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Abstract

The ability to automatically estimate the pose of non-human primates as they move through 

the world is important for several subfields in biology and biomedicine. Inspired by the recent 

success of computer vision models enabled by benchmark challenges (e.g., object detection), 

we propose a new benchmark challenge called OpenMonkeyChallenge that facilitates collective 

community efforts through an annual competition to build generalizable non-human primate pose 

estimation models. To host the benchmark challenge, we provide a new public dataset consisting 

of 111,529 annotated (17 body landmarks) photographs of non-human primates in naturalistic 

contexts obtained from various sources including the Internet, three National Primate Research 

Centers, and the Minnesota Zoo. Such annotated datasets will be used for the training and testing 

datasets to develop generalizable models with standardized evaluation metrics. We demonstrate the 

effectiveness of our dataset quantitatively by comparing it with existing datasets based on seven 

state-of-the-art pose estimation models.
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1 Introduction

Recent years have seen great advances in systems that can automatically detect major 

landmarks in moving animals without fiducial markers, that is, pose (Mathis & Mathis, 

2020; Dunn et al., 2021; Wiltschko et al., 2015; Karashchuk et al., 2020; Günel et al., 2019). 

Such pose estimation systems have greatly benefited research in fields that study the tracked 

species (e.g., rodents, flies, and fishes). However, the ability to estimate the pose of non-

human primates has lagged, rendering the primate order a major outstanding problem in the 

field (Bala et al., 2020; Hayden et al., 2021). At the same time, non-human primates remain 

of great interest in biomedicine and related fields, including in neuroscience and psychology, 

as well as in anthropology, epidemiology, and ecology. Automated pose estimation can 

also benefit animal welfare programs, veterinary medical practice and, indeed, conservation 

projects (Knaebe et al., 2022).

Estimating pose of non-human primates (NHPs) is particularly challenging due to their 

homogeneous body texture and exponentially large pose configurations (Bala et al., 

2020). Two major innovations are needed to solve the pose estimation problem in NHPs. 

(1) Algorithmic innovation: pose models are expected to learn a generalizable visual 

representation that encodes the complex relationship between the visual appearance and 

spatial landmarks, which allows detecting poses in images with diverse primate identities, 

species, scenes, backgrounds, and poses in the wild environment. Existing deep learning 

models including convolutional pose machine (Wei et al., 2016), stacked hourglass model 

(Newell et al., 2016), DeeperCut (Insafutdinov et al., 2016), and AlphaPose (Fang et 

al., 2017) incorporate a flexible representation with a large capacity, which have shown 

strong generalization on human subjects. However, these models are not applicable to the 

image samples of NHPs from the out-of-training-distribution due to their characteristics 

(homogeneous appearance and complex pose). (2) Data innovation: the pose estimation 

models learn the visual representation from a large annotated dataset that specifies the 

locations of landmarks. Existing publicly available datasets including OpenMonkeyPose 

(200K multiview macaque images in a specialized laboratory environment) (Bala et al., 

2020) and MacaquePose (13K in-the-wild macaque images) (Labuguen et al., 2021) are 

important resources for the development of pose estimation algorithms, and as such, 

extend the boundary of pose tracking performance of NHPs. However, due to limited 

data diversity (appearance, pose, viewpoint, environment, and species), existing datasets are 

currently insufficient for learning generalizable estimation models (See Figure 8 for model 

generalization across datasets).

Here we describe a novel dataset consisting of 111,529 images of NHPs in natural 

contexts with 17 landmark annotations. These datasets are obtained from various sources 

including the Internet, three National Primate Research Centers, and the Minnesota Zoo. 

Our motivation for developing this dataset includes inspiration from the recent success 

of computer vision models for human pose estimation (von Marcard et al., 2018), object 

detection (Lin et al., 2014), and visual question answering (Antol et al., 2015), enabled 

by standard benchmark challenges. For instance, the COCO benchmark challenges on 

object detection, segmentation, and localization have facilitated collective community effort 

through an annual competition, which in turn has been a driving force to advance computer 
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vision models (Lin et al., 2014). In these domains, such datasets have served as a common 

comparison for friendly competitions, as a goal for experimentation, and as a benchmark to 

evaluate innovations. At the same time, such datasets tend to be difficult and expensive to 

generate, so sharing them makes economic sense for the field. Making them public greatly 

lowers the barriers to entry for new teams with innovative ideas.

With our dataset, we present a new benchmark challenge called OpenMonkeyChallenge 
for NHP pose estimation (http://openmonkeychallenge.com). It is an open and ongoing 

competition where the performance of each model is measured by the standard evaluation 

metrics (MPJPE (Iskakov et al., 2019) and PCK (Cao et al., 2019)). We leverage our 

unprecedentedly large annotated dataset, which includes diverse poses, species, appearances, 

and scenes as shown in Fig. 1. We split the dataset into the training and testing datasets 

where the testing dataset is used to evaluate the performance of competing models. We 

demonstrate that our dataset addresses the limitation on data diversity in the existing 

datasets. Specifically, we show the effectiveness of our dataset quantitatively by comparing 

it with existing datasets (e.g., OpenMonkeyPose and MacaquePose) based on state-of-the-art 

pose estimation models.

