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Abstract

After mating, female mosquitoes need a blood meal to promote the reproductive process.

When mosquitoes bite infected people and animals, they become infected with germs such

as viruses and parasites. Mosquitoes rely on many cues for host selection and localization,

among which the trace chemical cues emitted by the host into the environment are consid-

ered to be the most important, and the sense of smell is the main way to perceive these

trace chemical cues. However, the current understanding of the olfactory mechanism is not

enough to meet the needs of mosquito control. Unlike previous studies that focused on the

olfactory receptor recognition spectrum to reveal the olfactory mechanism of mosquito host

localization. In this paper, based on the observation that mosquitoes with incomplete anten-

nae still can locate the host and complete blood feeding in the laboratory, we proposed that

there may be some protection or compensation mechanism in the 13 segments of antennae

flagella, and only when the antennae are missing to a certain threshold will it affect the mos-

quito’s ability to locate the host. Through rational-designed behavioral experiments, we

found that the 6th and 7th flagellomeres on the Aedes albopictus antenna are important in

the olfactory detection of host searching. This study preliminarily screened antennal seg-

ments important for host localization of Ae. albopictus, and provided a reference for subse-

quent cell biology and molecular biology studies on these segments. Meanwhile, the

morphology and distribution of sensilla on each antenna flagellomere were also analyzed

and discussed in this paper.

Introduction

Mosquitoes are one of the greatest public threats to human beings and are even considered the

most dangerous animal on earth [1]. Female mosquitoes require blood meals to complete their

oogenesis, during which they release pathogens into the host or become infected themselves

[2–5]. At present, spraying insecticides is effective in preventing the spread of mosquito-borne

diseases, but the long-term use of chemical insecticides can lead mosquitoes to develop
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resistance and cause environmental pollution. Therefore, understanding the biological mecha-

nism of selection and host location of mosquitoes and developing a control method to reduce

the contact between mosquitoes and hosts are important for mosquito control in the future.

Olfactory cues are still considered to be the main drivers, although it is possible that other

types of cues (e.g. visual and thermal) also play a role in host detection by mosquitoes [6]. Mos-

quitoes use their ultrasensitive olfactory system to capture these tiny chemical cues and iden-

tify the type of host they are feeding on [7,8]. Therefore, research on the mosquito olfactory

system will help to better understand its mechanism and develop green anti-mosquito prod-

ucts that interfere with its olfactory behavior.

However, how the mosquitoes use their olfactory to locate hosts has been an open question.

On the one hand, researchers have been trying to find out which odors influence mosquito

behavior by stimulating mosquitoes with different odor molecules and compounds through

numerous behavioral studies [9–12]. On the other hand, attempts at cellular and molecular

explanations have yielded a great deal of important information [13–17], but the biological

mechanism has not been fully explained. This paper combines morphological and behavioral

studies to determine the functional regions of olfactory organ of mosquitoes to narrow down

the range of research targets at cellular and molecular levels.

Antennae are thought to be the most important olfactory organ in mosquitoes since the

number of sensilla distributed on the surface accounts for about 90% [18,19]. In nature, how-

ever, like all other animals, mosquitoes may suffer from disasters that result in damage to their

antennae. It was also found in lab-bred mosquitoes that some individual mosquitoes did have

incomplete antennae, either due to their developmental defects or obvious acquired damage.

So, do these mosquitoes with incomplete antennae still have the ability to pinpoint their hosts?

Or, whether there is some olfactory protection or compensation mechanism in the 13 antennal

flagellomeres that have evolved over a long period so that when mosquitoes encounter disas-

ters, the partial loss of flagellomeres does not lead to the reduction of their main olfactory per-

ception abilities (such as olfactory localization needed by feeding and reproduction).

Ae. albopictus is an important vector control object in China and is the standard material

for the efficacy evaluation of mosquito-repellent drugs in China. In this study, the role of dif-

ferent antennal flagellomeres in the bloodsucking process of Ae. albopictus was studied

through behavioral experiments, and the external morphology and distribution of antennal

sensilla were observed by scanning electron microscopy. Discussion of results in an attempt to

narrow the functional area of olfactory localization in mosquito blood-sucking.

Materials & methods

Mosquito rearing for stock propagation

A strain of Ae. albopictus used in this study was isolated from the wild in Changsha, Hengyang,

Chenzhou, and Yueyang counties, Hunan province, which was obtained from the Center

for Disease Control of Hunan Province (China). The colony in our laboratory has been in

culture since 2016. Adult female mosquitoes were fed on the blood of anesthetized mouse in

regularly. Mosquitoes were maintained at 28±1˚C and 70–80% relative humidity, with a

14:10 h. light/dark photoperiod according to a described protocol [20]. Larvae were fed on

yeast powder and adults were maintained on a 10% sugar solution. For stock propagation,

4- to 5-d old adult female mosquitoes were allowed to take a blood meal from anesthetized

mice to lay eggs. The Institutional Reviews Board of The First Affiliated Hospital of Gui-

zhou University of Traditional Chinese Medicine approved all animal procedures (Ethical

Application Ref: 20210054).
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Pre-trial for biting assay

Since it is uncertain whether the mosquito will die due to artificial injury when its antennae

are cut off, or whether the wound pain will affect its subsequent behavior, pre-trials are needed

to determine the impact of antennae-cutting surgery on its life and the healing time of the sur-

gical wound.

