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BSTRACT 

e present our no vel software, nanomonsv, f or de- 
ecting somatic structural variations (SVs) using tu- 
or and matched control long-read sequencing data 

ith a single-base resolution. The current version of 
anomonsv includes two detection modules, Canon- 

cal SV module, and Single breakend SV module. Us- 
ng tumor / control paired long-read sequencing data 

rom three cancer and their matc hed lymphob las- 
oid lines, we demonstrate that Canonical SV mod- 
le can identify somatic SVs that can be captured by 

hort-read technologies with higher precision and 

ecall than existing methods. In addition, we have 

eveloped a workflow to classify mobile element in- 
ertions while elucidating their in-depth properties, 
uch as 5 

′ truncations, internal inversions, as well 
s source sites for 3 

′ transductions. Furthermore, 
ingle breakend SV module enables the detection 

f complex SVs that can only be identified by long- 
eads, such as SVs involving highly-repetitive cen- 
romeric sequences, and LINE1- and virus-mediated 

earrang ements. In summar y, our approaches ap- 
lied to cancer long-read sequencing data can re- 
eal various features of somatic SVs and will lead to 

 better understanding of mutational processes and 

unctional consequences of somatic SVs. 
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NTRODUCTION 

tructural variations (SVs) have been known to play an 

mportant role in cancer patho genesis. Ad vances in high- 
hroughput sequencing technologies have enabled us to per- 
orm genome-wide somatic SV detection, and a number 
f cancer-driving SVs have been identified ( 1–3 ). On the 
ther hand, millions of repetiti v e elements are widely dis- 
ributed throughout the human genome, which hinders un- 
mbiguous alignment by current standard short-read tech- 
ologies. According to several computational predictions, 
uch repeat sequences comprise one-half to two-thirds of 
he human genome ( 4 , 5 ). Since the majority of the current
equencing data is collected using short-read sequencing 

echnologies, se v eral classes of SVs, especially those whose 
r eakpoints ar e located in these r epeat r egions, have been 
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difficult to detect ( 6 , 7 ). As such, although a large number
of whole-genome sequencing studies have aimed to detect
somatic SVs, it is plausible to assume that the landscape of
SVs remains elusi v e in human cancer. 

Recently, long-read sequencing technologies attracted
lots of attention with the hope of improving the perfor-
mance of SV detection ( 8 , 9 ). Se v eral studies hav e de v eloped
SV detection tools and shown the effecti v eness of long-read
data ( 10–15 ). Howe v er, most pre vious studies focused on
germline SVs. For identifying somatic SVs, one typical ap-
proach is to perform existing algorithms for both tumor
and control sequencing data individually and take the sub-
traction of the set of SVs found in the tumor from that in
the matched control. Howe v er, this approach can generate
many false positi v es, such as germline SVs that pass the
threshold in the tumor and narrowly miss it in the matched
control (e.g. because of low sequencing depths). Ther efor e,
algorithms that can detect SVs by jointly utilizing tumor
and matched control long-read sequencing data are needed
( 16 , 17 ). 

Another important issue that long-read technologies can
address is the characterization of the detailed structure of
long insertions, especially mobile element insertions (MEIs)
including LINE1 retrotransposition ( 18 , 19 ). Among the
millions of LINE1 elements existing across the human
genome, a pproximatel y one hundred are thought to be still
acti v e. They can somatically produce their RNA interme-
diates, which are inserted into distant genomic sites with
some modifications (such as 5 

′ truncations, internal inver-
sions , and 3 

′ transductions). Besides , LINE1 elements also
facilita te the soma tic displacement of other mobile elements
such as Alu, SINE / VNTR / Alu (SVA), and processed pseu-
dogenes. Short-read sequencing can, in principle, detect the
existence of such insertion e v ents, and se v eral studies suc-
cessfully characterized their roles in cancer ( 20 , 21 ). How-
e v er, as the range of genomic sequences which can be ana-
lyzed by short-read sequencing is limited to a few hundred
nucleotides from the edge of inserted sequences, the entire
landscape and genetic properties of MEI e v ents hav e not
been fully elucidated. 

In this paper, we intr oduce our appr oach, nanomonsv
( https://github.com/friend1ws/nanomonsv ), that can iden-
tify somatic SVs with single-nucleotide resolution jointly us-
ing both tumor and control long-read sequencing data with
Oxford Nanopore Technologies (ONT) and PacBio plat-
form. With this software, we evaluated the effecti v eness of
long-read sequencing for somatic SV detection using newly
collected long-read sequencing data from three pairs of can-
cer and matched control cell-lines. The characteristics of
nanomonsv are summarized as follows: 

. Canonical SV module can capture not only most of the
SVs that can be identified using short-read sequencing
platforms but also additional ones. 

. For insertions, the full-length inserted sequences ob-
tained by the nanomonsv allowed us to characterize their
genetic properties (such as 5 

′ truncations, internal inver-
sions, and target site duplications) and to identify source
sites for 3 

′ transduction mediated by LINE1. 
. Single breakend SV module of nanomonsv can identify

single breakend SVs w here onl y one breakpoint is iden-
tified because the other breakpoint is typically located
in repetiti v e regions. Examples of single breakend SVs
include LINE1-mediated r earrangements, r earrange-
ments associated with centromeric regions, and viral
integrations. 

MATERIALS AND METHODS 

Whole genome sequencing using o xf or d nanopor e technolo-
gies and illumina no v aseq 6000 

The cell-lines used in this study (COL O829, COL O829BL,
H2009, BL2009, HCC1954 and HCC1954BL) were ob-
tained from ATCC (American Type Culture Collection).
For Oxford Nanopore Technologies (ONT) sequencing
data, high-molecular-weight (HMW) genomic DNAs were
extracted from these cell-lines with QIAGEN Genomic-
tip 500 / G (QIAGEN). HBV-positi v e li v er cancer cell-line
PRC / PRF / 5 was obtained from the JCRB cell bank (Na-
tional Institutes of Biomedical Innovation, Health and
Nutrition), and HMW-genomic DNA was isolated using
SmartDN A chip (Anal ytik Jena). DN A libraries were then
pr epar ed using the Ligation Sequencing Kit 1D and se-
quenced on the PromethION platform with R9.4.1 flow
cells, to generate fast5 files. Then, these fast5 files were base-
called and converted to FASTQ files using Guppy 3.4.5.
Then, these were aligned by minimap2 with ‘-ax map-ont
-t 8 -p 0.1’ option to the human r efer ence genome provided
at the Genomic Data Commons w e bsite (GRCh38.d1.vd1).
Summary statistics were calculated using NanoStat package
( 22 ) after removing secondary and supplementary align-
ments from BAM files. 