We organize this paper in the following way. We introduce the OpenMonkeyChallenge 

dataset, including data format, distribution, collection and annotation method in Sect. 3. 

Based on the dataset, we formulate the evaluation protocol in Sect. 4. We validate the 

usefulness of our dataset by comparing with existing datasets including MacaquePose 

(Labuguen et al., 2021) and OpenMonkeyPose (Bala et al., 2020), and study the estimation 

performance of existing models in Sect. 5.

2 Related Work

OpenMonkeyChallenge aims to advance non-human primate pose estimation through 

community efforts facilitated by a benchmark challenge.

2.1 Animal Pose Estimation

Understanding behaviors of animals is one of the main goals of multiple research 

domains including medicine, neuroscience, biology, and animal husbandry. For instance, 

ethogramming (Sade, 1973) is a major tool in neuroscience to categorize behavioral states 

and their transitions, e.g., sitting, standing, and running. Standard ethogramming involves 

manual annotations by experienced researchers. It is a costly and labor-intensive process, 

which limits the repeatability and makes it difficult to scale up. The difficulty of animal 

pose estimation contrasts sharply with human pose estimation, in which computer vision 

enables pose estimation at massive scale in a fully automated fashion. There exists various 

detection frameworks such as convolutional pose machine (Wei et al., 2016), hourglass 

network (Newell et al., 2016), DeepCut / DeeperCut (Pishchulin et al., 2016; Insafutdinov 

et al., 2016), Openpose (Cao et al., 2019), DeepPose (Toshev & Szegedy, 2014), Densepose 

(Güler et al., 2018), recurrent human pose (Belagiannis & Zisserman, 2017), and deep fully-

connected part-based models (de Bem et al., 2018), that have improved the performance 

boundary of human pose estimation by leveraging large-scale benchmark datasets. Recently, 

equivalent CNN models have been designed to estimate animal poses. DeepLabCut (Mathis 
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et al., 2018) retargeted a convolutional neural network (CNN) trained from a generic image 

recognition task to detect pose of animals given a partially labeled dataset. Due to the strong 

generalizability of CNNs, unlabeled images can be successfully annotated. LEAP (Pereira 

et al., 2018) took a new step by designing an efficient CNN architecture that can be readily 

integrated in a realtime graphical user interface. This allows users to easily interact with 

the CNN, facilitating semi-automatic pose annotation. These approaches are agnostic to the 

animal kinematic structure, which allows estimating poses of diverse species such as flies, 

cheetahs, fishes, and mice. However, due to the nature of supervised learning, it still requires 

substantial amount of data to annotate and shows inferior performance when applying 

to a new target video. Self-supervised learning can be a viable solution. For instance, 

multiview self-supervision (Günel et al., 2019; Yao et al., 2019; Bala et al., 2020) that uses 

multiview geometry to constraint the pose, which allows using unlabeled data for training. 

Notably, OpenMonkeyStudio (Bala et al., 2020) designed a large multi-camera system called 

OpenMonkeyStudio to track dexterous non-human primates by multiview bootstrapping.

2.2 Animal and Primate Datasets

What makes human pose detection in computer vision different from that of other animals 

is the existence of a large annotated dataset. In the human domain, the datasets such as 

MPII (Andriluka et al., 2014), COCO (Lin et al., 2014), FLIC (Sapp & Taskar, 2013), and 

PoseTrack (Iqbal et al., 2017; Andriluka et al., 2018), HiEve (Lin et al., 2020) constitute 

millions of images across diverse poses, appearance, occlusion, and background. This allows 

learning a CNN pose estimator that can be readily applicable to a new pose and scene. 

Further, a benchmark challenge such as the COCO keypoint detection challenge facilitates 

community effort to improve the detector performance every year. We summarize the 

different datasets in Table 1. Similar to human pose estimation, there exists animal pose 

datasets with specific target objectives, such as benchmarks for Amur Tiger re-identification 

(Li et al., 2020), and animal behavior understanding (Ng et al., 2022). However, due 

to the diversity of species in the animal kingdom, size of animal datasets are lacking 

in comparison to that of human datasets. Since non-human primates play a pivotal role 

in biomedicine and related fields, including neuroscience, psychology, anthropology and 

ecology, the paper inherently focuses on non-human primate pose estimation. Existing 

datasets, in particular, for non-human primates, are rather small and domain specific, 

which precludes learning a generalizable CNN model. For example, OpenMonkeyStudio 

(Bala et al., 2020) included 200K multiview images that are captured from controlled and 

specialized laboratory conditions, which is not generalizable to primates in natural habitats. 

