothed 

spatially using spatial convolution with a 4 mm FWHM Gaussian kernel. For the language 

localizer task and the non-linguistic tasks, effects were estimated using a General Linear 

Model (GLM) in which each experimental condition was modeled with a boxcar function 

convolved with the canonical hemodynamic response function (HRF) (fixation was modeled 

implicitly). Temporal autocorrelations in the BOLD signal timeseries were accounted for 

by a combination of high-pass filtering with a 128 s cutoff, and whitening using an 

AR(0.2) model (first-order autoregressive model linearized around the coefficient a=0.2) 

to approximate the observed covariance of the functional data in the context of Restricted 

Maximum Likelihood estimation (ReML). In addition to main condition effects, other model 

parameters in the GLM design included first-order temporal derivatives for each condition 

(for modeling spatial variability in the HRF delays) as well as nuisance regressors to control 

for the effect of slow linear drifts, subject-motion parameters, and potential outlier scans on 

the BOLD signal.

The naturalistic cognition paradigms (story listening and resting state) were preprocessed 

using the CONN toolbox45 with default parameters, unless stated otherwise. First, in order 

to remove noise resulting from signal fluctuations originating from non-neuronal sources 

(e.g., cardiac or respiratory activity), the first five BOLD signal time points extracted from 

the white matter and CSF were regressed out of each voxel’s time-course. White matter 

and CSF voxels were identified based on segmentation of the anatomical image46. Second, 

the residual signal was band-pass filtered at 0.008–0.09 Hz to preserve only low-frequency 

signal fluctuations47.

To create aesthetically pleasing activation projection images for Figure 1, the data were 

additionally analyzed in FreeSurfer48. Although all the analyses were performed on the data 

analyzed in the volume (in SPM12), these surface-based maps are available at OSF, along 

with the volume-analysis-based maps: https://osf.io/cw89s/.

fROI definition and response estimation.

For each participant, functional regions of interest (fROIs) were defined using the Group-

constrained Subject-Specific (GSS) approach9, whereby a set of parcels or “search spaces” 

(i.e., brain areas within which most individuals in prior studies showed activity for the 

localizer contrast) is combined with each individual participant’s activation map for the 

same contrast.

To define the language fROIs, we used six parcels derived from a group-level representation 

of data for the Sentences>Nonwords contrast in 220 participants (Figure 3a). These parcels 
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included three regions in the left frontal cortex: one in the inferior frontal gyrus (LIFG, 

740 voxels; given that each fROI is 10% of the parcel, as described below, the fROI size 

is a tenth of the parcel size), one in its orbital part (LIFGorb, 370 voxels), and one in 

the middle frontal gyrus (LMFG, 460 voxels); and three regions in the left temporal and 

parietal cortex spanning the entire extent of the lateral temporal lobe and extending into 

the angular gyrus (LAntTemp, 1,620 voxels; LPostTemp, 2,940 voxels; and LAngG, 640 

voxels). (We confirmed that parcels created based on the probabilistic overlap map for 

Native-language>Degraded-language contrast from the 86 participants in the current study 

are similar (Supp. Figure 7). We chose to use the ‘standard’ parcels for ease of comparison 

with past studies.) Individual fROIs were defined by selecting—within each parcel—the 

top 10% of most localizer-responsive voxels based on the t-values for the relevant contrast 

(Sentences>Nonwords for the English localizer). We then extracted the responses from these 

fROIs (averaging the responses across the voxels in each fROI) to each condition in the 

critical language localizer (native language intact, acoustically degraded native language, 

and unfamiliar language), and the non-linguistic tasks (averaging across the hard and easy 

conditions for each task). Statistical tests were then performed across languages on the 

percent BOLD signal change values extracted from the fROIs.

We used the English-based localizer to define the fROIs i) because we have previously 

observed40 that the localizer for a language works well as long as a participant is 

proficient in that language (as was the case for our participants’ proficiency in English 

(Supp. Table 3); see also Supp. Figure 8 for evidence that our participants’ responses 

to the English localizer conditions were similar to those of native speakers), and ii) to 

facilitate comparisons with earlier studies11,13. However, in an alternative set of analyses 

(Extended Data Figure 4), we used the Native-language>Degraded-language contrast from 

the critical language localizer to define the fROIs. In that case, to estimate the responses to 

the conditions of the critical language localizer, across-runs cross-validation17 was used 

to ensure independence49. The results were nearly identical to the ones based on the 

English localizer fROIs, suggesting that the two localizers pick out similar sets of voxels. 