For Illumina short-read sequencing data, we performed
Illumina Novaseq 6000 with a standard 150 bp paired-
end read protocol, and these were aligned by BWA-MEM
( 23 ) version 0.1.17 to the same human r efer ence genome
and were sorted by the genomic coordinates, followed
b y remov al of PCR duplicates via biobambam ( https://
github.com/gt1/biobambam ) version 0.0.191 as previously
described ( 24 ). In addition, we performed somatic struc-
tural variation detection using manta ( 25 ), SvABA ( 26 ),
GRIDSS ( 27 , 28 ), GenomonSV, and TraFiC-mem ( 20 ) (see
Supplementary Text for detail). 

Ov ervie w of nanomonsv 

Here we describe an ov ervie w of nanomonsv. A more de-
tailed description of the algorithm can be found in the Sup-
plementary Text. In this paper, SVs were largely classified
into two categories: 

• Canonical SV: SVs characterized by two breakpoints and
inserted sequences between them. These SVs include in-
sertions where two breakpoints are typically close to-
gether. 

• Single breakend SV: SVs characterized by a single break-
point and the sequence after the breakpoint, which are
often not uniquely aligned to the r efer ence genome, and
their positions are not precisely located. 

Nanomonsv consists of two related detection modules
designed to detect each of the above SVs; Canonical SV

https://github.com/friend1ws/nanomonsv
https://github.com/gt1/biobambam
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odule and Single breakend SV module. Prior to perform- 
ng nanomonsv, we assume that both tumor and control se- 
uence files are already aligned to the r efer ence genomes 
ith minimap2 ( 29 ). The procedures of Canonical SV mod- 
le and Single breakend SV module are depicted in Figures 
 and 2 A, respecti v ely. 

Both modules consist of four steps: parsing, clustering, 
efinement, and validation. In the ‘clustering’ step, the reads 
rom the tumor sample that presumably cover the same 
Vs are clustered as SV candidates with possible break- 
oint ranges. If we observe apparent supporting reads in 

he matched control sample or in non-matched control 
anel samples (30 Nanopore sequencing data from the 
uman P angenome Refer ence Consortium ( 30 ) ar e used 

n this study), these are eliminated. The ‘refinement’ step 

n Canonical SV module plays an essential role in deter- 
ining the single-nucleotide resolution breakpoints as well 

s error-corrected inserted sequences using the modified 

mith-Waterman algorithm, which allows one-time jump 

rom one genomic region to the other (see Supplementary 

igure S1 and similar algorithm in a previous study ( 31 )). 
articularly, polished inserted sequences are beneficial for 
lassifying and characterizing insertion e v ents. The last ‘val- 
dation’ steps in both modules thoroughly confirm whether 
he candidate SV is truly specific for the tumor. More specif- 
cally, aligning the putati v e SV segment sequence to each 

ead close to putati v e breakpoints enables precise detection 

f variant supporting reads, especially those partially cov- 
ring the breakpoints and not counted in the parsing step 

similar approaches have been attempted in previous stud- 
es ( 32 ), albeit in a different context than somatic SV con-
rmation). Lastly, for deletions and insertions, we focus on 

hose whose sizes are 100 bp or larger. We also removed 

eletions and insertions confined within simple repeat 
egions. 

We also de v eloped a wor kflow to characterize putati v e
ingle breakend SVs by realigning the consensus sequence 
o the r efer ence genome and ex ecution of RepeatMasker 
Figure 2 B, see Supplementary Text for detail). For SVs 
pecifically identified by Single breakend SV module, if their 
reakpoints on the other side were unambiguously identi- 
ed, they were reclassified as canonical SVs. They included 

Vs that were filtered out in Canonical SV module because 
hey did not marginally exceed the threshold in the various 
ltering steps. 

CR validation 

o generate primer sequences for PCR validation for each 

anonical somatic SV, we first pr epar ed the sequence tem- 
late by concatenating 800 bp nucleotides from the first 
reakpoint, the inserted sequence, and 800 bp nucleotides 
rom the second breakpoint. Then, the Python bindings 
f Primer3 ( 33 ) are performed, setting the sequence tar- 
et as 25 bp nucleotides from the first breakpoint, the in- 
erted sequence, and 25 bp nucleotides from the second 

r eakpoint. Her e, we cr eated fiv e pairs of primer sequences 
or each primer product size range of 201–300, 301–400, 
01–500, . . . , and 1501–1600. Next, we performed Genome- 
ester ( 34 ) to remove pairs of primer sequences that have 

oo many binding sites ( > 5 for left or right primers) and 
oo many alternati v e PCR products (more than two for in- 
ertion and deletion and more than one for other types 
f SVs). Finally, for each somatic SV for validation, we 
elected one primer pair that has a smaller product size, 
ess number of primer binding sites, and alternati v e PCR 

roducts. 
To design a primer for highly repetiti v e sequences such 

s centromere and telomere, we selected primer sequences 
hat were expected to occur once in the sample genomes. 
or example, for these primer sequences, we should be able 

o observe them about 15 times in a 30x coverage FASTQ 

equence (in the haploid r efer ence genome). Ther efor e, we 
esigned the primer sequence as follows: 

. We parsed k -mers ( k = 19) from the original FASTQ, and 

calculated the histogram for each k -mer. 
. For each k -mer subsequence in the assembled contigs for 

single breakend SVs, we masked it with ‘N’ if it occurred 

less than 8 times or more than 50 times. 
. We conca tena ted the pr e-br eakpoint sequence and as- 

sembled contigs (we limited to 2000 bp) masked by 

the above, and designed primers using primer3 on this 
sequence. 