The MacaquePose dataset (Labuguen et al., 2021) includes 13K annotated images from the 

Internet that span diverse environments and poses. However, it is limited to one species. 

This paper presents a new large dataset of multiple primates including 26 species in natural 

habitats and formulates a benchmark challenge to advance primate tracking in the wild.

3 OpenMonkeyChallenge Benchmark Dataset

We collected 111,529 images of 26 species of primates (6 New World monkeys, 14 Old 

World monkeys, and 6 apes), including Japanese macaques, chimpanzees, and gorillas from 

(1) internet images and videos, such as Flickr and YouTube, (2) photographs of multiple 
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species of primates from three National Primate Research Centers, and (3) multiview videos 

of 27 Japanese macaques in the Minnesota Zoo (Fig. 2b and d). For each photograph, for 

example, in Fig. 1, we cropped the region of interest such that each cropped image contains 

at least one primate. We ensured that all cropped images have a higher resolution than 

500×500 pixels.

We identify the region of interest (i.e., bounding box detection) by bootstrapping with a 

weak monkey detector (Redmon & Farhadi, 2018) followed up by manual refinement and 

use a commercial annotation service (Hive AI) to manually annotate the 17 landmarks. The 

17 landmarks together comprise a pose. Our landmarks include Nose, Left eye, Right eye, 

Head, Neck, Left shoulder, Left elbow, Left wrist, Right shoulder, Right elbow, Right wrist, 

Hip, Left knee, Left ankle, Right knee, Right ankle, and Tail. Each data instance is made of a 

triplet, image, species, pose as shown in Fig. 2a.

We split the benchmark dataset into training (66,917 images, 60%), validation (22,306 

images, 20%), and testing (22,306 images, 20%) datasets. We minimize visually similar 

image instances across splits by categorizing them using the time of capture, video and 

camera identification numbers, and photographers. Fig. 2c illustrates the data distribution 

across species, and each species includes more than 100 annotated images. We also visualize 

the distribution of bounding box sizes in Fig. 3. The bounding box sizes indicate the 

diagonal length of the bounding boxes for each primate instance in the image.

Data Statistics

The OpenMonkeyChallenge dataset contains a diversity of species, poses, and appearances. 

We use Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) to 

reduce the high dimensional pose ℝ34 for 17 landmarks) into two dimensions as shown in 

Fig. 4. To generate a spatially meaningful distribution, we normalize the pose coordinates. 

Specifically, the coordinates of each pose (17 landmarks) are normalized by centering the 

root landmark (hip joint), i.e., the landmark coordinate is relative with respect to the hip 

joint. These relative coordinates are normalized by the size of the bounding box to account 

for different sizes of images. Further, we align the orientation such that all poses have the 

same facing directions. This results in coherent clusters with poses.

The primates are classified into three types based on their families: New World monkeys, 

Old World monkeys, and apes. Poses are distributed across species, which are highly 

correlated with the semantically meaningful poses such as sitting, standing, and climbing. 

For each cluster, we visualize average images by aligning the poses. Overall, we find that the 

majority of data consists of sitting poses from a variety of views.

The clustering results also highlight the difference in locomotion patterns among primate 

families. For example, Old World monkeys (orange) heavily outnumber the other two 

families and dominate most of the clusters, and a few clusters of which the average pose is 

vertical climbing are by large composed of the apes (green). Other actions, such as sitting, 

walking, and standing, are common in all the primate families.
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3.1 Data Collection Method

We collected images from three sources: internet images and videos, photographs from 

National Primate Research Centers, and multiview videos from the Minnesota Zoo.

Internet images—Approximately 59% of our dataset were collected from the Internet 

through Image and video search engines. For instance, we used the Flickr API to scrape 

the list of image URLs and YouTube search engine to find relevant videos using species 

name keywords. We ensure visual diversity (shapes, poses, viewpoints, sizes, colors, and 

environments) and quality (image resolution, blurriness, lighting, and occlusion) of the 

scraped data via manual inspection. For the common species such as rhesus macaque, 

mandrill, and gorilla, image searches were sufficient. For the rarer species such as marmoset, 

we leveraged the video search features and extracted image frames from the videos. 

Not only does this approach allow us to obtain more images of the rarer species, but 

we also collected images that are less iconic than those from search engines. We hired 

two annotators for image and video searches. After image collections, we annotated the 

bounding boxes that contain the primate instances. For a subset of internet images, we do 

not own the copyright of the images. We specify the terms and conditions of use in the 

website.