4 days after eclosion, 20 female mosquitoes from the same batch were selected randomly,

10 of which were left untreated and fed on 10% glucose water alone as a control group. The

other 10 were cold-anesthetized for 1 min and cut off the most terminal section of the mos-

quito antenna (the 13th flagellomere) with Venus scissors (an ophthalmic surgical instrument)

under a stereoscope carefully (Fig 1). Mosquitoes with clipped antennae were put back into the

independent cage and fed with 10% sugar water as a pre-experiment group.

Continue to observe and compare the behavior of the mosquitoes in the two cages. 48

hours later, the two groups were deprived of glucose water and fasted for 12 hours. The author

put the right hand into the mosquito cage of the control group and the pre-treatment group,

respectively, to observe and record the flight and bloodsucking behavior of mosquitoes.

Biting assay

This assay was based on previously described landing assays [15,21,22], and was designed rea-

sonably as follows to reduce errors.

1. The groups. The behavioral experiment in this paper does not cut out each flagellomere of

the antennae one by one but uses a two-step method. First, take 3 flagellomere as a unit,

and cut them in sequence to initially lock the range of the flagellomere where the blood-

sucking behavior of mosquitoes is significantly reduced. Then, within a locked range of

Fig 1. Schematic diagram of pre-experimental mosquitoes. In the pre-experiment, the 13th flagellomere segment at

the most distal were cut off with Venus scissors.

https://doi.org/10.1371/journal.pone.0276036.g001
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three flagellomere segments, the flagellomere segments were cut off one by one to further

identify the segment of the flagellum that caused the decline in mosquito blood-sucking

behavior.

Therefore, behavioral experiments were grouped by the number of missing flagellomere

segments, with 10 experimental samples in each group, and 10 biological replicates were

arranged to make the total sample size in each group reach 100. Each replicate was derived

from the same batch of pupa-emergent mosquito samples, and the samples were age-consis-

tent between biological replicates. To avoid the possibility of accidental death during the

mosquito treatment process, resulting in an insufficient final sample size, more than the

planned number of mosquitoes in the same batch were selected for antennae shearing, and

the living and active mosquitoes were selected for the experiment. Since the blood-sucking

behavior of mosquitoes will also be affected at different times of the day, the test sequence

between parallel experiments is randomly arranged, that is, parallel experiments are not

performed in the order of decreasing or increasing flagellomere segments but randomly

shuffled to reduce the influence of test time on the results.

2. The environment. To ensure that the CO2 concentration in the exhaled breath of the volun-

teers, and the exposed area of the arm are consistent between parallel experiments, each

trial was carried out by the same volunteer, wearing the same clothes, making a mark on

the right arm 15 cm away from the fist. Whenever the fist was placed in the cage for each

assay, the markings on the arms were just at the mouth of the cage to ensure that the arms

in the mosquito cages with the same area of the skin surface in each assay. In addition, a

platform was fixed 20cm away from the mosquito cage to place the volunteer’s head, so as

to keep the distance between the exhalation and the mosquito cage constant for each assay

(Fig 2).

Fig 2. The schematic diagram for behavioral experiment.

https://doi.org/10.1371/journal.pone.0276036.g002
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3. The volunteer. Participants were recruited to participate in the study via flyers on the campus

of Guizhou University of Traditional Chinese Medicine on May 27, 2022. A total of 20 stu-

dents and 3 teachers signed up for this study, which also met the selection criteria as follows:

The volunteer was free from chronic illnesses and did not use any medication regularly, and

was able to strictly comply with the test requirements which was requested to avoid garlic,

onions, alcohol, or spicy food, take a shower using non-perfumed soap every day, and not

participate in strenuous exercise before the test. Half an hour before the test, wash their

hands with the same perfume-free soap and stop the test immediately if feeling unwell.

Given that the study was conducted during the summer vacation (July-August 2022), the

final participant in this study was a teacher with the following physical characteristics: Age:

33 years old, Gender: female, Height: 165 cm, Weight: 51 kg, marital status: married without

children, attraction to mosquitoes: moderate, non-smoking, non-drinking. She decided to

volunteer because she was interested in this study and could tolerate mosquito bites.

4. The mosquitoes. The same batch of adult Ae. albopictus were reared together and were

given free access to a 10% sucrose solution. 4 days after eclosion, 12 female mosquitoes

were selected randomly for each group from the same batch, and cut the antennal flagello-

mere segments with Venus scissors under a stereomicroscope carefully after a 1 min cold-

anesthesia (Fig 3). The cut female mosquitoes were reared in separate mosquito cages in

Fig 3. Antennal artificial cut for the first round blood-sucking behavior test. A. Antennal without treatment; B~E.