All PCR r eactions wer e performed in a total of 20 ul vol-
me using 10 ul of Go Taq Master Mix (Promega), 1 ul of 
ach primer (final 0.5 nM), 1 ml of gDNA (20 ng), and 8 

l of double-distilled water. The PCR samples were dena- 
ured at 95 

◦C for 2 min, subjected to 40 cycles of ampli- 
cation (95 

◦C for 30 s, 55 

◦C for 30 s and 72 

◦C for (prod-
ct size (bp) / 1000) min and followed by a final extension 

tep a t 72 

◦C . A list of primers is provided in Supplemen-
ary Data 3. PCR products were resolved by agarose gel 
lectrophor esis. Repr esentati v e PCR products were puri- 
ed using QIAquick Gel Extraction Kit (Qiagen) accord- 

ng to the manufactur ers’ r ecommended protocols. Finally, 
he purified samples were subjected to direct capillary se- 
uencing (eurofin). All sequence data were analyzed using 

 pE ( https://jorgensen.biolo gy.utah.edu/wayned/a pe/ ) and 

he Chromas Lite viewer (Technlysium Pty., Ltd.). 

valuation of nanomonsv using benchmark dataset and 

imulation 

or highly reliable somatic SV sets, we used two 

atasets. The one is high-confidence somatic SV files 
btained from the high-coverage NovaSeq data ( 35 ) 
 https://www.n ygenome.org/bioinf ormatics/3- cancer- cell- 
ines- on- 2- sequencers/COLO- 829- NovaSeq- - COLO- 
29BL-NovaSeq.sv.annota ted.v6.soma tic.high confidence. 
nal.bedpe ). The other is from somatic SV truth set 
enerated by multi-platform and experimental valida- 
ion ( 36 ) (truthset somaticSVs COLO829.vcf available at 
ttps://zenodo.org/recor d/3988185 ), which is conv erted to 

RCh38 coordinates with liftOver. We removed insertions 
nd deletions with ≤100 bp lengths because these were the 
ut-of-score in this paper. For high coverage Nanopore 
equence data (ERR2752451, ERR2752452) and PacBio 

equence data (ERR2808247, ERR2808248) of COLO829 

nd its matched control, we downloaded FASTQ sequenc- 
ng data of ENA study accession PRJEB27698 ( 36 ), and 

https://jorgensen.biology.utah.edu/wayned/ape/
https://www.nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/COLO-829-NovaSeq--COLO-829BL-NovaSeq.sv.annotated.v6.somatic.high_confidence.final.bedpe
https://zenodo.org/record/3988185


e74 Nucleic Acids Research, 2023, Vol. 51, No. 14 PAGE 4 OF 18 

Figure 1. Workflow of somatic SV detection in nanomonsv Canonical SV module. Canonical SV module for nanomonsv consists of the following four steps. 
P arsing: the r eads likely supporting SVs ar e extracted fr om both tumor and matched contr ol BAM files using CIGAR string and supplementary alignment 
information. Clustering: the reads from the tumor sample that presumably span the same SVs are clustered, and the possible ranges of breakpoints are 
inferred for each possible SV. If there exist apparent supporting reads in the matched control sample (or non-matched control panel samples when they 
are available), these are also removed. Refinement: Extract the portions of the supporting reads around the breakpoints, and perform error-correction 
using racon ( 78 ) to generate a consensus sequence for each candidate SV. Then, aligning the consensus sequence to those around the possible breakpoint 
regions in the reference genome using a modified Smith-Waterman algorithm (which allows a one-time jump from one genomic region to the other, see 
Supplementary Figure S1), we identify the exact breakpoint positions and the inserted sequence inside them. Validation: From the breakpoint determined 
in the previous step, we generate the ‘putati v e SV segment sequence.’ Then we collect the reads around the breakpoint of putati v e SVs and check whether 
the putati v e SV segment sequence exists (then the read is set as a ‘variant supporting read’) or not (then the read is classified to a ‘r efer ence r ead’) in each 
read of the tumor and matched control. Finally, candidate SVs with ≥3 variants supporting reads in the tumor and no variant supporting reads in the 
matched control sample are kept as the final SVs. See Supplementary Text for detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aligned to the r efer ence genome with minimap2 to the
GRCh38 r efer ence genome and sorted and index ed using
samtools. Then, nanomonsv was performed on these data
as described in the previous section. 

For the comparison with nanomonsv, we adopted ‘sep-
arate detection and subtraction a pproach’, w here we in-
dependentl y a pplied standard SV detection tools (Sniffles
( 10 , 37 ) ( https://github.com/fritzsedlazeck/Sniffles ) version
2.0.7, cuteSV ( 15 ) version 2.0.0, Delly ( 38 ) version 1.0.3,
SVIM ( 13 ) version 2.0.0) to both tumor and matched con-
trol samples with different thresholds, and eliminated the
SVs called in matched controls from those found in tumors.
We first aligned the FASTQ files of tumor and matched con-
trol using minimap2 with the same setting with nanomonsv.
Then, we performed Sniiffles, cuteSV, Delly and SVIM on
tumor and matched control B AM files, separ ately. The op-
tion of each software were: 

• Sniffles: ‘–minsupport 1 –non-germline’ 
• cuteSV: ‘–max cluster bias INS 100 –

dif f ra tio merging INS 0.3 –max cluster bias DEL
100 –dif f ra tio merging DEL 0.3 –min support = 1’ 

• Delly: ‘lr’ command 

• SVIM: ‘alignment’ command with ‘–skip genotyping’ 

For each method, we extracted SVs from tumor sam-
ples with ≥3 supporting reads (5 ≥ for high coverage
data from PRJEB27698) and removed those whose

https://github.com/fritzsedlazeck/Sniffles
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A