Photographs from national primate centers—We made use of high quality images 

of primates photographed by staff at two National Primate Centers: Emory National Primate 

Research Center and the Oregon National Primate Research Center. The photographers 

were asked to capture primate images from diverse viewpoints and poses at high resolution 

(>2K pixel resolution) and often made use of a tele-zoom lens. 10,500 images are captured 

from the professional photographers across the primate centers. Further, we collected videos 

from California National Primate Research Center. Still images were extracted from a video 

library developed at the California National Primate Research Center (Machado et al., 2011; 

Bliss-Moreau et al., 2013). Video footage of monkeys behaving was recorded at the center’s 

large 0.5 acre outdoor enclosures and from images of monkeys in the laboratory. Videos 

were edited to be 30 s in duration and included a range of behaviors, including aggression, 

grooming, feeding, resting, and affective displays. Still images were captured from the 

videos for use in this project.

Multiview videos from the Minnesota Zoo—We used video cameras to capture video 

images of a large troop (n = 27 individuals) of snow monkeys (Macaca fuscata) at the 

Minnesota Zoo (Apple Valley, MN) for a long duration (1 week). Unlike the images taken 

by photographers who precisely control focal length and viewpoint to ensure high resolution 

images, these video cameras passively observe the scene. The monkeys inhabit a large arena 

that facilitates natural social interactions among them. It is a large open space (bigger than 

600 m2), which leads to a new challenge as monkeys appear small in images (10–50 pixel 

size) if a wide field of view lens is used to cover the large area. We address this challenge 

by using a multi-camera system made of 20–30 cameras where each camera observes a 

small area (up to 5×5m) using a narrow field of view (long or tele-zoom focal length). We 

identified the regions of the enclosure that frequently involve diverse activities (e.g., trails, 

ponds, and playgrounds) to maximize the monkey appearance in images. Because videos 
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were multiview videos, we used a monkey bounding box detection algorithm to identify 

the monkeys and then refined these boxes manually. We collected the image data from two 

seasons (winter and spring) to maximize diversity of background visual appearance (Fig. 5).

3.2 Semi-automatic Annotation

Identifying images that contain primate instances from videos and annotating their 

landmarks are prohibitively labor intensive tasks. For instance, fewer than 2% of the frames 

in the videos from narrow field of view (FOV) cameras used in the zoo data contain primate 

instances. Watching every frame in videos to annotate bounding boxes for primate instances 

is time-consuming, e.g., one day zoo videos is equivalent to approximately 5000 hours 

(~6,000,000 images) of labor. Instead, we leverage an iterative bootstrapping approach to 

address the bounding box annotation task.

Bounding box proposal—We trained a weak primate detector that can predict the 

bounding box of a primate instance given an image. The bounding box (left-top corner 

coordinate, width, and height) of 3000 internet images are manually annotated, and used 

to train a YOLOv3 model (Redmon & Farhadi, 2018) that can recognize primate bounding 

boxes. We use a lower threshold for bounding box detection such that the false positives 

are slightly more common than the false negatives. This bounding box prediction automates 

identifying image frames that contain primate instances, so that a majority of image frames 

without primates can be pruned, which significantly reduces the required labor. Further, it 

provides bounding box candidates for each image.

Bounding box refinement—Given the bounding box proposals, we designed a graphic 

user interface to visualize and refine bounding boxes as shown in Fig. 6. The interface shows 

an image with bounding box candidates. The annotators are asked to find false positives and 

redundant poses from the previous frames (green bounding box with red cross). Further, they 

can add bounding boxes (red bounding boxes). Human helpers can perform this task in 5~15 

seconds per image. With this manual refinement, we ensure all cropped images include at 

least one primate. Once we have the refined bounding boxes, we incrementally increase the 

size of data to re-train the bounding box detection model to adapt to the target environments.

Landmark annotation—Given the bounding box annotations, we used a commercial 

annotation service (Hive AI) to annotate 17 landmarks from cropped images. When the 

landmarks are occluded, the annotators are instructed to specify the best guess location and 

to indicate visibility.

Every one of the photographs that were annotated professionally was checked by hand 

by two experts who have a background in neuroscience or primatology. Photographs for 

which there was doubt about accuracy were removed from the dataset, or else in some 

cases returned to the annotation service for re-annotation. We estimate that the proportion of 

photographs that failed this test was about 1%.
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4 Benchmark Evaluation Protocol

The annotations for the training and validation datasets are publicly available while that 

for the testing dataset is hidden. We have established the evaluation server to automatically 

evaluate the performance of the competing models on the testing dataset and maintain 

the leader. Specifically, the species landmark detection result on training/validation/testing 

datasets is uploaded to the evaluation server in a pre-defined file format, and the evaluation 

result is generated by the server. Users are asked to post their results in the leaderboard 

that sorts the performance based on three standard keypoint metrics: mean per joint position 

error (MPJPE), probability of correct keypoint (PCK) metric at error tolerance, and average 

precision (AP) based on object keypoint similarity (OKS).