Furthermore, for the two native speakers of English who participated in this study, the 

Native-language>Degraded-language contrast and the Sentences>Nonwords contrast are 

voxel-wise spatially correlated at 0.88 within the union of the language parcels (Fisher-

transformed correlation50; Extended Data Figure 1). (Following a reviewer’s suggestion, 

we further explored the similarity of the activation maps for the Native-language>Degraded-
language and Native-language>Unfamiliar-language contrasts in the Alice localizer. These 

maps were similar: across the 86 participants, the average Fisher-transformed voxel-wise 

spatial correlation within the union of the language parcels was 0.66 (SD = 0.40; see 

Extended Data Figure 10 for sample individual map pairs), and the magnitudes of these 

effects did not differ statistically (t(44)=1.15, p=0.26). These results suggest that either 

contrast can be used to localize language-responsive cortex—along with the more traditional 

Sentences>Nonwords contrast—although we note that, among the two auditory contrasts, 

we have more and stronger evidence that the Native-language>Degraded-language works 

robustly and elicits similar responses to the Sentences>Nonwords contrast.)

In addition to the magnitudes of response, we estimated the degree of language lateralization 

in the native language localizer based on the extent of activation in the left vs. right 
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hemisphere. To do so, for each language tested, in each participant, we calculated the 

number of voxels activated for the Native-language>Degraded-language contrast (at the 

p<0.001 whole-brain uncorrected threshold) within the union of the six language parcels in 

the left hemisphere, and within the union of the homotopic parcels in the right hemisphere13 

(Figure 3b). Statistical tests were then performed across languages on the voxel count 

values. (We additionally performed a similar analysis considering the voxels across the 

brain51.)

Finally, we calculated inter-regional functional correlations during each of the naturalistic 

cognition paradigms. For these analyses, in addition to the language fROIs, we examined 

a set of fROIs in another large-scale brain network that supports high-level cognition: 

the domain-general multiple demand (MD) network15,52, which has been implicated in 

executive functions, like attention, working memory, and cognitive control. This was done 

in order to examine the degree to which the language regions are functionally dissociated 

from these domain-general MD regions during rich naturalistic cognition, as has been shown 

to be the case for native English speakers13,53. To define the MD fROIs, following13,54, we 

used anatomical parcels55 that correspond to brain regions linked to MD activity in prior 

work. These parcels included regions in the opercular IFG, MFG, including its orbital part, 

insular cortex, precentral gyrus, supplementary and presupplementary motor area, inferior 

and superior parietal cortex, and anterior cingulate cortex, for a total of 18 regions (9 per 

hemisphere). Individual MD fROIs were defined by selecting—within each parcel—the top 

10% of most localizer-responsive voxels based on the t-values for the Hard>Easy contrast 

for the spatial working memory task13 (see Extended Data Figure 9 for an analysis showing 

that, as expected based on prior work, this effect is highly robust in the MD fROIs, as 

estimated using across-runs cross-validation).

For each subject, we averaged the BOLD signal time-course across all voxels in each 

language and MD fROI. We then averaged the time-courses in each fROI across participants 

for each language where two participants were tested. For each language, we computed 

Pearson’s moment correlation coefficient between the time-courses for each pair of fROIs. 

These correlations were Fisher-transformed to improve normality and decrease biases in 

averaging50. We then compared the average correlation for each language a) within the 

language network (the average of all 66 pairwise correlations among the 12 language 

fROIs), b) within the MD network (the average of all 153 pairwise correlations among 

the 18 MD fROIs), and c) between language and MD fROIs (the average of 240 pairwise 

correlations between the language fROIs and the MD fROIs). For the language network, we 

also computed the within-network correlations for the left and right hemisphere separately, 

to examine lateralization effects. (Following a reviewer’s suggestion, we also explored 

the differences in inter-hemispheric connectivity within the language network during the 

two naturalistic paradigms; inter-hemispheric connectivity was higher during story listening 

(mean=0.33 SD=0.32) than during resting state (mean=0.20 SD=0.29; t(44)=8.11, p<0.01)) 

All statistical comparisons were performed across languages. The fROI-to-fROI correlations 

are visualized in two matrices, one for each naturalistic cognition paradigm (Figure 3c).
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Statistics and Reproducibility.