B

Figure 2. Workflow of somatic SV detection and classification in nanomonsv single breakend SV module. ( A ) Single breakend SV module for nanomonsv 
consists of the f ollowing f our steps. P arsing: the r eads putati v ely supporting single breakend SVs are extracted from both tumor and matched control 
BAM files using soft clipping information in the CIGAR strings. Clustering: the reads from the tumor sample that presumably support the same single 
breakend SVs are clustered. The candidates are removed if apparent supporting reads are detected in the matched control sample (or non-matched control 
panel samples when they are available). Refinement: Gather the soft-clipped part of the reads with 100 bp margins inside the breakpoints and generate 
an error-corrected consensus sequence by two round iterations of all-vs-all alignment by minimap2 ( 29 ) and polishing with racon ( 78 ). Then, aligning the 
consensus sequence to those around the possible breakpoint regions by Smith-Waterman algorithm, we detect single base resolution breakpoints and the 
consensus sequence after the breakpoint. Validation: from the breakpoint determined in the previous step and the error-corrected consensus sequence after 
the breakpoint, we generate the ‘putati v e SV segment sequence.’ Then, as with Canonical SV module, the reads around the breakpoint of putati v e single 
breakend SVs are classified into ‘variant supporting read’ or ‘reference read’ for both tumor and matched control. Finally, candidate SVs with ≥3 variants 
supporting reads in the tumor and no variant supporting reads in the matched control sample are kept as the final single breakend SVs. See Supplementary 
Text for detail. ( B ) The left panel shows the chart for classifying SVs identified by Single breakend module. After removing SVs that share a breakpoint 
with SVs already detected via Canonical SV module, SVs are basically classified by integrating the alignment of contig sequences to the human reference 
genome (HG) and the annotation results by RepeatMasker (RM). The right panel shows the typical pattern of an alignment to HG and an annotation 
result by RM of the contig for each category. L1HS stands for the human LINE-1 (L1) element L1 Homo sapiens (L1Hs). 
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breakpoints overlapped with any of SVs detected from
normal samples allowing for 200 bp margins. We also
removed SVs confined within simple repeat regions. We
also used CAMPHORsomatic ( 39 ) ( https://github.com/
afujimoto/CAMPHORsomatic ) on commit 7ad6bdb
for somatic SV detection. We applied our own patch
( https://github.com/ncc- ccat- gap/module box aokad/blob/ 
master/20221005-CAMPHORsoma tic/SB CH.pa tch ) to
CAMPHORsomatic since it could not be executed without
tha t modifica tion. We run CAMPHORsoma tic with the
default setting. 

For simulations, we pr epar ed two haploid human
genomes; extracted 22 autosomes and chromosome X
from the human r efer ence genome (GRCh38), and in-
jected in-silico germline SVs (2500 duplications, 5000 in-
dels , 100 inversions , 50 in version-deletion, and 50 in version-
duplications) using the ‘simSV’ command of by SUR-
VIVOR (version 1.0.6, https://github.com/fritzsedlazeck/
SURVIVOR ) ( 40 ). Then, we merged the haploid human
genomes to make diploid human genomes with germline
SVs to constitute an in-silico matched control genome.
Then, we further generate ‘somatic SVs’ (100 duplications,
200 indels, 100 translocations and 100 inversions) on the
in-silico matched control genomes to make up an in-silico
tumor genome. Since the coordinate system of the simu-
la ted soma tic SVs is based on the in-silico matched control
genome, we converted the coordinate system of the simu-
la ted soma tic SV list back to the GRCh38. Next, we per-
formed NanoSim ( 41 ) ( https://github.com/bcgsc/NanoSim ,
version 2.6.0) on this in-silico tumor and matched control
genome to generate Nanopore-like tumor and two matched
control (one is literally for matched control data and the
other is for mixing with tumor sequencing data) sequenc-
ing data. After learning the parameters using Nanopore
reads of COLO829BL aligned to chromosome 22 via the
r ead analysis.p y script, we generated simulated Nanopore
reads with sufficient depths ( ∼180Gb yields) via the simu-
lator.py script. These FASTQ files were aligned with min-
imap2 to generate BAM files. Finally, we sub-sampled
Nanopore-like BAM files to generate tumor and matched
control BAM data with specified sequencing amounts (10x,
20x, 30x, 40x, and 50x) and the tumor purities (0%, 20%,
40%, 60%, 80% and 100%) and performed nanomonsv as
well as Sniffles, cuteSV, Delly, SVIM and CAMPHORso-
matic as described above to obtain somatic SV calls from
each method. 

Methylation analysis 

To quantify the amount of methylation, we used nanopol-
ish version 0.11.1 ( https://github.com/jts/nanopolish ). First,
we performed the ‘nanopolish index’ command from the
original fast5 file to generate the index that associates read
IDs and their signal-de v el data. Then, we executed the ‘na-
nopolish call-methylation’ command to make the TSV file
summarizing the log-likelihood ratio for methylation for
each read ID and genomic position. Then, we obtained the
methylation frequency at each genomic position using the
script provided on the software w e bsite. To measure the sig-
nificance of methylation frequency difference between the
tumor and the match control at each LINE1 source ele-
ment, we first calculated the P -value at each locus using
Fisher’s exact test with the alternative hypothesis of one-
sided, and then obtained an asymptotically exact P -value
using harmonicmeanp package version 3.0 ( 42 ). 

Calculation of higher -or der r epeat match scor e 

First, single breakend SVs that are classified as ‘High
Repeat single breakend SVs’ and that are mostly annotated
with ‘Satellite / centr’ by RepeatMasker are e xtracted. Ne xt,
we executed the StringDecomposer ( 43 ) version 1.1.2
for each contig against the final monomer FASTA files
generated by HORmon ( 44 ) (cen* monomers.fa files under
the monomersFinal directory, downloaded from https:
//figshare.com/articles/dataset/HORmon/16755097/1 ). 
Then, for each chromosome monomer file result (fi-
nal decomposition.tsv), the degree of monomer concor-
dance is calculated. More specifically, we read the result
the files one line at a time, and if the pr e- / post-r elationship
of the monomers (curated from cen* hors.tsv files from
HORmonHORs directory, see Supplementary Data 1) is
consistent, ( < end-pos > - < start-pos > ) * < identity > / 100
is added, and the divided by the length of the contig is the
HOR match score (see Supplementary Figure S2). 

RESULTS 

Comparison with short-read sequencing data 

We used three cancer cell-lines (COLO829, H2009 and
HCC1954) and their matched controls (COLO829BL,
BL2009 and HCC1954BL) for the evaluation (see Table 1
for the detailed description of these cell-lines). Long-read
whole-genome sequencing was conducted using GridION
and PromethION. The total outputs were 59.13 to 156.30
Gbps, and the N50 sequence lengths ranged from 14 309 to
24 501 bp (see Table 1 , Supplementary Figure S3). To com-
pare with a short-read platform, we also performed high-
coverage sequencing of these three paired cell-lines using Il-
lumina Novaseq 6000 platform. The total amounts of yield
after polymerase chain reaction (PCR) duplication removal
were 205.76 Gbps to 484.26 Gbps. 