Mean per joint position error (MPJPE) (Iskakov et al., 2019) measures normalized error 

between the detection and ground truth for each landmark (the smaller, the better):

MPJPEi = 1
J ∑

j = 1

J xij − xij
W

where MPJPEi is the MPJPE for the ith landmark, J is the number of image instances, 

xij ∈ ℝ2 is the ith predicted landmark in the jth image, xij ∈ ℝ2 is its ground truth location, 

and W is the width of the bounding box. Note that MPJPE measures the normalized 

error relative to the bounding box size W, e.g., 0.1 MPJPE for 500×500 bounding box 

corresponds to 50 pixel error.

Probability of correct keypoint (PCK) (Cao et al., 2019) is defined by the detection accuracy 

given error tolerance (the bigger, the better):

PCK@ϵ = 1
17J ∑

j = 1

J
∑

i = 1

17
δ xij − xij

W < ϵ

where δ(·) is an indicator function that outputs 1 if the statement is true and zero otherwise. 

ϵ is the spatial tolerance for correct detection. Note that PCK measures the detection 

accuracy given the normalized tolerance with respect to the bounding box width, e.g., 

PCK@0.2 with 200 pixel bounding box size refers to the detection accuracy where the 

detection with the error smaller than 40 pixels is considered as a correct detection.

For the sake of rigor, we also provide results for different variations of PCK. The 

formulation for the same can be found as below,

PCKd@ϵ = 1
17J ∑

j = 1

J
∑

i = 1

17
δ xij − xij

d < ϵ

Note that PCKd measures the detection accuracy with respect to the diagonal length of 

the bounding box (d). PCKh measures the detection accuracy with respect to the head size 
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(hs). For the purpose of this paper, hs is calculated using the ground truth head and neck 

landmarks.

PCKh@ϵ= 1
17J ∑

j = 1

J
∑

i = 1

17
δ xij − xij

ℎs < ϵ

Average precision (AP) measures detection precision (the bigger, the better):

AP@ϵ = 1
17J ∑

j = 1

J
∑

i = 1

17
δ OKSij ≥ ϵ

where OKS measures keypoint similarity (Lin et al., 2014):

OKSij = exp − xij − xij
2

2W 2ki
2

where OKSi j is the keypoint similarity of the jth image of the ith landmark. ki is the ith 

landmark relative tolerance. Unlike PCK, OKS measures per landmark accuracy by taking 

into account per landmark variance ki (visual ambiguity of landmarks), e.g., eye is visually 

less ambiguous than hip. We define ki based on COCO keypoint challenge and augment the 

tail landmark such that ktail = kwrist.

We created a website http://openmonkeychallenge.com/ that shares the dataset and 

benchmark challenges. The training/validation/testing datasets can be downloaded from the 

website. The annotations are available for the training and validation datasets. The testing 

results (landmark detection on the testing data) from the developed models can be submitted 

to the evaluation server in JSON file format:

{\image_id” = int,

\file_name” = str,

\landmarks” = [x1,y1,…,x17,y17]}

where xi and yi are x, y coordinates of the ith landmark. The evaluation server will return 

the performance on the testing data using MPJPE, PCK, and AP metrics. The evaluation 

results will be posted in the leaderboard that sorts the algorithms based on the performance. 

Optionally, the users can opt out. The website includes step-by-step description of the 

evaluation process, file format, and visualization code.

5 Dataset Evaluation

We evaluate OpenMonkeyChallenge data in three aspects: (1) generalization across datasets 

via cross-dataset evaluation; (2) data performance gap between humans and primates; and 

(3) baseline performance across state-of-the-art pose estimation.
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5.1 Cross-dataset Evaluation

To evaluate the generalizability of our dataset, we conduct a cross-dataset evaluation 

with OpenMonkeyPose (Bala et al., 2020) and MacaquePose (Labuguen et al., 2021). 

OpenMonkeyPose (Bala et al., 2020) consists of 195,228 annotated images simultaneously 

captured by 62 precisely arranged high-resolution video cameras. The dataset involves 

inanimate objects (barrels, ropes, feeding stations), two background colors (beige and 

chroma-key green), and four rhesus macaque subjects varying in size and age (5.5–12 kg). 

MacaquePose (Labuguen et al., 2021), a dataset with more than 13,083 images of macaque, 

is collected by searching for images with a ‘macaque’ tag in Google Open Images and 

captured in zoos and the Primate Research Institute of Kyoto University.

We split each dataset into training (60%), validation (20%), and testing (20%) sets. We 

train a convolutional pose machine (CPM) (Wei et al., 2016) using the training data from 

one of the datasets with spatial data augmentation (translation and rotation) until it starts 

to overfit based on the model performance on the validation data, and test that model on 

the testing data from each dataset. Fig. 7 summarizes the performance in MPJPE. The 

CPM model trained by the OpenMonkeyChallenge dataset achieves the lowest MPJPE 

on the OpenMonkeyChallenge and MacaquePose (Labuguen et al., 2021) test datasets, 

which indicates that the diversity and generalizability of our training dataset (outperforming 

MacaquePose own testing data). For the OpenMonkeyPose testing dataset, it achieves the 

second best close to the OpenMonkeyPose. This is mainly caused by the domain difference: 

the images of OpenMonkeyStudio were captured by a controlled lab environment that has 

a homogeneous background and monkey texture. For the same reason, this model has poor 

performance on the other two datasets due to its low generalizability.