Given the shallow sampling approach that we adopted (testing a small number of 

participants for a large number of languages), no statistical method was used to predetermine 

the sample size for each language. Because the neural markers that we examined have been 

previously established to be robust at the individual level10, we expected them to hold in 

individual participants in the current sample (which was indeed the case). To allow for 

some generalizability, we recruited two participants (instead of just one) for each language 

(one male, one female) when possible. Five participants were excluded due to excessive 

in-scanner head motion or sleepiness, as is routinely done for studies in our lab and in the 

field in general. The order of tasks within a session was not randomized, although some 

variability in the orders was present (task orders for individual participants are available 

from the authors). Every participant performed the same set of tasks and conditions, so 

investigator blinding with respect to condition allocation does not apply. Data distributions 

were assumed to be normal (the distributions of the individual data points in the figures 

show that this was largely the case), but normality was not formally assessed; for the 

timecourse correlation analyses, a Fisher transformation50 was applied to improve normality, 

as described in Methods.

Extended Data

Extended Data Fig. 1. 
Comparison of the individual activation maps for the Sentences>Nonwords contrast 

and the Native-language>Degraded-language contrast in the two native-English-speaking 

participants. The two maps are voxel-wise (within the union of the language parcels) 

spatially correlated at r=0.77 and r=0.99 for participants 492 and 502, respectively (the 

correlations are Fisher-transformed). Across the full set of participants, the average Fisher-

transformed spatial correlation between the maps for the Sentences>Nonwords contrast in 
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English and the Native-language>Degraded-language contrast in the participant’s native 

language (again, constrained to the language parcels) is r=0.88 (SD=0.43) for the left 

hemisphere and 0.73 (SD=0.38) for the right hemisphere. (Note that using the union 

of the language parcels rather than the whole brain is conservative for computing these 

correlations; including all the voxels would inflate the correlations due to the large 

difference in activation levels between voxels that fall within the language parcels vs. 

outside their boundaries. Instead, we are zooming in on the activation landscape within the 

frontal, temporal, and parietal areas that house the language network and showing that these 

landscapes are spatially similar between the two contrasts in their fine-grained activation 

patterns.)

Extended Data Fig. 2. 
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Activation maps for the Alice language localizer contrast (Native-language>Degraded-
language) in the right hemisphere of a sample participant for each language (see Figure 

1 for the maps from the left hemisphere). A significance map was generated for each 

participant by FreeSurfer44; each map was smoothed using a Gaussian kernel of 4 mm 

full-width half-max and thresholded at the 70th percentile of the positive contrast for each 

participant (this was done separately for each hemisphere; note that the same participants are 

used here as those used in Figure 1). The surface overlays were rendered on the 80% inflated 

white-gray matter boundary of the fsaverage template using FreeView/FreeSurfer. Opaque 

red and yellow correspond to the 80th and 99th percentile of positive-contrast activation for 

each subject, respectively. Further, here and in Figure 1, small and/or idiosyncratic bits of 

activation (relatively common in individual-level language mapse.g., 9, 10) were removed. In 

particular, clusters were excluded if a) their surface area was below 100 mm^2, or b) they 

did not overlap (by >10%) with a mask created for a large number (n=80456) participants by 

overlaying the individual maps and excluding vertices that did not show language responses 

in at least 5% of the cohort. (We ensured that the idiosyncrasies were individual- and 

not language-specific: for each cluster removed, we checked that a similar cluster was not 

present for the second native speaker of that language.) These maps were used solely for 

visualization; all the statistical analyses were performed on the data analyzed in the volume.
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Extended Data Fig. 3. 
Volume-based activation maps for the Native-language>Degraded-language contrast in the 

left hemisphere of a sample participant for each language (the same participants are used 

as those used in Figure 1 and Extended Figure 2). a) Binarized maps that were generated 

for each participant by selecting the top 10% most responsive (to this contrast) voxels 

within each language parcel. These sets of voxels correspond to the fROIs used in the 

analyses reported in Extended Data Figure 4 (except for the estimation of the responses 

to the conditions of the Alice localizer, where a subset of the runs was used to ensure 
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independence; the fROIs in those cases will be similar but not identical to those displayed). 

b) Whole-brain maps that are thresholded at the p<0.001 uncorrected level.