3, 6, 9, and 12 segments of the antenna were cut off respectively; F~G. Venus scissors for cutting antennae.

https://doi.org/10.1371/journal.pone.0276036.g003
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groups and fed with 10% glucose water for 2 days. Although 12 female mosquitoes treated

with antennae were prepared for each group, after fasting for 12 hours, 10 active female

mosquitoes were selected for blood-sucking behavior experiments in random order.

5. The Trial. During the trial, the volunteer placed her head on the platform, introduced

her arm through cloth sleeves into the cage slowly, and make sure that the mark on her

arm was just at the mouth of the cage. Recorded the number of mosquitoes that were

blood-fed within 10 min. We defined blood-sucking as landing on the host, inserting the

proboscis, and drawing enough blood into the abdomen, or landing on the host, and

exploring with the proboscis continuously, which were visible to the naked eye of the

observer. After each trial, the volunteers left the chamber for 20 minutes so that the

human body odor in the room could be fully dissipated before starting the next trial.

Therefore, all trials cannot be completed in one day, but the parallel experiments must be

arranged on the same day.

Participants were aware of the content and purpose of the study but were unaware of the

test order. This study involving human participants was reviewed and approved in advance by

the Institutional Reviews Board of The First Affiliated Hospital of Guizhou University of Tra-

ditional Chinese Medicine (Ethical Application Ref: K2022-010). The participants provided

written informed consent for participation in this study. The authors had access to informa-

tion that could identify individual participants during or after data collection. A return visit on

10 September did not suggest that the participant was unwell.

Scanning electron microscopy (SEM)

Heads with antennae from 4- to 6-day-old adult Ae. albopictus were fixed with 4% parafor-

maldehyde for 2 h at room temperature, after rinsed with PBS (pH 7.3) containing 0.1% Tri-

ton X-100 5 times, 50%, 60%, 70%, 80%, 90%, 100% gradient ethanol were used sequentially

for dehydration. The samples were sequentially rinsed with a mixture of ethanol and hex-

amethyldisilazane at the ratio of 75:25, 50:50, 25:75, and 0:100, and then air-dried. The

dried sample was glued onto aluminum pin mounts with conductive silver, and gold was

sprayed on the surface of the sample in a vacuum sprayer. Samples were observed and digi-

tal micrographs of each flagellomere were collected using an S4800 scanning electron

microscope (Hitachi, Japan).

Sensilla counts

Sensillae on each flagellomere were classified and counted by morphology. The average for

each sensillum type was calculated for 10 individuals and then multiplied by a factor of 2,

assuming only half of the sensilla could be seen in each micrograph.

Statistical analysis

After completion of the biting assays, the percentage of blood-sucking was calculated by divid-

ing the total number of blood-sucking mosquitoes by the total number of mosquitoes used in

each bioassay, multiplied by 100. All statistical analyses were performed by GraphPad Prism 8

software (GraphPad Prism), One-way ANOVA and Bonferroni post hoc analysis were used

for group comparisons. Data are presented as the mean ± standard error (SEM) (n = 10). Sig-

nificance was set at p< 0.05.
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Results

The artificial breakage of the antennae did not cause the death of the

mosquito, nor did it affect its activity

The female mosquitoes in the pre-experiment group were all awake after the anesthesia, and

there was no death due to antenna breakage. After awakening, mosquitoes will have a short

rest (about 20 minutes), and then the flight and feeding behaviors within the next 48 hours

were consistent with the control group, showing no listlessness or flight delay. After 12 hours

of fasting, mosquitoes in the control group had a strong desire to blood-feed, and the rate of

blood-sucking in the control group reached 70% after 10 minutes. While the desire to suck

blood was also very strong in the pre-experiment group. Within 2 minutes, 60% of the pre-

experiment mosquitoes stayed on the hand and began to suck. After 10 minutes, 50% of the

mosquitoes completed blood-feeding, and 30% of the mosquitoes still stayed on the hand to

explore and try, the other 20% of the mosquitoes failed to stay on the hand, but they flew for a

short time after the hand was introduced into the cage. Although we did not make a statistical

analysis, it can be seen that the artificial breakage of the antennae will not cause the death of

mosquitoes, nor affect their activities, which was consistent with what we’ve observed in the

lab. After 60 hours of operation, the ability of location and sucking were the same as that of

untreated mosquitoes. It can be considered that 60 hours after surgery can be used for a fol-

low-up biting assay.