Each dataset has its own bias, i.e., it is expected to perform best on the model trained on 

its own training dataset, e.g., MP trained model on MP testing data. Therefore, for fair 

comparison, we employ the cross data evaluation, e.g., both MP and OMC trained models 

on OMP testing data, while unfair comparison would be comparing the performance of cross 

evaluation with that of self evaluation, e.g., comparing the performance of OMC trained 

model on MP testing data with that of MP trained model on MP testing data. Given the 

comparison protocol, the model trained on OMC significantly outperforms on other datasets 

as shown in Fig. 8: (1) Compared to the model trained on MP, the OMC trained model 

outperforms with 72% error reduction on the OMP dataset; (2) Compared to the model 

trained on OMP, the OMC trained model outperforms with 25% error reduction on the MP 

dataset.

The model trained on OMC performs competitively: (3) OMC trained model when tested 

on MP testing dataset results in 4% error reduction compared to MP trained model tested 

on MP dataset; (4) Compared to the model trained on OMP, the OMC trained model 

underperforms with 13% greater error on the OMP testing dataset. Given the comparison, 

introduction of OMC dataset is not a trivial addition. Its data diversity substantially improves 

the generalizability of the model. In addition, we show the analysis of the performance of 

a model trained on the three datasets together. This has been indicated in the Fig. 9b. We 

also evaluate the impact of pre-training as human datasets can be beneficial for training low 

level features. In Fig. 9b, a key observation is that the impact introduced by pre-training is 
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minimal because OpenMonkeyChallenge dataset is sufficiently large to properly learn low 

level features.

5.2 Comparison with Human Pose Estimation

The distal goal of our benchmark challenge is to achieve a performance comparable to 

human pose estimation. For instance, a state-of-the-art human pose detector (CPM) trained 

on the COCO-keypoint dataset (Lin et al., 2014) produces 0.061 MPJPE or 0.849 PCK@0.2 

(upper bound performance). Without a nontrivial modification, a CPM trained on our dataset 

achieves 0.074 MPJPE or 0.761 PCK@0.2 as reported in Fig. 9a. In other words, there 

exists a considerable performance gap between human and primate pose estimation. The 

major performance gap is attributed to the size and diversity of the dataset. COCO dataset 

includes 250 k annotated image instances while OMC dataset includes 111 k instances. 

The OMC dataset is precise as each annotation was reviewed by at least two experts on 

neuroscience and primatology. Monkeys and primates are, in general, more agile, producing 

diverse poses than humans. Further, unlike humans who wear clothes that provide a strong 

semantic cue for joint localization, the appearance of monkeys and primates is, largely, 

homogeneous. This poses a main challenge of identifying the landmark locations. The 

goal of this paper is to identify this performance gap, and proposes a community effort to 

develop semi-supervised learning frameworks that can leverage unlabeled data to address 

this limitation.

Further, we evaluate the human detection model on our dataset, which achieves 0.197 

MPJPE or 0.265 PCK@0.2 for reference (lower bound performance). We propose that the 

major benefits associated with human pose estimation is the progress in developing, efficient 

and generalizable models with self-supervised methods (Yang et al., 2021; Sumer et al., 

2017; Jakab et al., 2020; Ludwig et al., 2021; Wan et al., 2019; Ren & Lee, 2018). We 

anticipate that a similar algorithmic innovation will close the gap.

We also conduct an ablation study to evaluate the impact of large data, i.e., how the amount 

of training data affects the landmark detection accuracy on the testing dataset. Given the 

training data, we incrementally reduce the amount of the training images used for model 

training by 20% at each time and measure the model performance using PCK metric. Fig. 

9a shows the impact of the data increments, i.e., the model trained on 100% training data 

achieves the highest PCK result, outperforming the model with 20% of training data by 15% 

at PCK@0.2.

In addition to CPM, we evaluate the dataset using HRNet (Sun et al., 2019) as shown in 

Fig. 9b. HRNet has a higher capacity, which allows learning a more generalizable model, 

achieving higher accuracy (PCKd@0.1: 0.895). Nonetheless, the trend remains the same: 

OpenMonkeyChallenge dataset is far smaller than the human dataset, which introduces a 

fundamental performance gap between humans and primates.