Extended Data Fig. 4. 
Percent BOLD signal change across (panel a) and within each of (panel b) the LH language 

functional ROIs (defined by the Native-language>Degraded-language contrast from the 

Alice localizer, cf. the Sentences>Nonwords contrast from the English localizer as in the 

main text and analyses; Figure 3a and Supp. Figure 3) for the three language conditions 

of the Alice localizer task (Native language, Acoustically degraded native language, and 

Unfamiliar language), the spatial working memory (WM) task and the math task. The 

dots correspond to languages (n=45), and the labels (panel a only) mark the averages 

for each language family. In all panels, box plots include the first quartile (lower hinge), 

third quartile (upper hinge), and median (central line); upper and lower whiskers extend 
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from the hinges to the largest value no further than 1.5 times the inter-quartile range; darker-

colored dots correspond to outlier data points. Across the six fROIs, the Native-language 
condition elicits a reliably greater response than both the Degraded-language condition (2.32 

vs. 0.91 % BOLD signal change relative to the fixation baseline; t(44)=18.57, p<0.001) 

and the Unfamiliar-language condition (2.32 vs. 0.99; t(44)=18.02, p<0.001). Responses 

to the Native-language condition are also significantly higher than those to the spatial 

working memory task (2.32 vs. 0.06; t(44)=11.16, p<0.001) and the math task (2.32 vs. 

−0.02; t(40)=20.8, p<0.001). These results also hold for each fROI separately, correcting 

for the number of fROIs (Native-language > Degraded-language: ps<0.05; Native-language 
> Unfamiliar-language: ps<0.05; Native-language > Spatial WM: ps<0.05; and Native-
language > Math: ps<0.05). All t-tests were two-tailed and corrected for the number of 

fROIs in the per-fROI analyses.
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Extended Data Fig. 5. 
Percent BOLD signal change across the LH language functional ROIs (defined by the 

Sentences>Nonwords contrast) for the three language conditions of the Alice localizer task 

(Native language, Acoustically degraded native language, and Unfamiliar language), the 

spatial working memory (WM) task, and the math task shown for each language separately. 

The dots correspond to participants for each language (n=2 in all languages except Slovene, 

Swahili, Tagalog, Telugu, where n=1). Box plots include the first quartile (lower hinge), 

third quartile (upper hinge), and median (central line); upper and lower whiskers extend 

from the hinges to the largest value no further than 1.5 times the inter-quartile range; 

darker-colored dots correspond to outlier data points. (Note that the scale of the y-axis 

differs across languages in order to allow for easier between-condition comparisons in each 

language.)
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Extended Data Fig. 6. 
A comparison of individual LH topographies between speakers of the same language vs. 

between speakers of different languages. The goal of this analysis was to test whether inter-

language / inter-language-family similarities might be reflected in the similarity structure of 

the activation patterns. To perform this analysis, we computed a Dice coefficient57 for each 

pair of individual activation maps for the Intact-language>Degraded-language contrast (a 

total of n=3,655 pairs across the 86 participants). To do so, we used the binarized maps like 

those shown in Extended Data Figure 3a, where in each LH language parcel the top 10% of 
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most responsive voxels were selected. Then, for each pair of images, we divided the number 

of overlapping voxels multiplied by 2 by the sum of the voxels across the two images (this 

value was always the same and equaling 1,358 given that each map had the same number 

of selected voxels). The resulting values can vary from 0 (no overlapping voxels) to 1 (all 

voxels overlap). a) A comparison of Dice coefficients for pairs of maps between languages 

(left, n=3,655 pairs) vs. within languages (right; this could be done for 41/45 languages for 

which two speakers were tested). If the activation landscapes are more similar within than 

between languages, then the Dice coefficients for the within-language comparisons should 

be higher. Instead, no reliable difference was observed by an independent-samples t-test 

(average within-language: 0.17 (SD=0.07), average between-language: 0.16 (SD=0.06); 

t(40.7)=−0.52, p= 0.61; see also Extended Data Figure 8 for evidence that the range 

of overlap values in probabilistic atlases created from speakers of diverse languages vs. 

speakers of the same language are comparable). Box plots include the first quartile (lower 

hinge), third quartile (upper hinge), and median (central line); upper and lower whiskers 

extend from the hinges to the largest value no further than 1.5 times the inter-quartile 

range; darker-colored dots correspond to outlier data points. b) Dice coefficient values for 

all pairs of within- and between-language comparisons (the squares in black on the diagonal 

correspond to languages with only one speaker tested). As can be seen in the figure and 

in line with the results in panel a, no structure is discernible that would suggest greater 

within-language / within-language-family topographic similarity. Similar to the results from 

the within- vs. between-language comparison in a, the within-language-family vs. between-

