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abstract

PURPOSE Image-derived artificial intelligence–based short-term risk models for breast cancer have shown high
discriminatory performance compared with traditional lifestyle/familial-based risk models. The long-term
performance of image-derived risk models has not been investigated.

METHODS We performed a case-cohort study of 8,604 randomly selected women within a mammography
screening cohort initiated in 2010 in Sweden for women age 40-74 years. Mammograms, age, lifestyle, and
familial risk factors were collected at study entry. In all, 2,028 incident breast cancers were identified through
register matching in May 2022 (206 incident breast cancers were found in the subcohort). The image-based
model extracted mammographic features (density, microcalcifications, masses, and left-right breast asym-
metries of these features) and age from study entry mammograms. The Tyrer-Cuzick v8 risk model incorporates
self-reported lifestyle and familial risk factors and mammographic density to estimate risk. Absolute risks were
estimated, and age-adjusted AUC model performances (aAUCs) were compared across the 10-year period.

RESULTS The aAUCs of the image-based riskmodel ranged from 0.74 (95%CI, 0.70 to 0.78) to 0.65 (95%CI, 0.63
to 0.66) for breast cancers developed 1-10 years after study entry; the corresponding Tyrer-Cuzick aAUCswere 0.62
(95% CI, 0.56 to 0.67) to 0.60 (95% CI, 0.58 to 0.61). For symptomatic cancers, the aAUCs for the image-based
model were $0.75 during the first 3 years. Women with high and low mammographic density showed similar
aAUCs. Throughout the 10-year follow-up, 20% of all women with breast cancers were deemed high-risk at study
entry by the image-based risk model compared with 7.1% using the lifestyle familial-based model (P , .01).

CONCLUSION The image-based riskmodel outperformed the Tyrer-Cuzick v8model for both short-term and long-
term risk assessment and could be used to identify women who may benefit from supplemental screening and
risk reduction strategies.
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INTRODUCTION

Improved breast cancer risk assessment models are
needed to enable personalized breast cancer scree-
ning and primary prevention.1 Artificial intelligence
(AI)–based models using data from mammograms have
been reported to have higher performance than tradi-
tional lifestyle/familial-based risk models in estimating
the short-term risk of breast cancer.2-4 The long-term
performance of image-derived, short-term models is yet
to be determined.

Breast cancer risk assessment is currently offered in
the United States and is performed using lifestyle/
familial-based risk models such as Tyrer-Cuzick and
Gail.5-7 Recently, image-based risk models have
emerged to refine personalized screening.8,9 Such
short-term risk tools could identify women who, after
a negative or benign screening, might benefit from
supplemental or more intensive screening and,

identify women who otherwise might be diagnosed
with symptomatic (breast cancer diagnosed between
two screens) or later-stage breast cancer.10

Although mammographic screening reduces breast
cancer mortality by 25%-40%,11,12 the incidence of
breast cancer has steadily increased in the Western
world over the past 50 years.13 Currently, approximately
13% of women are diagnosed with breast cancer in their
lifetime. Prophylactic interventions, including lifestyle
changes and risk-reducing medications, have shown
promising results in reducing breast cancer incidence in
women with an increased risk of breast cancer.14 For
women determined to have high risk on the basis of the
10-year or lifetime risk of breast cancer, the National
Institute for Health and Care Excellence (NICE) and US
Preventive Services Task Force (USPSTF) clinical
guidelines recommend risk-reducing interventions or
more intense screening.15,16
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Using the unique KARolinska MAmmography Project for
Risk Prediction of Breast Cancer (KARMA) screening
cohort,17 we investigated the long-term and short-term
performances of the image-based risk model and com-
pared the results with those of the Tyrer-Cuzick v8 risk
model. In our study, we used an independent set of baseline
mammograms from the same underlying screening cohort
that was used to develop the model.3 The image-based risk
model is a 2-year risk model designed for women attending
biennial screening and use image-derived data to predict the
risk of being diagnosed with a symptomatic cancer or a
cancer at the next routine screening.10 The model is avail-
able for clinical use in the United States and Europe. The
Tyrer-Cuzick model is an established risk tool on the basis of
lifestyle, familial risk factors, and mammographic density to
identify women who may benefit from intervention or follow-
up.16,18,19 We estimated the discriminatory performances of
the twomodels for predicting breast cancer diagnoses for up
to 10 years after study entry for potential use in primary
prevention. In addition, we investigated both models for
assessing short-term risk to identify women who could
benefit from supplemental screening or shorter screening
intervals. We performed analyses for subtype-specific breast
cancers and estimated the potential impact of how masking
of a tumor by mammographic dense tissuemay affect model
performance. Finally, we compared the ability of the two
models to correctly stratify women according to their risk of
breast cancer.