The 6th and 7th flagellomere of the antennae of Ae. albopictus females may

play important roles in their olfactory detection

In the first round with 3 flagellomere segments as the shearing unit, 60 female mosquitoes

were divided into 5 groups (Fig 3A–3E), The control group without any treatment (Fig 3A)

and the experimental groups in which 3 (Fig 3B), 6 (Fig 3C), 9 (Fig 3D), and 12 (Fig 3E) flagel-

lomere segments were cut off from the end of the antennae, respectively. 60 hours after anten-

nae surgery, mosquitoes with 9 and 12 flagellomere segments defection flew briefly in the cage

and moved barely since finding a suitable habitat, only a few of them flew back and forth sev-

eral times before settling on the volunteer’s arm. Through the statistical analysis, the absence

of 6 antennae flagellomere segments did not significantly affect the ability of mosquitoes to

suck blood, there were still nearly 60% of mosquitoes that can suck blood (Fig 4, see supple-

mentary information). However, less than 10% of them suck blood when the antennae were

cut by 9 flagellomere segments. That is, the significant difference in the ability of mosquitoes

to suck blood occurred between the absence of 6 and 9 antennae flagellomere segments. And it

is speculated that the flagellomere segment affects Ae. albopictus to find a host and suck blood

may be between or in the 5th and the 7th flagellomere segments.

Then, which flagellomere segment plays a key role? In the next round of experiments, the

scope will be narrowed, and behavioral testing will be carried out after cutting out flagellomere

segments by section.

According to the above method, a total of 84 female mosquitoes were divided into 7 groups,

namely: The control group without any treatment and the experimental groups with 3 (Fig

5A), 6 (Fig 5B), 7 (Fig 5C), 8 (Fig 5D), 9 (Fig 5E) and 12 (Fig 5F) flagellomere segments cut off

from the end of the antennal, respectively. 60 hours after treatment, a behavior difference

occurred between the 7 and 8 flagellomere segments defection, nearly half of the mosquitoes

had blood-sucking behavior could be shown in 7 flagellomere segments defection, but the fly-

ing behavior with 8 flagellomere segments cut off decreased significantly (see supplementary

information). After a brief period of adaptation, most mosquitoes with 8 flagellomere
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Fig 4. The percentage of blood-sucking of Ae. albopictus with antennal segment defection. The horizontal axis

represents the number of clipped antennal segments, and the vertical axis represents the average blood-sucking

percentage. Asterisks indicate significant differences. N = 10 groups, 100 mosquitoes in total.

https://doi.org/10.1371/journal.pone.0276036.g004

Fig 5. Antennal artificial cut for the second round blood-sucking behavior test. A~F. 3, 6, 7, 8, 9, and 12 segments

of the antenna were cut off respectively; G. The percentage of blood-sucking of Ae. albopictus with antennal segment

defection. N = 10 groups, 10 mosquitoes in each group.

https://doi.org/10.1371/journal.pone.0276036.g005
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segments defection did not move until the trial was over, only a small number of them were

seen flitting around in the cage in each replicate, some of which eventually succeeded in suck-

ing blood (only about 10%), while others stayed on the hand without exploring or feeding (Fig

5G). Therefore, in the segments of 4 to 7 antennae, two segments of antennae flagellomere

affect blood-sucking behavior, namely the 6th and the 7th flagellomere. That is, when the mos-

quito has only 6 flagellate segments left (7 segments defection), the blood-sucking behavior is

affected to some extent, but when the mosquito has only 5 flagellate segments left (with 8 seg-

ments cut off), the blood-sucking ability was lost almost.

General description of the sensilla of Ae. albopictus
The antennal of Ae. albopictus female mosquitoes are divided into 13 distinct flagellomeres

with a large number of sensilla. According to the description and nomenclature by Zacharuk

[23] and Pitts [24], we classified the sensilla by their morphology (Fig 6). The following are

detailed descriptions of the types and distributions of female antennal sensilla.

1. Sensilla trichoid: The most widely distributed and most numerous type of sensilla on the

antennae with a hair-like structure. According to the shapes, sensilla trichoid were divided

into two subtypes: sharp trichodea (sp. trichodea) and blunt trichodea (bl. trichodea) (Fig

6A). sharp trichodea were widely distributed on the antennae, mainly at the 2nd to 13th fla-

gellomeres, and also at the end of the first segment of the flagellum. Blunt trichodea were

also mainly distributed at the 2nd to 13th segments of the flagellum, but the number is

much smaller than that of the sharp ones.

2. Sensilla chaetica: The longest sensilla with grooved and socketed sturdy bristles (Fig 6). Sen-

silla chaetica were also divided into two subtypes based on length: large chaetica (lg. chae-

tica) and small chaetica (sm. chaetica) (Fig 6A, 6B and 6D). The large chaetica were

arranged on the basal end, while the small ones were found nearer the distal edge of flagello-

meres 2–13. Their numbers decreased from the proximal to the distal flagellomeres.

3. Sensilla basiconica or grooved peg: The sensilla with grooved but no socketed thorn-shaped

hair, which is an important feature that distinguishes them from sensilla chaetica (Fig 6B

and 6E). The sensilla basiconica was observed on flagellomeres 3–13.

Fig 6. Sensilla types. Representative scanning electron micrographs showing sensilla types found on Ae. albopictus
female antennae.

https://doi.org/10.1371/journal.pone.0276036.g006
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4. Sensilla coeloconica: The smallest sensilla with pitted pegs (Fig 6C and 6F). The number of

such sensilla was also small, they were always found on flagellomeres 1–7, and on the distal

tip of the 13th flagellomere with 2.

