Skip to main content
. 2023 Aug 3;2023:9701841. doi: 10.1155/2023/9701841

Table 3.

LR and XGBoost models performance parameters.

Models AUC Sensitivity Specificity Accuracy Precision Recall F1
LR (6 W) 0.828 (0.759–0.897) 1.000 0.57 0.602 (0.543–0.660) 0.157 1.000 0.271
LR (1 Y) 0.799 (0.738–0.860) 0.623 0.848 0.799 (0.748–0.844) 0.528 0.623 0.589
XGBoost (6 W) 0.985 (0.907–0.731) 1.000 0.907 0.914 (0.866–0.949) 0.485 1.000 0.653
XGBoost (1 Y) 0.931 (0.806–0.935) 0.957 0.814 0.849 (0.791–0.895) 0.616 0.957 0.750

LR (6 W): logistic regression model predicts rebleeding within 6 weeks; LR (1 Y): logistic regression model predicts rebleeding within 1 year; XGBoost (6 W): XGBoost model predicts rebleeding within 6 weeks; XGBoost (1 Y): XGBoost model predicts rebleeding within 1 year.