METHODS

Study Population

Sweden has a national mammography screening program
in which women age 40-74 years are invited every 18
or 24 months for screening, depending on age and region.20

Women who underwent mammographic screening between

October 2010 andMarch 2013were invited to enter the cohort
in the prospective KARMA study.17 The approximately 70,000
women who chose to participate consented in writing to
participate in studies on the risk and prognosis of breast
cancer. Participants responded to aweb survey on lifestyle and
familial-related breast cancer risk factors. In addition, women
donated blood, accepted linkage to national breast cancer
registers, and allowed long-term storage of their mammograms
for image analysis. Women who were diagnosed with breast
cancer after 3months of a negative screen were eligible for our
study. We performed a case-cohort study that included a
random sample of 8,604 women (12.9%) from the 66,814
eligible women in the KARMA cohort. The case-cohort also
included all incident breast cancers that were diagnosed in the
underlying cohort at the time of register linkage.

The study was approved by the Swedish Ethical Review
Authority (2010/958-31/1).

Risk Factors at Study Entry and Follow-Up of

Breast Cancers

Full-field digital mammograms at study entry from left and
right breasts in mediolateral oblique and craniocaudal
views were used to derive AI-assessed mammographic
features using the ProFound AI Risk (Nashua, NH) tool and
Stratus density tool as previously described.3,21 The details
on risk factor definitions are presented in the Data Sup-
plement (online only). The absolute risk of breast cancer
was calculated on the basis of age, mammographic fea-
tures (density, microcalcifications, and masses), left-right
breast asymmetries of these features, risk factor distribu-
tions, and national statistics on breast cancer incidence
rate and competing mortality risk.

Self-reported lifestyle and familial risk factors were used
to calculate the absolute risk of breast cancer using the
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Tyrer-Cuzick model v8.18 We added the Tyrer-Cuzick tool to
our study to allow comparison with a risk assessment tool
often used in other countries for risk assessment.16,19 The
tool calculates breast cancer risk on the basis of lifestyle
and familial risk factors, that is, age, height, weight, age at
menarche, age at first childbirth, menopausal status, use of
hormone replacement therapy, benign breast disorders,
first- and second-degree family history of breast cancer,
first-degree family history of ovarian cancer, and mam-
mographic density.21

Breast cancer status andmode of detection were retrieved
for breast cancers diagnosed up to May 2022 from the
national quality breast cancer registry through linkage
using Swedish personal identification numbers.22 Interval
cancer was defined as a cancer diagnosed between two
screens. Breast cancer status was also cross-checked
through linkage to the national cause-of-death register
at the end of follow-up for women who died during the
study period.23