language-family comparison did not reveal a difference (t(19.8)=0.71, p=0.49). In summary, 

in the current dataset (collected with the shallow sampling approach, i.e., a small number of 

speakers from a larger number of languages), no clear similarity structure is apparent that 

would suggest more similar topographies among speakers of the same language, or among 

speakers of languages that belong to the same language family.
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Extended Data Fig. 7. 
Inter-region functional correlations in the language and the Multiple Demand networks 

during story comprehension for each of the 45 languages. Inter-region functional 

correlations for the LH and RH of the language and the Multiple Demand (MD) networks 

during a naturalistic cognition paradigm (story comprehension in the participant’s native 

language) shown for each language separately.
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Extended Data Fig. 8. 
Comparison of three probabilistic overlap maps (atlases). Comparison of three probabilistic 

overlap maps (atlases): a) the Alice atlas (n=86 native speakers of 45 languages) created 

from the Native-language>Degraded-language maps; b) the English atlas (n=629 native 

English speakers; this is a subset of the Fedorenko lab’s Language Atlas (LanA56) created 

from the Sentences>Nonwords maps; and) the Russian Atlas (n=19 native Russian speakers) 

created from the Native-language>Degraded-language maps for the Russian version of the 

Alice localizer. All three atlases were created by selecting for each participant the top 

10% of voxels (across the brain) based on the t-values for the relevant contrast in each 

participant, binarizing these maps, and then overlaying them in the common space. In each 

atlas, the value in each voxel corresponds to the proportion of participants (between 0 

and 1) for whom that voxel belongs to the 10% of most language-responsive voxels. The 

probabilistic landscapes are similar across the atlases: within the union of the language 

parcels (see Extended Data Figure 1 caption for an explanation of why this approach 

is more conservative than performing the comparison across the brain), the Alice atlas 

is voxel-wise spatially correlated with both the English atlas (r=0.83) and the Russian 

atlas (r=0.85). Furthermore, the range of non-zero overlap values is comparable between 

the Alice atlas (0.1–0.87; average within the language parcels=0.08, median=0.05) and 

each of the other atlases (the English atlas: 0.002–0.79; average within the language 

parcels=0.07, median=0.03; the Russian atlas: 0.05–0.84; average within the language 

parcels=0.13, median=0.11). The latter result suggests that the inter-individual variability in 

the topographies of activation landscapes elicited in 86 participants of 45 diverse languages 

is comparable to the inter-individual variability observed among native speakers of the same 

language.
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Extended Data Fig. 9. 
Responses in the domain-general Multiple Demand network to the conditions of the Alice 

localizer task, the spatial working memory task, and the math task. Percent BOLD signal 

change across the domain-general Multiple Demand (MD) network15,52 functional ROIs 

for the three language conditions of the Alice localizer task (Native language, Acoustically 

degraded native language, and Unfamiliar language), the hard and easy conditions of the 

spatial working memory (WM) task, and the hard and easy conditions of the math task. 

The dots correspond to languages (n=45 except for the Math Task, where n=41). Box plots 

include the first quartile (lower hinge), third quartile (upper hinge), and median (central 

line); upper and lower whiskers extend from the hinges to the largest value no further than 

1.5 times the inter-quartile range; darker-colored dots correspond to outlier data points. As 

in the main analyses (Figure 3c), the individual MD fROIs were defined by the Hard>Easy 
contrast in the spatial WM task (see 54 for evidence that other Hard>Easy contrasts activate 

similar areas). As expected given past worke.g., 54, the MD fROIs show strong responses to 

both the spatial WM task and the math task, with stronger responses to the harder condition 

in each (3.05 vs. 1.93 for the spatial WM task, t(44)=23.1, p<0.001; and 1.68 vs. 0.62 for 

the math task, t(40)=8.87, p<0.001). These robust responses in the MD network suggest 

that the lack of responses to the spatial WM and math tasks in the language areas can be 

meaningfully interpreted. Furthermore, in line with past worke.g., 58–60, MD fROIs show a 

stronger response to the acoustically degraded condition than the native language condition 

(0.26 vs. −0.10, t(44)=4.92, p<0.01), and to the unfamiliar language condition than the 

native language condition (0.15 vs. −0.10, t(44)=4.96, p<0.01). All t-tests were two-tailed 

with no adjustment for multiple comparisons.
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Extended Data Fig. 10. 
Comparison of the individual activation maps for the Native-language>Degraded-language 
contrast and the Native-language>Unfamiliar-language contrast in four sample participants. 