5. Finally, considering that there might be a large number of certain sensilla arranged on fla-

gellomere 6 and 7, which indicated playing important roles in biting assay, the numbers of

each sensillum on each flagellomere were used to find some specials (Table 1). However,

unfortunately, we saw no evidence of a distinct distribution pattern of different sensilla

types on flagellomere 6 and 7.

Discussion and conclusions

Cues for mosquitoes host-seeking

The process of Mosquito host-seeking involves chemical and physical cues [25]. Chemical cues

released in host respiration, skin metabolites, and urine, and visual cues may be particularly

valuable for a long-distance host orientation, while host physical and chemical cues such as

heat, humidity, trace odorant and low volatile may affect host-seeking, landing and probing at

proximity. Mosquitoes are believed to detect potential hosts and activate their flight behavior

through sparse carbon dioxide plumes at distances of 10 meters or more. When approaching,

they mainly rely on visual information and odor cues to help them determine the approximate

location of the host. By detecting heat and humidity, they ultimately land on the host, and after

landing, their sense of taste will detect the host’s skin to find a suitable location for blood-suck-

ing [8,26,27]. The eyes of mosquitoes have relatively poor acuity but high sensitivity to light

[28]. Color affects the response of mosquitoes to a certain extent, and they can also determine

the direction of flight by comparing shapes [29,30]. In a two-choice test in a recent study, the

source of host skin had the highest valence for landing, followed by a combination of heat and

visual cues [31]. For several decades, odors have been widely recognized as a critical cue that

signals the presence of a host to mosquitoes. Researches on mosquito control strategies have

largely focused on the chemical ecology of mosquitoes [26,32–34].

Table 1. Types, numbers, and distributions of sensilla (n = 10).

Flagellomere Sensilla trichoid Sensilla chaetica Sensilla basiconica Sensilla coeloconica Total

sp. trichodea bl. trichodea lg. chaetica sm. chaetica

1 22 8 10 4 0 3 47

2 32.4 4.8 6 6.8 1.2 0 51.2

3 38.4 2.4 8.8 4 4.4 2 60

4 25.2 2.4 8 2.4 4 0 42

5 33.2 3.2 7.4 2 3.2 3.2 52.2

6 27.6 3.6 6.4 2.8 4.8 1.8 47

7 30.2 4 7.2 3.8 4.6 2 51.8

8 31.8 4.6 6.2 3.2 4.8 0 50.6

9 35.2 5.8 6.2 2.2 5.2 0 54.6

10 35.8 5.2 6.2 2.4 4.6 2.1 56.3

11 38.2 4.2 7 3.2 5 0 57.6

12 37.6 4.8 6.4 3.2 5.2 1.4 58.6

13 42.2 8.6 6.8 1 8.6 4 71.2

Total 429.8 61.6 92.6 41 55.6 19.4 700.1

https://doi.org/10.1371/journal.pone.0276036.t001

PLOS ONE The function of the antennal segments

PLOS ONE | https://doi.org/10.1371/journal.pone.0276036 August 10, 2023 10 / 21

https://doi.org/10.1371/journal.pone.0276036.t001
https://doi.org/10.1371/journal.pone.0276036


Mosquito sensory systems

1. Sensory organs. It can be seen that the behavior of mosquitoes in locating their hosts is

complex, and involves multiple sensory stimuli. To properly recognize and process these

sensory stimuli, mosquitoes have evolved an extraordinary sensory system. Antennal, max-

illary palps, proboscis on the head, and tarsi on the legs are all sensory organs of mosqui-

toes, and they are all multi-sensory integrations. For example, antennae are mainly

responsible for acquiring olfactory information but also can sense temperature and humid-

ity [35]. Maxillary palps, in addition to previously reported chemosensory function (includ-

ing carbon dioxide detecting), were considered potentially involved in mechano-sensation

and thermos-sensation [36,37]. Proboscis considered a gustatory organ in food intake was

postulated to detect low volatile host cues at proximity, as well as a sense organ of tempera-

ture and humidity [13,32]. Tarsi located on the legs of mosquitoes not only respond to

external mechanical stimuli, but also have sugar-sensitive hairs like those on the labella,

which leads to active sugar-feeding behavior [38–40]. It suggests that mosquito host loca-

tion involves multiple sensory systems acting together. However, the antennae are consid-

ered to be the most important sensory organs in the mosquito host location. This study is

also based on the laboratory observation that mosquitoes with incomplete antennae can

still locate the host to complete blood feeding, indicating that the remaining antennal seg-

ments and/or other sensory organs may play a compensation role in helping mosquitoes

complete blood feeding when the antennae are incomplete. So, the question is, to what

extent does the absence of antennae prevent them from feeding even though the other

organs are healthy? And what proteins are expressed in the missing antennae and what

important clues do they perceive? Therefore, this study focuses on the antennae of

mosquitoes.