Statistical Analysis

Descriptive statistics reported study participant character-
istics and distribution of risk factors at study entry.24 The
time that passed from the date of mammogram at study
entry to the date of breast cancer diagnosis was reported
as the frequency distribution. Absolute risks were estimated
at study entry using the image-based risk model and
Tyrer-Cuzick model after 1-10 years of follow-up. Model
performances for the two models were estimated using odds
ratio per adjusted standard deviation (OPERA) and using
AUC after adjustment for age (aAUC)25-27 (Data Supple-
ment). Inverse probability weights were used to account for
the case-cohort sampling.24,28 The 10-year risk assessment
included all women in the subcohort and the incident breast
cancers that were diagnosed after 3 months to 10 years after
study entry. When estimating the risk performance for a
defined year of follow-up, we included breast cancers that
were diagnosed after 3 months of study entry up to that
specific year. The risk model performances were estimated
at the end of each year of follow-up. The 95% CIs of the
aAUC point estimates were estimated using 1,000 boot-
straps.27 We estimated the significance of the differences
between aAUCs by comparing the two risk models using
bootstrapping.29 The discriminatory performance was re-
ported for the full study population and additionally for
subgroups of women by family history of breast cancer,
postmenopausal status, estrogen receptor status, mode of
detection, and women with above/below median mammo-
graphic density to assess the likelihood of cancermasking by
dense breast tissue. Tyrer-Cuzick risk scores were missing
because of incomplete survey responses in a subset of 233
women (124 cases and 109 noncases). For this reason, we
performed a sensitivity analysis of the aAUCs by comparing
the image-based risk and Tyrer-Cuzick risk models in
women with complete data. The proportions of women at
low, general, moderate, and high risk on the basis of 2-year

and 10-year risk scores were reported for the two riskmodels
using the NICE and USPSTF guidelines. Positive predictive
values (PPVs) were estimated with 95% CIs.30

Statistical analyses were performed using R 4.1.31 All tests
were two-sided at a significance level of 0.05.

RESULTS

Study Population

The case-cohort consisted of 8,604 women in the sub-
cohort and 2,028 incident breast cancers identified at the
5/2022 registry linkage (including 206 cases in the sub-
cohort) that were diagnosed after 3 months to 10 years after
study entry, Table 1. At baseline, the mean age was 56.62
(69.50) years for cases and 53.90 (69.87) years for the
subcohort. BMI was 24.88 and 25.25 for cases and for the
subcohort, respectively. Sixty-seven percent of cases and
55% of women in the subcohort were postmenopausal.
Family history of breast cancer was reported in 21% of
cases and 12% of the subcohort. Benign breast disease
was more common in the cases (31%) than in the sub-
cohort (22%). The mean absolute 2-year risk score at study
entry was 0.63% and 0.60% by the image-based model
and the Tyrer-Cuzick model, respectively, in the subcohort.
In cases, the corresponding 2-year risk scores were 1.21%
and 0.79%. The absolute 10-year Tyrer-Cuzick risk score
was approximately five-fold higher than the corresponding
Tyrer-Cuzick 2-year risks.

Breast Cancer and Follow-Up Time from Study Entry

The follow-up period from initial mammogram to breast
cancer diagnosis ranged from .3 months to 10 years and,
half of the events occurred within the first 5 years (Data
Supplement). After the 10-years follow-up, 62% of the
breast cancers were screen detected and 38% were
nonscreen detected; 86% of the cancers were estrogen
receptor (ER)–positive and 14% ER-negative; 86% of the
cancers were invasive and 14% in situ (Data Supplement).

Predictive Performance

The discriminatory performance of the image-based risk
model ranged from an aAUC of 0.74 (95% CI, 0.70 to 0.78)
after 1-year of follow-up to an aAUC of 0.65 (95% CI, 0.63
to 0.66) after 10 years of follow-up, Table 2, Figure 1. The
corresponding 1- and 10-year aAUCs for premenopausal
women were 0.69 (95% CI, 0.62 to 0.75) and 0.62
(95% CI, 0.60 to 0.65) and for postmenopausal women
0.76 (95% CI, 0.69 to 0.82) and 0.66 (95% CI, 0.64 to
0.67), respectively. The 1- and 10-year aAUCs in women
stratified by breast density above/below median were 0.69
(95% CI, 0.63 to 0.75) and 0.75 (95% CI, 0.65 to 0.83)
after 1 year and 0.64 (95% CI, 0.63 to 0.66) and 0.64
(95% CI, 0.62 to 0.66) after 10 years. The aAUCs for
women without FH ranged from 0.75 (95% CI, 0.70 to 0.80)
after 1 year to 0.66 (95% CI, 0.64 to 0.67) after 10 years,
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whereas the corresponding aAUCs for women with FH were
0.65 (95%CI, 0.53 to 0.75) and 0.62 (95%CI, 0.59 to 0.65).