5.3 State-of-the-art Detection Model Performance Evaluation

We conduct a comparative study on the performance of the state-of-the-art pose detection 

models using the OpenMonkeyChallenge dataset. We train nine pose estimation models until 

it starts to overfit based on the performance on the validation data. These models can be 
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categorized into the top-down methods and the bottom-up methods. The top-down models 

(DeepLabCut with ResNet (Mathis et al., 2018), CPM (Wei et al., 2016), Hourglass (Newell 

et al., 2016), HRNet-W32 (Sun et al., 2019), HRNet-W48, SimpleBaseline with ResNet101 

(Xiao et al., 2018), and SimpleBaseline with ResNet152) detect the keypoints of a single 

primate given the bounding box. In contrast, the bottom-up models (HigherHRNet-W32 

(Cheng et al., 2020) and HigherHRNet-W48) localize the landmarks without a bounding box 

and group them to form poses, specialized for multi-primate detection. For all models, we 

use their own pretrained model and training procedural protocol, i.e., the DeepLabCut model 

is pretrained on ImageNet. The top-down models, in general, show stronger performance 

because of resolution while it shows weaker performance when multiple primates are 

present. Table 2 summarizes the normalized MPJPE of each landmark in the testing dataset 

predicted by six models across models. Table 3 reports the PCK@0.2 of each landmark 

in the testing dataset, and Fig. 9c shows the PCK curve of each model. In short, there is 

no clear winner. All models use a variant of high capacity convolutional neural networks 

that can effectively memorize and generalize the training data through fully supervised 

learning. SimpleBaseline (Xiao et al., 2018) slightly outperforms other models (the lowest 

MPJPE and the highest PCK@0.2). Fig. 9d shows AP comparison as a function of the model 

parameters. In general, when the number of data is sufficiently large, larger and deeper 

models outperform small and shallow models because more complex visual patterns can be 

learned. Table 4 reports the performance of each model based on the OKS of each landmark. 

Table 5 reports the PCK@0.1 of each landmark for models trained on varying training sets.

One of the major characteristics of OpenMonkeyChallenge data is a wide range of poses 

across diverse species. Each species has at least more than 100 annotated images as shown 

in Fig. 2c. We evaluate the model performance for each species using PCK metrics. In 

Fig. 10, we plot the accu racy for each species, observed using HRNet, with respect to the 

number of pose annotations in the training set. We see that our dataset is able to predict the 

different species with an accuracy greater than 80%. The variety in species and annotations 

observed in the training dataset does aid in improving pose accuracy across species.

6 Discussion

Here we present a new resource, a very large (111,529 images of 26 species) and fully 

annotated database of photographs of non-human primates. The primates come in a range 

of species and poses, and with a range of backgrounds. The primary goal of this resource is 

to serve as a training tool for scholars interested in developing computer vision approaches 

to identifying pose in the primate order. This resource can be found on our new website 

(http://openmonkeychallenge.com). The website also presents a new benchmark challenge 

for primate landmark detection. In parallel with our resource and the challenge, and as a 

baseline for modeling efforts, we provide some analyses of existing models. These analyses 

reveal that non-human primate detectors have substantially worse performance than human 

ones. We propose that our large dataset will be a critical tool in closing that performance 

gap.

We know of only two existing large datasets of annotated primate images, OpenMonkeyPose 

(Bala et al., 2020) and MacaquePose (Labuguen et al., 2021). OpenMonkeyPose, which 
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our group developed, consists of nearly 200,000 annotated (13 landmarks) multiview 

(62 cameras) images of rhesus macaques in a specific carefully controlled laboratory 

environment. That dataset has a very different purpose than the present one—its chief 

virtue is its robust characterization of a single environment and species, and its multiview 

aspect for 3D motion capture. However, it is highly limited for the general purpose of pose 

identification because of its narrow number of backgrounds, species, individuals, and poses. 

The MacaquePose dataset, which consists of 13,000 images, is likewise limited to a single 

species and is also substantially smaller. Our analyses confirm that these datasets cannot be 

used to train robust models that can identify pose in general contexts nearly as well as this 

one can. These results, then, argue for the value of large variegated datasets like the one 

we present here. More generally, they demonstrate the critical importance of variety when 

training robust detection networks.

A key finding from our comparative study is that the state-of-the-art designs of 

convolutional neural networks (CNNs), including DeepLabCut, perform, by large, on a 

par with each other. These CNNs effectively learn a visual representation of primates from 

sufficiently large and diverse image data in a fully supervised manner where generalizable 

image features can be learned. This closes the gap between models. On the other hand, this 

finding implies that there is a fundamental limitation to the supervised learning paradigm. 

That is, our results indicate that the CNN models overfit to the training data; the distribution 

of the training data differs considerably from that of the testing data. As a consequence, 

the generalization is strictly bounded, which leaves a large performance gap between human 

and primate landmark detections. This requires employing the new semi- or unsupervised 

learning paradigm, which allows utilizing a potentially unlimited amount of unlabeled, or 

weakly labeled primate images, which can close the domain difference.

Through the OpenMonkeyChallenge, we aim to derive two major innovations to solve 

challenging computer vision problems. First, algorithmic innovation can lead to substantial 

performance gain by learning an efficient representation from limited annotated data. 