The activation landscapes are broadly similar: across the full set of 86 participants, the 

average Fisher-transformed voxel-wise spatial correlation within the union of the language 

parcels between the maps for the two contrasts is r=0.66 (SD=0.40). (Note that this 

correlation is lower than the correlation between the Native-language>Degraded-language 
contrast and the Sentences>Nonwords contrast in English (see Extended Data Figure 1). 

This difference may be due to the greater variability in the participants’ responses to 

an unfamiliar language.) Furthermore, across the language fROIs, the magnitudes of the 
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Native-language>Degraded-language and the Native-language>Unfamiliar-language effects 

are similar (mean = 1.02, SD(across languages)=0.41 vs. mean=1.07, SD=0.37, respectively; 

t(44)=1.15, p=0.26).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Activation maps for the Alice language localizer contrast (Native-language>Degraded-
language) in the left hemisphere (LH) of a sample participant for each language (see 

Extended Data Figure 2 for RH maps and details of the image generation procedure). The 

general topography of the language network in speakers of 45 languages is similar, and the 

variability observed is comparable to the variability that has been reported for the speakers 

of the same language10 (Extended Data Figure 8). A significance map was generated for 

each participant by FreeSurfer; each map was smoothed using a Gaussian kernel of 4 

mm full-width half-max and thresholded at the 70th percentile of the positive contrast 

for each participant. The surface overlays were rendered on the 80% inflated white-gray 

matter boundary of the fsaverage template using FreeView/FreeSurfer. Opaque red and 

yellow correspond to the 80th and 99th percentile of positive-contrast activation for each 
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subject, respectively. (These maps were used solely for visualization; all the analyses were 

performed on the data analyzed in the volume (see Extended Data Figure 3).)
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Figure 2. 
The probabilistic overlap map for the Native-language>Degraded-language contrast. This 

map was created by binarizing and overlaying the 86 participants’ individual maps (like 

those shown in Figure 1). The value in each vertex corresponds to the proportion of 

participants for whom that vertex belongs to the language network (see Extended Data 

Figure 8 for a comparison between this probabilistic atlas vs. atlases based on native 

speakers of the same language).
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Figure 3. 
a) Percent BOLD signal change across the LH language functional ROIs (see inset for the 

RH language fROIs) for the three language conditions of the Alice localizer task (Native 

language, Acoustically degraded native language, and Unfamiliar language), the spatial 

working memory (WM) task, and the math task. The language fROIs show robust functional 

selectivity for language processing. Here and in the other panels, the dots correspond to 

languages (n=45 in all panels), and the labels mark the averages for each language family 

(n=12; AfAs=Afro-Asiatic, AuAs=Austro-Asiatic, Aust=Austronesian, Drav=Dravidian, 
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IndEu=Indo-European, Japn=Japonic, Korn=Koreanic, AtCo=Atlantic-Congo, SinT=Sino-

Tibetan, Turk=Turkic, Ural=Uralic, Isol=Isolate). Here and in other panels, box plots include 

the first quartile (lower hinge), third quartile (upper hinge), and median (central line); 

upper and lower whiskers extend from the hinges to the largest value no further than 

1.5 times the inter-quartile range; darker-colored dots correspond to outlier data points. 

For each statistical comparison reported in the text, a two-tailed t-test was used (see 

Suppl. Table 2 for results of linear mixed effects models); no correction for the number 

of comparisons was applied (because each test addressed a distinct question). b) Three 

measures that reflect LH lateralization of the language network: i-strength of activation 

(effect sizes for the Native-language>Degraded-language contrast); ii-extent of activation 

(number of voxels within the union of the language parcels at a fixed threshold for the 

Native-language>Degraded-language contrast; a whole-brain version of this analysis yielded 

a similar result: t(44)=5.79, p<0.001); and iii-inter-region functional correlations during two 

naturalistic cognition paradigms (i-story comprehension in the participant’s native language; 

ii-resting state). The LH language network shows greater selectivity for language processing 

relative to a control condition, is more spatially extensive, and is more strongly functionally 

integrated than the RH language network. c) Inter-region functional correlations for the LH 

and RH language network and the Multiple Demand (MD) network during two naturalistic 

cognition paradigms (i-story comprehension in the participant’s native language; ii-resting 

state). The language and the MD networks are each strongly functionally integrated but are 

robustly dissociated from each other (pairs of fROIs straddling network boundaries show 

little/no correlated activity).
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