The Tyrer-Cuzick risk performance aAUCs were 0.62
(95% CI, 0.56 to 0.67) and 0.60 (95% CI, 0.58 to 0.61)
after 1 and 10 years of follow-up, respectively (Table 2,
Fig 1). The aAUCs for women without family history ranged
from 0.61 (95% CI, 0.53 to 0.67) after 1 year to 0.58 (95%
CI, 0.56 to 0.59) after 10 years of follow-up. The corre-
sponding aAUCs for women with family history were sig-
nificantly higher of 0.52 (95% CI, 0.39 to 0.64) and 0.56
(95% CI, 0.53 to 0.60). Similar performances were ob-
served in a subgroup of 1,904 breast cancers and 8,483
women in the subcohort where the risk scores were
available for both risk models (Data Supplement).

When comparing aAUCs of the image-based risk model
to corresponding Tyrer-Cuzick aAUCs at 1, 2, 5, and
10 years of follow-up, the image-based risk model esti-
mates showed significantly higher aAUCs across the
follow-up periods in range 0.12 (P, .01) to 0.05 (P, .01;
Fig 1). The image-based risk model also showed signifi-
cantly higher aAUC in women with high mammographic
density and in women with no family history in the range of
1-10 years of follow-up (Table 2, Data Supplement). A
detailed description of OPERA performances is provided
in the Data Supplement.

Mode of Detection, Estrogen Receptor Status, and

Tumor Invasiveness

The discriminatory performances of the image-based risk
model in the short term showed aAUCs of $0.70 for all
breast cancer subtypes within 1-3 years of follow-up (Fig 2).
Symptomatic and ER-negative breast cancers showed the
highest point estimates in the short-term, aAUCs$0.75. In
the long-term, all subtypes showed aAUCs of $0.62 after
10 years of follow-up. Compared with the image-based
model, the Tyrer-Cuzick model showed significantly
lower aAUCs of #0.65 for symptomatic breast cancers in
the short-term and, lower aAUCs of #0.62 for ER-positive,
screen detected, and invasive breast cancers in the long-
term (P , .01) after adjustment for multiple comparison
(Data Supplement).

Risk Stratification and PPV

The proportion of breast cancers identified as high-risk
using the image-based risk model (20%) was significantly
larger than the corresponding proportion identified using
Tyrer-Cuzick (7.1%, P , .01; Fig 3). However, the
image-based risk model categorized 6.3% of the sub-
cohort as high-risk; the corresponding number for the
Tyrer-Cuzick model was 2.4%. Using the NICE guidelines,
image-based risk showed approximately 20-fold risk
stratification comparing the women at high risk with the

TABLE 1. Study Participant Characteristics at Study Entry Including (N 5 10,426) Study Participants With up to 10 Years of Follow-Up
Characteristic Subcohorta (N 5 8,604) Casesa (N 5 2,028) P b

Age, years 53.90 (9.87) 56.62 (9.50) ,.01

BMI, mean (SD) 25.25 (4.33) 24.88 (5.62) .30

Postmenopausal, n/N (%) 4,706/8,604 (55) 1,366/2,028 (67) ,.01

Family history of breast cancer, n/N (%) ,.01

No family history 7,229/8,237 (88) 1,507/1,896 (79)

First-degree relative age ,50 years 261/8,237 (3.2) 96/1,896 (5.1)

First-degree relative age $50 years 747/8,237 (9.1) 293/1,896 (15)

Breast cancer in 2nd/3rd-degree relative, n/N (%) 762/5,723 (13) 189/1,216 (16) .04

Age at menarche, years, mean (SD) 13.06 (1.48) 13.11 (1.45) .17

Age at first childbirth, years, mean (SD) 27.17 (5.29) 27.12 (5.20) .76

Current use of HRT,c n/N (%) 319/8,103 (3.9) 124/1,849 (6.7) ,.01

Benign breast disease, n/N (%) 1,865/8,378 (22) 591/1,878 (31) ,.01

Percent mammographic density, mean (SD) 25.41 (19.43) 28.10 (19.45) ,.01

Mammographic density above median, n/N (%) 4,213/8,604 (49) 1,108/2,028 (55) ,.01