A ppl ying nanomonsv to these long-read data and res-
cuing canonical SVs identified from Single breakend SV
module, we identified 49, 724 and 748 canonical SVs for
COLO829, H2009 and HCC1954, respecti v ely (Figure 3 A,
Supplementary Figure S4, Supplementary Data 2). Those
included 39 SVs that were specifically identified by Single
breakend SV module and reclassified into canonical SVs.
For the evaluation of precision, we performed the PCR on
139 randomly selected SVs, and 132 (94.9%) showed tu-
mor sample-specific bands with predicted product sizes (see
Supplementary Data 3, Supplementary Figures S5, 6). Ex-
cept for insertions, the validated ratio was reasonably high
[96.1% (99 / 103)]. A relati v ely low valida tion ra tio for in-
sertions [89.92% (33 / 37)] might be partly due to the larger
size of their PCR products. Even for the insertions not
v alidated b y PCR, we observed tumor-specific supporting
reads by manual inspection with a genome viewer ( 45 ) in
most cases (Supplementary Figure S5c). To evaluate re-
call, we compared with SVs commonly detected by four al-
gorithms (manta ( 25 ), SvABA ( 26 ), GRIDSS ( 27 , 28 ) and
GenomonSV) in the short-read platform, which were con-
sidered to be ‘true’ somatic SVs with a high degree of

https://github.com/afujimoto/CAMPHORsomatic
https://github.com/ncc-ccat-gap/module_box_aokad/blob/master/20221005-CAMPHORsomatic/SB_CH.patch
https://github.com/fritzsedlazeck/SURVIVOR
https://github.com/bcgsc/NanoSim
https://github.com/jts/nanopolish
https://figshare.com/articles/dataset/HORmon/16755097/1
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Table 1. Summary statistics of long-read (Nanopore) and short-read (Illumina) data from six cell-lines. COLO829 (from a metastatic cutaneous melanoma 
patient) and COLO829BL (from a lymphoblastoid line of the same patient) have been often used as a benchmark in many previous studies ( 35 , 47 , 77 ). 
Although this cell-line has been known to have hypermutated nature for somatic single nucleotide variants as well as double nucleotide ones, the number 
of somatic SVs seems to be relati v ely low. H2009 (from metastatic lung adenocarcinoma) has many long insertions mainly by high LINE1 activity and has 
been used in studies investigating the mechanism of MEIs ( 20 , 21 ). HCC1954 (from ductal breast carcinoma) and HCC1954BL also have been frequently 
used as a benchmark (TCGA mutation calling benchmark 4, https://gdc.cancer.gov/ ) and seem to have a relati v ely large number of somatic SVs. Although 
these cell-lines have been used in many studies, there have been few efforts to characterize e xhausti v e and accurate lists of somatic SVs from these cell-lines 

Cell-line 
Long-read yield 

(Gbp) 
Long-read total 

read count 

Long-read 
median read 

length 
Long-read max 

read length 
Long-read N50 

length 
Short-read yield 

(Gbp) 

COLO829 67 .17 5,176,983 7,997 185,650 24,138 250.28 
COLO829BL 59 .13 6,253,574 5,691 124,349 17,243 393.24 
H2009 114 .91 10,319,362 6,342 238,152 20,873 484.26 
BL2009 156 .30 15,684,323 5,195 240,066 20,337 319.82 
HCC1954 145 .58 11,285,481 7,523 250,253 24,501 291.86 
HCC1954BL 126 .34 17,608,439 3,689 220,506 14,309 205.76 
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ccuracy. Among the total 685 SVs by all four algorithms, 
anomonsv applied to ONT sequencing data identified 624 

Vs (91.1%) (Figure 3 B), suggesting the high sensitivity 

f nanomonsv on long-read sequencing data e v en for rel- 
ti v ely low cov erage compar ed to short-r ead sequencing 

ata. 
For COLO829, H2009, and HCC1954, 6, 87 and 51 (7.1– 

2.0%), respecti v ely, were ne wly detected by long-read se- 
uencing data (not identified by any of the four algorithms 
r by TraFiC-mem ( 20 ) applied to high-coverage Illumina 

hort-read sequencing data). These long-read specific SVs 
ere also validated by PCR method with similar accuracy 

s SVs detected in the short-read technology (Supplemen- 
ary Figure S5a). These long-read specific SVs were mostly 

nsertions or SVs with two breakpoints located in repeat or 
ow-complexity regions (Supplementary Figure S7). For in- 
tance, the somatic translocation connecting chromosomes 
 and 6 (chr3:26390429–chr6:26193811) in COLO829 was 
issed by Illumina sequence data, probably because the 

hort-read alignment was highly ambiguous around the 
reakpoint of chromosome 3 (overlapping with LINE1 an- 
otation). Some of the SVs in this category had clear signals 
f copy number changes around the breakpoints (Supple- 
entary Figure S8), giving another evidence that they were 

enuine somatic SVs. 
Breakpoint positions detected by nanomonsv on ONT 

equencing data were mostly (96.7%) within two bp of 
hose detected by Illumina sequencing data (Figure 3 C), de- 
pite the difference in error rate between the two platforms. 
her efor e, r easonably accura te identifica tion of breakpoint 
ositions is possible with error correction and careful ex- 
mination of supporting reads from error-prone long-read 

equencing. 
Ninety-nine somatic SVs were those affecting known 

ancer-related genes ( 46 ). These included important cancer 
enes such as the 12 kb deletion of PTEN in COLO829 ( 47 )
nd the 5kb deletion of STK11 in H2009 though these were 
lso identified by the short-read platform. 

valuation of nanomonsv using benchmark dataset and 

imulation 

e compared 49 somatic SVs obtained by nanomonsv 

sing ONT sequencing data of COLO829 with high- 
onfidence somatic SV sets for the same cell-line generated 

y high-coverage short-read platforms and multiple variant 
allers ( 35 ) (Arora benchmark hereafter) as well as multi- 
latform combined with e xtensi v e e xperimental validation 

 36 ) (Valle-Inclan benchmark). Among 75 and 58 somatic 
Vs by Arora and Valle-Inclan benchmark, nanomonsv 

etected 44 and 46 SVs (Figure 3 D, Supplementary Fig- 
re S9a). Assuming that novel SVs by nanomonsv (6 and 