2. Sensilla. Female antennae are thought to play a major role in host detection due to the dis-

tribution of approximately 90% of chemosensillar, which are innervated by one or more

olfactory receptor neurons (ORNs) whose dendrites extend into the sensillum lymph, while

axons project into the main olfactory center in brain, the antennal lobe (AL) [35]. This

makes these sensilla the physical sites of chemical detection. The sensilla distributed on

antennal were classified into five types by morphology: sensilla cheatica, sensilla trichodea,

grooved peg, sensilla coeloconica, and sensilla ampullaceal [24], which are considered gen-

erally well conserved among mosquito species. However, The same in a previous study in

Ae. Albopictus [41], sensilla ampullacea which are considered as probable sites of tempera-

ture detection has not been observed in this study [42]. Another study on Ae. albopictus
divided the sensilla into seven types, namely, addition to sensilla cheatica, sensilla trichodea,

grooved peg, and sensilla coeloconica, sensilla auricillica, bohm hair, and sensilla squami-

formia were observed. The author mentioned that they did not observe sensilla ampullacea

either, probably because they were too few in number or too similar in shape to sensilla coe-

loconica [43].

Electroantennography (EAG) and Single Sensillum Recordings (SSR) alone or coupled with

gas chromatography (GC) were used to detect the responses to compounds of antenna and

sensilla. The sensilla trichodea and the grooved peg are sensitive to the attractant scent of

the host and play a role in the behavior of the blood-sucking mosquito to find and attack

the host. The grooved peg is also sensitive to water vapor, the sensilla coeloconica and the

sensilla ampullacea are both thermosensitive sensilla, and the sensilla cheatica is a mechan-

osensilla, which can sense the movement of air, and plays a role in the upwind directional

flight of female mosquitoes against air streams containing the scent of the host [44].
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There were significant differences in the type, quantity and distribution pattern of sensilla

between the males and females, between culicine and anopheline mosquitoes, and even

greater differences between blood and nectar feeders [18,24]. In order to investigate the cor-

relation between the olfactory sensilla and host-seeking behavior, the type, number, and

distribution of sensilla in 13 flagellomeres were compared in this study, and the results

showed similar distribution and density of sensilla in each segment, especially in the 6th and

7th segments, which showed an important role in behavioral trials, suggesting that other fac-

tors may be more important for olfactory driven host-seeking behavior.

3. Cells. Concerning the cellular type repertoire, ORNs are considered to be the most impor-

tant cell type involved in mosquito olfactory production, as their dendritic membranes

express various olfactory-related receptor proteins that can directly interact with odor mol-

ecules in the lymph. ORNs then convert these chemical signals into electrical signals and

transmit them to higher brain centers [45,46]. Therefore, SSR, which is used to detect olfac-

tory signals in sensilla, can also be used to evaluate the olfactory perception function of the

ORNs in them [47]. In addition to the well-known ORNs, a lesser-explored group of non-

neuronal auxiliary cells that are adjacent to their respective ORNs are also present in the

insect olfactory system, including primordial, primordial, and primordial. These types of

cells were initially believed to be involved in the development of sensilla and regulate the

ion composition of sensilla lymph [48,49]. In recent years, increasing evidence has shown

that many auxiliary cells play important roles in regulating sensory neuron activity, trans-

mission, and structural integrity [50–55]. In mosquitoes, the signal derived from ammo-

nium transporters (Amts), which promote ammonium transmembrane transport and

regulate antennal and behavioral responses of Anopheles gambiae, is not only observed in

the sensory neurons of the ammonia-responsive basiconic and coeloconic sensilla, but also

in non-neuronal auxiliary cells [56]. It suggests that we should pay more attention to the

important role of auxiliary cells and their proteins in olfactory sensilla in olfactory percep-

tion and olfactory behavior.

Odor-induced behavioral studies in mosquito

GC coupled with olfactometer or wind tunnel bio-assay were used to determine the effects of

each component and its mixture on the olfactory behavior of mosquitoes. Among more than

300 odor components identified by GC-MS, carbon dioxide, L-lactic acid, ammonia, 1-octene-

3-alcohol and some carboxylic acids were found to affect the olfactory behavior of mosquitoes

[11,57]. Among them, CO2 plays a synergistic role with other host-species volatiles in the host-

seeking process of mosquitoes [58], while lactic acid, as a signature human odorant for mos-

quitoes, has different attractant effects on different mosquito species after coupling with differ-

ent components [59–61]. Ammonia combined with different components can also have

different effects on mosquito olfactory behavior. For example, when ammonia is mixed with

lactic acid, it has a synergistic and attractive effect, but when ammonia is mixed with carbon

dioxide, it weakens the attraction of mosquitoes [61]. In addition to these generally synergistic

odors, some odors have been identified for different mosquito species as potential attractants

or attraction inhibitors in mosquito control. For Ae. albopictus, a range of saturated acids,

unsaturated acids, alcohols, various analogs, and mixtures based on human skin emanations

were used to determine flight orientation and electroantennogram response [62–65]. Ae. albo-
pictus showed different dose-dependent patterns for different compounds and showed differ-

ent interests in different combinations. Thus, apart from other physical factors (temperature,

humidity), the mechanism in attraction of human odor to mosquitoes is just complex. Much
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work remains to be done to fully understand the nature of mosquito host locating on a chemi-

cal level. Studies on the cellular and molecular levels of the mosquito olfactory system are also

needed.