Image risk model, 2-year risk score, mean (SD) 0.63 (0.96) 1.21 (1.86) ,.01

Tyrer-Cuzick, 2-year risk score, mean (SD) 0.60 (0.40) 0.79 (0.53) ,.01

Tyrer-Cuzick 10-year risk score, mean (SD) 3.08 (1.86) 3.94 (2.50) ,.01

Abbreviations: HRT, hormone replacement therapy; SD, standard deviation.
aSubcohort of noncases and the 206 incident cancers diagnosed in the subcohort. For cases, all incident cases outside and within the subcohort are

included.
bWilcoxon rank sum test; Pearson’s x2 test.
cHormone replacement therapy.
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TABLE 2. Discriminatory Performance After Adjustment for Age of the Image-Based Risk Model and the Tyrer-Cuzick v8 Risk Model in Subgroups of Women by Menopausal Status, Mammographic
Density, and Family History of Breast Cancer at Study Entry

Group of Women
1 Year,

AUC (95% CI)
2 Years,

AUC (95% CI)
3 Years,

AUC (95% CI)
4 Years,

AUC (95% CI)
5 Years,

AUC (95% CI)
6 Years,

AUC (95% CI)
8 Years,

AUC (95% CI)
10 Years,

AUC (95% CI)

Image-based model

All women 0.74 (0.70 to 0.78) 0.73 (0.70 to 0.75) 0.72 (0.70 to 0.74) 0.70 (0.68 to 0.72) 0.69 (0.67 to 0.71) 0.68 (0.66 to 0.69) 0.65 (0.64 to 0.67) 0.65 (0.63 to 0.66)

Postmenopausal 0.76 (0.69 to 0.82) 0.72 (0.69 to 0.75) 0.72 (0.69 to 0.75) 0.70 (0.68 to 0.73) 0.69 (0.67 to 0.71) 0.68 (0.66 to 0.70) 0.66 (0.64 to 0.68) 0.66 (0.64 to 0.67)

Premenopausal 0.69 (0.62 to 0.75) 0.73 (0.69 to 0.78) 0.72 (0.67 to 0.76) 0.68 (0.65 to 0.72) 0.68 (0.65 to 0.71) 0.66 (0.63 to 0.69) 0.63 (0.60 to 0.65) 0.62 (0.60 to 0.65)

Low breast densitya 0.75 (0.65 to 0.83) 0.72 (0.68 to 0.75) 0.71 (0.67 to 0.74) 0.68 (0.65 to 0.71) 0.67 (0.64 to 0.70) 0.66 (0.64 to 0.69) 0.64 (0.62 to 0.67) 0.64 (0.62 to 0.66)

High breast densitya 0.69 (0.63 to 0.75) 0.73 (0.70 to 0.76) 0.73 (0.69 to 0.76) 0.70 (0.67 to 0.72) 0.69 (0.67 to 0.72) 0.68 (0.66 to 0.70) 0.65 (0.63 to 0.67) 0.64 (0.63 to 0.66)

No family historyb 0.75 (0.70 to 0.80) 0.74 (0.71 to 0.77) 0.74 (0.71 to 0.77) 0.72 (0.69 to 0.74) 0.70 (0.68 to 0.72) 0.69 (0.67 to 0.71) 0.66 (0.65 to 0.68) 0.66 (0.64 to 0.67)

Family historyb 0.65 (0.53 to 0.75) 0.67 (0.62 to 0.73) 0.67 (0.62 to 0.72) 0.65 (0.60 to 0.69) 0.65 (0.61 to 0.68) 0.63 (0.59 to 0.67) 0.62 (0.58 to 0.65) 0.62 (0.59 to 0.65)

Tyrer-Cuzickc

All women 0.62 (0.56 to 0.67) 0.62 (0.59 to 0.65) 0.62 (0.59 to 0.64) 0.62 (0.59 to 0.64) 0.60 (0.58 to 0.62) 0.60 (0.58 to 0.62) 0.59 (0.58 to 0.61) 0.60 (0.58 to 0.61)