 SVs, respecti v ely) were all false positi v es, the ratios of
r ecision wer e 87.8% (43 / 49) and 91.8% (45 / 49), and r e-
all was 57.3% (43 / 75) and 77.6% (46 / 58) at worst (Figure
 E). This tendency was robust when we applied nanomonsv 

o higher-depth Nanopore sequence data (sequence yield, 
umor: 190.12 Gbp, normal: 138.80 Gbp) and PacBio se- 
uencing data (sequence yield, tumor: 137.16 Gbp, normal: 
45.28 Gbp) from the same cell-line and their matched con- 
rol deposited as PRJEB27698 ( 36 ) (Figure 3 D, E, and Sup- 
lementary Data 4). Although the recall was slightly lower 

or Arora benchmark, the number of supporting reads for 
heir sequence data was generally small (Supplementary 

igure S9b). 
To evaluate the importance of the a pproach jointl y uti- 

izing tumor and matched control samples, we separately 

pplied regular SV detection tools (Sniffles2 ( 37 ), cuteSV 

 15 ), Delly ( 38 ) and SVIM ( 13 )) to tumor and matched
ontrol samples with different thresholds, and filtered out 
he SVs called in matched controls from those in tumors 
we call this approach as ‘separate detection and subtrac- 
ion approach’). The precision and recall of this approach 

ere inferior to those of nanomonsv, suggesting that si- 
 ultaneousl y utilizing tumor and matched control data 

s effecti v e for the sensiti v e and accura te identifica tion of
omatic SVs (Figure 3 F, Supplementary Figure S9c). We 
av e also e valua ted the software CAMPHORsoma tic ( 39 ), 
hich handles tumor and matched control samples simul- 

aneously. The precision and recall of nanomonsv were bet- 
er than those of CAMPHORsomatic (Figure 3 F, Supple- 
entary Figure S9c). Next, we evaluated the performance 

f nanomonsv using simulation data with different tumor 
urity and sequence yields. Overall, the precision and re- 
all of nanomonsv were superior to other approaches. Al- 
hough the recall ratio became small for very low tumor 
urities and sequence yields, precision was relati v ely sta- 
le, implying the robustness of nanomonsv (Supplementary 

https://gdc.cancer.gov/
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Figure 3. Ov ervie w of somatic SVs identified by nanomonsv and their performance evaluations. ( A ) The number of somatic SVs detected by nanomonsv 
grouped by the type of SVs and whether they are identified by the short-read analysis. DEL, DUP, INS, INV and TRA stand for deletion, duplication, 
insertion, inversion, and translocation, r espectively. Her e, ‘partially detected’ indicates the case where either of the two breakpoints is the same as the one 
detected from short-read. A typical example includes an INS whose inserted sequences came from the other part of the genome, and one of the breakpoints 
could be identified as a different type of SV (usually as TRA) by short-read. ( B ) The ratio of somatic SVs identified by nanomonsv among those detected 
by the short-read platform stratified by how often these SVs are called by four software progr ams (manta, SvAB A, GRIDSS, and GenomonSV). Also, the 
ratio of SVs detected by all four programs (list of highly reliable SVs) was highlighted with a different color (dark or ange). ( C ) Histogr am of the number of 
SVs according to the deviations of breakpoint positions from a short-read platform. ( D ) Overlap between SVs detected by nanomonsv and high-confidence 
SVs in COLO829 determined by two benchmark datasets [SVs detected from high coverage Illumina sequence data (Arora et al. 2019) and SVs detected 
and v alidated b y multiple platforms and experiments (Valle-Inclan et al. 2020)]. ( E ) Precision and recall of nanomonsv measured using two benchmark 
datasets (Arora et al. 2019, Valle-Inclan et al. 2020), assuming that SVs not present in the benchmark are all false positi v es. P erformance w as measured 
using three pairs of COLO829 sequencing data, consisting of our data [ONT (Ours)], high coverage ONT [ONT (PRJEB27698)], and PacBio sequencing 
data [PBS (PRJEB27698)]. ( F ) Precision and recall measured by four different approaches (nanomonsv, CAMPHORsomatic and four separate detection 
and subtraction approaches using Sniffles2, cuteSV, Delly, and SVIM) on our COLO829 dataset. The precision and recall were measured by two benchmark 
datasets. 



PAGE 9 OF 18 Nucleic Acids Research, 2023, Vol. 51, No. 14 e74 

F
r
s  

a
1

C

C
a
a
a
s
s
p
q
a
c
s
g

a
p  

i
e
i
t
g
f  

e
b

(
q
o
c
t
t
w
I
w
d
p
c
s
1
c  

s
t
i
q
i
q

m
u
m
T
e
d

W
o
i
w
p
g
d  

e
i
fi  

r
w
f
t
t
t

p
L
e
s
h
a
s
n
G
u
a
t
m
t
e
c
c
t
p
c
i
b
e
n
F
l  

m
W
t
s
(

f
o
m
r
t
w
t
w
s
r
o

igures S10–S12). Especially in the case of low tumor pu- 
ity, the sensitivity is significantly reduced without a decent 
equence yield. Ther efor e, e v en for long reads, it is desir-
b le to hav e 30–40 × cov erage (roughly equi valent to 90– 

20 Gbps yield) as in typical short-read-based studies ( 48 ). 

haracterization of mobile element insertions 

anonical SV module identified a total of 509 insertions, 
mong which 492 were from H2009. For insertions, our 
pproach can identify complete inserted sequences as well 
s inserted positions. Ther e ar e many possible types of in- 
ertions, such as tandem duplication, mobile element in- 
ertions (MEIs), viral sequence integration, and processed 

seudo gene. To systematicall y characterize the inserted se- 
uences, especially focusing on MEIs, we have developed 

 pipeline for classifying the inserted sequences based on 

omparison with transcriptome, annotation with repeat 
equence information, and re-alignment to the r efer ence 
enome (see Figure 4 A). 

First, if the inserted sequence significantly matched with 

 transcript, the insertions were classified into processed 

seudo gene ( 49 , 50 ), w hich are copies of mRNAs integrated
nto the genome by re v erse transcriptase acti vity of LINE1 

lements. We identified two processed pseudogenes affect- 
ng IBTK and CARNMT1 genes in H2009 (see Supplemen- 
ary Figure S13). Although the existence of these pseudo- 
ene insertions had been identified by the short-read plat- 
orm using the same cell-line ( 49 ), a detailed structure of the
ntire inserted sequence such as the position of the inversion 

reakpoint was first confirmed in this study. 
Second, when either of three major mobile elements 

LINE1, Alu and SVA) covered most of the inserted se- 
uence ( ≥80% by Repea tMasker, http://www.repea tmasker. 
rg ), the inserted sequences were categorized into each 

lass. We identified 323 LINE1 and 15 Alu insertions in 

hr ee cell-lines, r especti v ely (Figure 4 B). The LINE1 inser- 
ions are frequently accompanied by inversion at the 5 

′ end, 
hose mechanism can be explained by ‘twin priming’ ( 51 ). 