Molecular biology studies

In the olfactory organs mentioned above, the occurrence of olfactory involves the involvement

of a series of proteins: the odor-binding protein (OBP), which binds to and transports odor

molecules in lymph fluid, the olfactory receptors, including Odorant Receptor (OR), Ionotro-

pic Receptor (IR) and Gustatory Receptor (GR), which specifically recognize odor molecules

in the dendrite membrane of olfactory neurons, and the odorant-degrading enzymes (ODEs)

play a termination role in odor-based signal transduction [14]. Crispr-Cas9-based knock-in

strategies were used to label the expression of these proteins to explore the coding patterns of

odor, while RNA in situ hybridization, immunofluorescence, and single core RNA sequencing

(SNNA-Seq) were also used to locate endogenous expression of these proteins in the sensory

system [66]. Cloning and de-orphaning are common methods to identify the olfactory recog-

nition function of these proteins [15,17,67–69], RNAi technology has also been used to identify

the effects of these proteins on olfactory behavior in mosquitoes [70,71]. An empty engineered

neuron of the Drosophila melanogaster was used as well to express mosquito olfactory-related

genes and the responses of this neuron to individual odors were assayed using SSR [72]. Over

the past decade, real-time qPCR, transcriptome based on RNA sequencing, and genome-wide

analysis of the entire repertoire of olfactory-related genes were widely used to explore a compre-

hensive expression atlas specific to blood meal, sex, tissue and mosquito species, several olfac-

tory-related genes associated with blood-seeking behavior in mosquitoes have been screened,

and the functions in the behavior of which remain to be clarified one by one [73–78].

For Ae. albopictus, a large complete genome sequence and transcriptome data were

obtained in 2015 [20]. Lombardo provided a detailed transcriptome of the main sensory

addendages (antennae and maxillary palps) in Ae. albopictus in 2017 [79]. Researches on olfac-

tory-related proteins are ongoing. Genes encoding OBP in Ae. albopictus have been identified,

and some OBPs with strong female/male expression ratio conducted in the quantitative analy-

sis were considered to be involved in host-seeking of female mosquitoes [80], EAG and behav-

ioral tests were used by Chen to identify OBP which involved in olfactory reception [81], Chen

also found that the reduction of Orco transcript levels in Ae. albopictus led to a significant

decrease in host-seeking and confusion in host preference [82], Some cloned and de-orphaned

ORs related to odor-induced behaviors were considered to be used as potential molecular tar-

get in mosquito control strategies [83,84]. The expression levels and transcriptional products

of IRs in antennae of blood-sucking and non-blood-sucking females were measured in our

previous study [16].

Although less research has been done on Ae. albopictus than that on Aedes aegypti and

Anopheles gambiae the olfactory behavior and sensilla morphology of Ae. albopictus have been

described in many Chinese literatures, Ae. albopictus also received increasing attention as one

of the top 100 invasive species in the world. Ae. albopictus is a zoophilic species, but it is highly

anthropophilic in nature, visual and chemical cues were used to find its host. It is resistant to

commonly used larvicides and adult insecticides, and developing new control tools with

proven epidemiological implications is a challenge [85]. Locating the host is a complex process

for mosquitoes, and despite ongoing research, there is still no effective way to prevent and con-

trol mosquitoes by blocking their sense of smell. The idea of this paper comes from the obser-

vation that mosquitoes with incomplete antennae can still successfully suck blood, and we

want to know how much antennae loss can affect its behavior. We know that the loss of part of
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the antenna does not simply equate to the loss of part of the sense of smell, but may also be

related to the loss of temperature, humidity and mechanical sensitivity of the antenna. Our

study found that mosquito behavior significantly decreased with the loss of 6~7 antennae seg-

ments, a further exploration of which genes are missing in this process that lead to the behav-

ioral changes may hopefully explain the comprehensive factors of mosquito host localization.

Although we designed a simple antennae resection experiment, we still tried our best to

control variables to ensure the accuracy of the behavioral experiment. The following explana-

tions are required for the pre-trial in this text.

1. About the shearing position of the antennae in the pre-trial. We chose to cut off only the

most terminal segment of the mosquito antenna due to the only segment missing has the

least impact on its blood-sucking behavior theoretically. Therefore, the blood-sucking behav-

ior can be used to predict the healing time of the antennae. However, if the antennae of mos-

quitoes were randomly cut off and the pre-trial was conducted, there would be differences in

blood-sucking behavior. It is difficult to determine whether these differences in behavior are

caused by the absence of the antennal flagellum segment or the unhealed wound.