Postmenopausal 0.66 (0.58 to 0.75) 0.64 (0.61 to 0.68) 0.63 (0.6 to 0.66) 0.64 (0.61 to 0.66) 0.62 (0.60 to 0.64) 0.63 (0.60 to 0.65) 0.61 (0.59 to 0.63) 0.62 (0.60 to 0.63)

Premenopausal 0.61 (0.52 to 0.68) 0.58 (0.52 to 0.65) 0.60 (0.54 to 0.65) 0.58 (0.54 to 0.62) 0.57 (0.53 to 0.61) 0.56 (0.53 to 0.60) 0.55 (0.53 to 0.58) 0.56 (0.54 to 0.59)

Low breast densitya 0.64 (0.52 to 0.74) 0.64 (0.59 to 0.68) 0.63 (0.59 to 0.66) 0.62 (0.59 to 0.65) 0.61 (0.58 to 0.64) 0.61 (0.58 to 0.63) 0.59 (0.57 to 0.62) 0.60 (0.58 to 0.62)

High breast densitya 0.58 (0.50 to 0.65) 0.58 (0.53 to 0.62) 0.57 (0.53 to 0.61) 0.57 (0.54 to 0.60) 0.56 (0.54 to 0.59) 0.56 (0.54 to 0.59) 0.56 (0.53 to 0.58) 0.56 (0.54 to 0.58)

No family historyb 0.61 (0.53 to 0.67) 0.60 (0.57 to 0.64) 0.59 (0.56 to 0.62) 0.60 (0.57 to 0.62) 0.58 (0.56 to 0.60) 0.58 (0.56 to 0.60) 0.57 (0.55 to 0.59) 0.58 (0.56 to 0.59)

Family historyb 0.52 (0.39 to 0.64) 0.58 (0.52 to 0.64) 0.59 (0.54 to 0.64) 0.59 (0.54 to 0.63) 0.56 (0.52 to 0.61) 0.56 (0.52 to 0.60) 0.55 (0.52 to 0.59) 0.56 (0.53 to 0.60)

NOTE. Multiple estimations were performed for breast cancers diagnosed within 10 years after study entry.
aLow/high mammographic density was defined as below/above median mammographic density in the study sample.
bFirst-degree relative with breast cancer (mother, sister, and child).
cTyrer-Cuzick v8.
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women at low risk. In comparison, the corresponding risk
stratification for Tyrer-Cuzick was approximately 14-fold.
A similar risk stratification was observed when 2-year risk
was predicted using Tyrer-Cuzick (Data Supplement).
When comparing high-risk women with women at general
risk using the USPSTF risk categorization, the image-based
risk stratification was approximately 11-fold compared with
approximately 7-fold for Tyrer-Cuzick (Data Supplement).

The PPVs ranged from 5.4% (95% CI, 5.2 to 5.6) to 5.5%
(95% CI, 5.3 to 5.7) across 1%-20% of women at the
highest risk using the image-based risk model (Data
Supplement). The corresponding PPVs for Tyrer-Cuzick
were significantly lower ranging from 4.4 (95% CI, 4.2 to
4.5) to 5.0 (95% CI, 4.8 to 5.1), P , .01.

DISCUSSION

We investigated the performance of an image-based AI
short-term risk model in a 10-year follow-up study and
compared it with a traditional, lifestyle/familial-based risk
model. The image-based risk model showed significantly
better discriminatory performance in the 10-year follow-up
period with a mean follow-up time of 5 years. In addition,

the image-based model showed a significant advantage
over the lifestyle/familial-based model in the short-term for
women with symptomatic breast cancers and in the long-
term for women with ER-positive cancer, screen detected,
and invasive breast cancers.