n fact, by investigating inserted sequences, the 5 

′ inversions 
ere observed in 81 (25.1%) of LINE1 insertions. In ad- 
ition, 5 

′ inversions were frequently accompanied by the 
artial loss of internal LINE1 sequences, which might oc- 
ur during the integration process (Figure 4 C). We also ob- 
erv ed other comple x structural changes. One e xample was 
100 bp insertion at chromosome 14, which was a direct 
onca tena tion of 160 bp 5 

′ end and 900 bp 3 

′ end LINE1
equence without a 5 

′ inversion. These diversities of inser- 
ion structures produce some deviations between inferred 

nsert sequence lengths from short-read and long-read se- 
uence data (Supplementary Figure S14) because accurate 

nference of the insert nucleotide length from short-read se- 
uencing data is difficult. 
Next, the remaining insertions were aligned to the hu- 
an genome to explore LINE1 3 

′ transductions, in which 

nique DNA segments downstream of LINE1 elements are 
obilized as part of aberrant retrotransposition e v ents ( 52 ). 
ransposed sequences can be a combination of LINE1 el- 
ments and their downstream sequences (partnered trans- 
uctions) or only downstream ones (orphan transductions). 
hen a LINE1 element existed upstream of the aligned site 
f inserted sequences, we can infer that the LINE1 element 

s the source of transduction. As possible LINE1 sources, 
e first extracted 5228 full-length evolutionarily recent 
rimate-specific LINE1 elements from the human r efer ence 
enome (r efer ence putati v e LINE1 source elements). In ad- 
ition, since se v eral acti v e non-r efer ence LINE1 sour ce el-
ments can be detected as polymorphic insertions, we also 

ncluded 652 and 2610 full-length LINE1 insertions identi- 
ed in 1000 genomes Phase 3 ( 53 ) and gnomAD v2.1 ( 54 ),
especti v el y. Furthermore, w hen many inserted sequences 
ere aligned to the same genomic locations, we searched 

or the germline LINE1 insertion near those positions from 

he normal sequence data and manually curated the puta- 
i v e rare germline LINE1 insertions that were considered as 
he sources of LINE1 3 

′ transduction. 
We identified 107 somatic 3 

′ transduction e v ents (61 

artnered and 46 orphan transductions) from 33 putati v e 
INE1 source elements, of which 105 from 31 source el- 
ments were from H2009 (Figure 5 ). Of the 24 LINE1 

ources from the reference genome, 20 belonged to the 
uman-specific LINE1 (L1HS) subfamily, three to L1PA2, 
nd one to L1PA4 (the second and fourth youngest primate- 
pecific subfamilies, respecti v ely). Nine were deri v ed from 

on-r efer ence LINE1 sour ce elements (four from 1000 

enome Phase 3, three from gnomAD, and two from man- 
al cur ation), corrobor ating the importance of population- 
nd individual-specific hot LINE1 elements ( 55 ). Several 
ransductions included the 5 

′ inversions, implying the same 
echanism as solo L1 insertion, such as twin priming func- 

ions during re v erse transcription. For each LINE1 source 
lement, 3 

′ end positions of the inserted sequences tended to 

oncentra te a t the close genomic positions. This may be be- 
ause these 3 

′ end positions are probably the location where 
he transcription is terminated, and the positions with a 

otency of transcription termination may be scattered be- 
ause they r equir e some characteristic sequences. As local- 
zed h ypo-meth ylation of the LINE1 promoter region has 
een reported to dri v e the somatic activation as source el- 
ments ( 20 ), we quantified the methylation le v el using na- 
opolish ( 56 ) on raw signal-le v el data of ONT sequencing. 
or all the 23 r efer ence LINE1 sour ce elements, the methy- 

a tion ra tios w ere significantly low er in tumors than in the
atched controls (Figure 6 A, Supplementary Figure S15). 
e also identified two examples of nested LINE1 transduc- 

ion ( 20 ), where somatically inserted LINE1 elements them- 
elves became the source of the next LINE1 transduction 

Figure 6 B). 
The refinement step of the nanomonsv procedure per- 

orms error correction of the insert sequences. The accuracy 

f the insert sequences by nanomonsv was estimated to be 
ostly more than 95% (Supplementary Figure S16a). This 

efinement of inserted sequences enabled us to investigate 
he features such as target site duplications and polyA tails, 
hich were frequently accompanied by MEIs (Supplemen- 

ary Figure S16b). Target site duplications and poly-A tails 
ere observed in 67.2% (314 / 467), and 96.8% (452 / 467), re- 

pecti v ely (Figure 4 D, E). These results suggest that long- 
ead sequencing has great potential for characterizing vari- 
us mechanisms of genomic insertions. 

http://www.repeatmasker.org
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A B

C

D E

Figure 4. Classification and structure of inserted sequences between somatic SV breakpoints. ( A ) A simplified chart for classifying inserted sequences used 
in this study. See the Materials and Methods for detail. ( B ) The size and classification distribution (histogram in bins of 100 bp) of inserted sequences. 
P artner ed TD, Orphan TD and PPG ar e partner ed tr ansduction, orphan tr ansduction and processed pseudogene, respecti v ely. ( C ) Diagram showing 
the position of each solo LINE1 inserted sequence without (left) and with (right) 5 ′ inversion within the human-specific LINE1 sequence (L1HS). The 
horizontal lines or arrows in the same vertical position show single solo LINE1 insertion e v ents. They mostly start from the middle (by 5 ′ truncation) but 
usually end at 3 ′ end of LINE1. ( D , E ) The number of insertions with detected target site duplications (TSDs) and polyA tails stratified by the categories 
of inserted sequences. 
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Figure 5. A comprehensi v e picture of L1 transductions identified in H2009. Horizontal arrows in each vertical position show distinct LINE1 transduction 
e v ents whose corresponding LINE1 source sites are distinguished by color and labeled by cytoband. Asterisks beside the labels indicate that the source sites 
are not in the human reference genome. Arrows starting before the position of LINE1 3 ′ ends (within LINE1 sequences shaded by light pink) are partnered 
transductions, whereas those starting after LINE1 3 ′ ends are orphan transductions. Multiple arrows in one line indicate some structural changes in the 
inserted sequences (most typically internal inversions depicted by two outwardly directed arrows) . 
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A