2. About the wound. Similar studies were conducted to ablate the antennae, maxillary palps,

proboscis and frontal tarsus of mosquitoes separately by microscissor/sharpened tweezers

to determine the role of these organs in the sensation of substances. The authors of these

studies believed that the effects of treatment on mosquito survival and flight activity during

host-seeking behavior were negligible [86,87]. Other studies on Drosophila melanogaster

have also employed antennal excising. The authors aimed to expose various cell types in the

drosophila antennae by an ex vivo antennal preparation so that live cell imaging can be

used to observe the response of these cells when the antennae were stimulated [50,88–90].

Our study focused on the effect of antennal segments loss on insect behavior. Although

antennal surgery does not affect the response of cells to stimuli, the pain caused by antennal

surgery may affect insect behavior. Therefore, a pre-trial before the biting assay was con-

ducted in this study.

3. Regarding the determination of time for wound healing. Instead of a series of biting assays

at consecutive time points, 60 hours after the operation was selected directly. This is because

once the mosquitoes have finished blood-feeding, the next physiological process, digestion

and egg laying were started, which led difficult to use the same batch of females for continu-

ous time points biting assays. However, using multiple batches of female mosquitoes to

conduct biting assays at different time points requires a large workload. Therefore, we

chose to give the mosquitoes a longer healing time, and then conducted the pre-trial

directly. The results showed that 60 hours after the operation, there was no behavioral effect

due to pain. In addition, both the mosquito grouping and the test environment were

designed in the final biting assays to reduce the experimental error.

In order to understand the attractiveness of humans tomosquitoes, antennal sensilla have

previously been described and compared for several mosquito species. Considering the 6th

and 7th flagellomere of the antennae of Ae. albopictus females may play a key role in their

blood-seeking behavior, it is possible that variations in types or numbers of sensilla exist

between them and other flagellomeres, which may suggest areas of future investigation. As

such, a comparative examination of the sensilla of each flagellomere on Ae. albopictus female

antennae was conducted. However, the Ae. albopictus females carry the same morphological

types of sensilla and the densities of each type are effectively equal between the 6th and 7th fla-

gellomere and other antennal flagellomere. And this result was similar to the result of Qiu

[91], who identified 6 functional groups of trichoid and 5 functional groups of GP on segments
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6–13 of the antenna based on the responses to a panel of 44 compounds in Anopheles gambiae
by Single-sensillum recordings. The study has shown that the 13th segment distributed the

most functional sensilla, which is probably because it is the first part to be exposed to odors,

allowing mosquitoes to respond quickly. In the case of the antennae damage, the abundant

sensilla on the most distal segment are missing, but the sensilla distributed on other segments

of the antennae can be replenished. Qiu’s test indicated that the sensilla on segments 6 and 7 of

the antennal flagellum were mainly responsive to some carboxylic acids, alcohols, phenols,

ammonia, and amines. Since the authors focussed on segments 6–13 of the antenna, we did

not know whether these functional sensilla were also distributed on the segments 1–5.

Shortcomings and limitations

The limitation of this study are (1) the time for wound healing we used: 60 hours after the

operation was based on the absence of the most terminal segment of the mosquito antenna, in

which the localization and detection abilities of mosquitoes were almost the same as those of

untreated mosquitoes. With the increase of missing antennae, the flight activity, orientation

speed, and probing time of mosquitoes decreased gradually according to our observations.

Thus, could the reduction of these abilities due to the fact that the closer the cutting position is

to the base, the thicker the antennae, and the less adequate the wound healing? The larger the

wound, the greater the probability of infection. After all, we did not do anything to seal the

wound. In other insects, the cutting of sensory organs incurs some degree of communication

dynamics disruption, and laser sealing is the common method for wound sealing [92]. It

would be better if there could be a comparison between the antennae cut group and the post-

cut laser sealing group. (2) We also did not study the orientational activity of the antenna. It

will be meaningful to observe and record whether the remaining antennae still exhibit orienta-

tional activity after being severed, especially in the absence of the 6th and 7th flagella, which

we found resulted in behavioral differences. (3) If more different volunteers had joined the

experiment to increase the selectivity of mosquitoes, would we have gotten different results?

(4) As mentioned above, different sensory organs play different roles at different distances.

Our results are limited to explain what happened in our experimental space, but this method

can also be used to test other distance ranges.

Of course, the response of different parts of the antennae to odors has been studied in other

insects for a long time, using methods that are more intuitive than the ones we used in this

study. For example, live cell cation imaging was used to observe the response of cells in the iso-

lated antennae. For mosquitoes, however, although many factors influencing their behavior

have been identified at the level of compounds, cells, and molecular repertoire, the mechanism

by which mosquitoes locate their hosts remain poorly understood [7], and larger-scale

response studies have been limited by the array of mixed ORNs on antennal. Therefore, this

study aims to first screen out the range of antennae segments causing behavioral differences

through relatively simple and extensive behavioral methods, to provide a reference for further

researches through cell biology and molecular biology, and also the first step for us to make

more meaningful work in the future. Based on this, we are further detecting and comparing

the ORNs-related proteins expressed on each segment (as well as those proteins associated

with non-neuronal helper cells), and we are still working on it despite the difficulties.
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