Transfer learning, or domain adaptation, used in DeepLabCut is one of such kinds that 

leverage a pre-trained generic model learned from a large dataset (e.g., ImageNet). Such 

approaches have shown a remarkable generalization over frames within a target video 

while showing limited performance when applying to new videos with different viewpoints, 

poses, illumination, background, and identities. Second, data innovation can lead to great 

advances in generalization by being agnostic to algorithms and representations. For example, 

the field has witnessed such gains from the object detection community, e.g., from a few 

hundreds of images in Caltech-101 and Pascal VOC datasets to millions of images in 

ImageNet and COCO datasets (Torralba & Efros, 2011). OpenMonkeyChallenge facilitates 

these two indispensable innovations for developing a generalizable primate detector through 

community effort.
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Fig. 1. 
We present an OpenMonkeyChallenge using 111,529 annotated images of non-human 

primates (26 species), obtained from the Internet, three National Primate Research 

Centers, and the Minnesota Zoo. 17 landmarks are manually annotated for each image. 

OpenMonkeyChal lenge aims to extend the boundary of pose estimation for non-human 

primates across multiple species through an annual competition to build generalizable pose 

estimation models
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Fig. 2. 
a We annotated the 17 landmarks that describe the pose of the primate in an image. b 
We collect image data from diverse sources: Internet image searches and YouTube videos, 

professional photographs from three National Primate Research Centers, and multiview 

videos from the Minnesota Zoo. The original images are cropped to include at least one 

primate and ensured to have higher than 500×500 resolu tion. c Our dataset is composed of 

26 species of monkeys and apes, and more than 100 images are annotated for each species. 

We split the data into training, validation, and testing datasets, approximately 6:2:2 ratio, 

respectively. d Primate taxonomy. Our dataset includes diverse species of monkeys and apes
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Fig. 3. 
We visualize the distribution of bounding box sizes, where the bounding box sizes is the 

diagonal length of the bounding box
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Fig. 4. 
We visualize a distribution of poses of the OpenMonkeyChallenge dataset using UMAP for 

dimension reduction. For each cluster, we show an average image overlaid with the median 

pose to illustrate its visual pattern
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Fig. 5. 
We show the 3D reconstruction of the Minnesota Zoo macaque arena using the multiview 

cameras mounted along the enclosure for data capture. The multiview images and four 

arbitrary cropped images superimposed with the projection of the reconstruction are also 

shown
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Fig. 6. 
We design a graphic user interface to refine bounding boxes. Given an image and bounding 

box proposals (green boxes) from a weak detector, the annotators are asked to remove false 

positives and redun dant poses from previous frames (green bounding boxes with red cross) 

and to add false negatives (red bounding boxes)
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Fig. 7. 
Three detection models are trained on OpenMonkeyChallenge (OMC), MacaquePose (MP), 

and OpenMonkeyPose (OMP), respectively. In each box, we visualize three violin plots 

corresponding to the detection models. Each violin plot shows the normalized error his 

togram of landmarks on training (blue) and testing (brown) data (first row: OMC dataset; 

second row: MP dataset; third row: OMP dataset). The model trained on OMC (left violin 

plot in each box) is the most generalizable (inverted T shape histogram)
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Fig. 8. 
We summarize the cross-dataset evaluation to show the generalizability using the normalized 

error in a confusion matrix, e.g., the second row of the third column shows the normalized 

error of the MP testing data for the model trained on OMC training dataset. The model 

trained on OMC dataset shows the smallest error or comparable to the model that is testing 

on its own training data
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Fig. 9. 
a We use PCK to measure keypoint detection performance on CPM models. The black 

solid line shows the performance of the human landmark detector (train and test on COCO) 

that forms the upper bound of the primate landmark detector. The black dotted line shows 

the testing performance of the human landmark detector (trained on COCO) on OMC data 

without retraining, which forms the lower bound. OMC dataset allows us to train a primate 

specific model that shows significant performance improvement from the lower bound. 

Yet, there still exists a large gap between the human and primate landmark detectors. We 

also visualize the performance improvement as increasing the number of OMC training 
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data. b We use PCKd to measure keypoint detection performance on HRNet models. The 

plot comprises of curves generated using similar experimental setup as shown in Fig. 9a. 

The solid green line shows the performance of primate landmark detector trained using 

pretrained model weights on OMC dataset. We also visualize the performance of the primate 

landmark detector (trained on OMC, OMS and MP dataset) on different datasets. c Six state-

of-the-art pose estimation models are trained with OMC datasets. These are PCK curves in 

the test set from these models. d We show the average precision (AP) of state-of-the-art 

models as a function of the number of model parameters. If the data size is large enough, a 

larger model is likely to learn complex visual patterns
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Fig. 10. 
We show the accuracy for different species with respect to the number of pose annotations in 

the training set
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