Image-based models have shown to perform well in the
short term and are designed to improve early detection
compared with standard-of-care screening practices.2,3,9

Short-term risk models allow for identifying women who
may benefit from supplemental screening or shorter
screening intervals to identify breast cancers earlier. If the
time to diagnosis is shortened, outcomes could improve
significantly affecting health economy because of de-
creases in treatment costs.32,33

At the same time, long-term risk assessment is needed in
primary prevention of breast cancer.34,35 Considering that
the tumor development time for screen or clinically de-
tected cancer is estimated to be 5-20 years,36 a 10-year or
lifetime risk projection is reasonable. Guidelines for primary
prevention are also available to recommend lifestyle
changes and medical intervention.14,37 Novel approaches
have also been suggested where endocrine medical in-
terventions could reduce mammographic dense tissue and
improve screening sensitivity and, therefore, outcomes.38

Clinical guidelines such as the NICE and USPSTF support
the use of lifestyle/familial-based and genetic risk models for
supplemental screening and risk-reducing intervention.16,19

There may be a significant performance gain with the in-
corporation of image-based data beyond breast density to
refine risk assessment, and investigations should, therefore,
be conducted to expand guidelines to incorporate such
newer, image-based risk tools.

In the United States, approximately 12% of women
screened have a lifetime risk of $20% and are eligible for
supplemental screening with breast MRI.39 Approximately
39% of cancers could be captured by identifying the high-
risk group using the Tyrer-Cuzick risk model.40 On the basis
of the 10-year follow-up in our Swedish study, 2.4% of the
women were at high short-term risk using Tyrer-Cuzick
capturing 7.1% of the breast cancers. In comparison, the
image-based risk model using data beyond just breast
density identified 6.3% of women at high risk, capturing
20% of breast cancers. In Sweden, risk assessment is not
performed for the screening population. When considering
a risk-stratified screening approach, potential risks for
adding clinical follow-up and potentially, additional inter-
ventions at a large scale require further investigation.

Although the image-based risk model predicts a
higher proportion of breast cancers compared with the
lifestyle/familial-based risk model, it could be that sub-
groups of women are captured by the lifestyle/familial-
based model only. We showed that when stratifying women
on family history of breast cancer, menopausal status,
women with high versus low density, and breast cancer ER
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status, mode of detection, and invasiveness, the image-
based approach showed significantly higher or similar
discriminatory performance compared with the lifestyle/

familial-based risk assessment approach throughout the
10-year follow-up. We observed a reduced discriminatory
performance in women with a family history of breast cancer
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for the image-based and Tyrer-Cuzick risk models, which
warrants further investigation.

We observed that the image-based risk tool performed with
similar risk stratification performance in women with low and
highmammographic densities. In standard of care, screening
sensitivity for women with extremely dense breasts is ap-
proximately 50% compared with approximately 90% in
women with almost entirely fatty breasts.41,42 Therefore,
the challenging radiological task of detecting a tumor
masked by dense tissue could be reduced by using an
image-based risk tool for identifying women who benefit
from supplemental screening following a negative or
benign screen.43

The overall discriminatory performance decreased across
the 1-10-year follow-up by 9% and 2% using image-based

and Tyrer-Cuzick risk models, respectively, resulted in the
image-based model demonstrating a higher performance
in the range of 12% to 5%.

Our study has several limitations. We investigated the
model performance in a Swedish large-scale prospec-
tive screening population where the vast majority of
women were White, attending biennial screening using
2D mammography (GE, Philips, Sectra, Siemens, Fuji
machines) with no additional supplemental screening, a
recall rate of approximately 3%, and a cancer detection
rate of approximately 5/1,000 examinations.44 Further
studies are needed to investigate the external validity of
our findings in other screening settings. Our effect es-
timates using the Tyrer-Cuzick model were affected by
missing risk exposure data, including information on
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2nd and 3rd relatives with breast cancer. This was likely
nondifferential between cases and noncases in this
prospective data collection. In our study, we examined
the image-based only model of our risk model.3 Further
studies are needed to study the addition of lifestyle and
familial risk factors, as well as genetic determinants to
the image-based risk model.

In conclusion, an image-based risk model developed for
short-term risk to identify women who may benefit from
supplemental screening can also be used to assess long-
term risk for identifying women who may benefit from
primary prevention. The image-based model showed better
discriminatory accuracy for long-term risk assessment than
the clinical Tyrer-Cuzick v8 model.
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