B

Figure 6. Characterization of L1 transductions identified in H2009. ( A ) Methylation status of promoters of somatic LINE1 source elements for H2009. 
For each LINE1 source site (labeled by cytoband), the upper and lower box es r epr esent the tumor (T) and matched control (C) methylation states. After 
the detection of methylated bases for each CpG site using nanopolish, the ratios of methylations were calculated. Contrasting density was determined by 
the depth of sequence covering each site. P -values measuring the significance of methylation frequency difference between the tumor and match control at 
each source element ranged from 1 . 17 × 10 −62 to 1 . 37 × 10 −6 with a median of 4 . 43 × 10 −13 (see Materials and Method for detail). ( B ) Examples of nested 
LINE1 insertion identified in H2009. Two full-length LINE1 insertion sites became the ne w acti v e sources of LINE1 transductions. The novel source site 
at 1q32.3 generated one orphan LINE1 transduction. The second novel source site at 11q12.3 e v entually produced two partnered transductions and one 
orphan transduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SVs connected with centromere and telomere sequences 

Single breakend SV module identified in a total of 91 so-
matic single breakend SVs (3, 38 and 50 in COLO829,
H2009 and HCC1954, respecti v ely, see Supplementary
Data 5, 6). Of those, 32 single breakend SVs were bound to
satellite (23 and 5 SVs for alpha satellite and human satellite
sequences, respecti v ely) or simple repeat sequences (4 SVs).
Although e v en short-read sequences can be used to iden-
tify single breakend SVs with satellite or simple repeat se-
quences ( 28 ), long-read sequencing enables us to elicit more
 

refined information about their nature by assembling the
raw read after the breakpoint. 

In alpha satellite regions, various types of a pproximatel y
171 bp monomer sequences constitute high order repeat
(HOR) structure per centromere region ( 44 ). In chromo-
some X, 12 di v ergent monomers are ordered to form an ap-
proximately 2000 bp canonical HOR (ABCDEFGHIJKL),
which occupies most of the centromeric region over mil-
lions of bases ( 57 ). On the other hand, non-canonical forms
of HOR structures specific to populations and individuals
are occasionally observed ( 58 , 59 ). For each of the 21 single
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reakend SVs leading to alpha-satellites (excluding two that 
atched inacti v e alpha-satellite sequences), we e xamined 

he consistency of the contig sequence with the HOR pat- 
ern at the centromere of each chromosome by calculating 

he HOR match score (Figure 7 A, see Materials and Meth- 
ds for details). At least, 12 single breakend SVs were es- 
imated to be interchromosomal (Supplementary Data 6), 
nd se v en of them corresponded to the deri vati v e chromo-
omes inferred by previous SKY karyotype experiments (re- 
ource hosted on the Cellosaurus w e bsite ( 60 , 61 )). Also, w e
ould validate 7 out of 8 using PCR (see Supplementary 

igur e S17). Ther efor e, translocation involving centromer e 
equences may be a frequent e v ent. 

Most of the estimated HOR from the contig centromere 
equence were canonical ones which are chromosome- 
pecific and evolutionary defined ( 44 ). On the other hand, 
e identified non-canonical HORs in three single breakend 

Vs bound to alpha satellite sequences. One single break- 
nd SV at chromosome 11 connected to the centromere 
equence of chromosome X had a 17-mer monomer of 
BCDEFGHIJKLHIJKL (Supplementary Figure S18). 
We detected a single breakend SV joining a centromere 

equence of chromosome 13 and complex rearranged re- 
ions in RB1 , a well-characterized tumor suppressor gene 
ocated in the region distant from the centromere sequences 
Figure 7 B, Supplementary Figure S19). Furthermore, we 
dentified a single breakend SV at chromosome 20 con- 
ected to chromosome 8 alpha satellite sequences with an 

nversion in the alpha satellite side near the breakpoint, 
hich was validated by PCR (Figure 7 C). We have also 

dentified three single breakend SVs leading to telomeric 
equences (Figure 7 D, Supplementary Figure S20) ( 62 , 63 ), 
wo of which, corresponding deri vati v e chromosomes have 
een detected by previous SKY (der(14)t(X;14) in H2009 

nd der(2)t(2;8;4) in HCC1954) ( 60 , 61 ). These observations 
uggest that SVs involving centromere and telomere se- 
uences are common e v ents in cancer, and our approach 

an help re v eal their complex structures. 

INE1-mediated r earr angements detected by single br eak- 
nd SV module 

any contig sequences of single breakend SVs showed 

rominent pa tterns indica ti v e of LINE1-mediated rear- 
angement, where the first portion matched the LINE1 se- 
uence and the remaining portion unambiguously matched 

he human genome sequence distant from the breakpoints 
Supplementary Figure S21). Although its presence is 
idely known, LINE1-mediated rearrangement has been 

otoriously difficult to detect from short-read sequencing 

ata. 
In the H2009 cell line, where LINE1-mediated deletions 

ere analyzed e xtensi v ely in pre vious studies using a short- 
ead platform ( 20 , 21 ). Our analysis detected 12 LINE1- 
ediated deletion and rearrangement e v ents. Ten of these 
ere accompanied by local deletions (112–10430 bp), of 
hich six had also been detected in previous studies. The 
ewly detected ones tended to have shorter inserted LINE1 

equences. We also newly identified one large intrachromo- 
omal rearrangement and one interchromosomal transloca- 
ion mediated by LINE1 sequences. Three newly identified 
INE1-mediated rearrangements were validated by PCR 

Supplementary Data 7). Most LINE1-mediated SVs had 

 relati v el y simple structure w here different locations were 
onnected via LINE1 segments. Howe v er, we also identi- 
ed two complex LINE1-mediated rearrangements (Figure 
 A, Supplementary Figure S22). One was predicted to be 
n insertion with a pproximatel y 30 000 bp in length from a 

istant genomic region, mediated by a 658 bp LINE1 seg- 
ent and an orphan transduction. The other was an in- 
 ersion e v ent affecting the CENPI gene with two break- 
nds, one of which was deri v ed from a partnered transduc- 
ion from a non-r efer ence LINE1 sour ce site on 3q21.1. 
n the HCC1954 cell line, we also identified one interchro- 
osomal translocation mediated by a LINE1 and one pu- 

ati v e Alu-mediated deletion (Supplementary Figure S23). 
hile poly-A tails were observed in the majority of LINE1- 
ediated rearrangements (10 out of 12), no rearrangements 

ad target site duplications, consistent with previous studies 
 21 , 64 ). 

epatitis B virus integration detection 

ir al integr ation into the cancer genome is fairly frequent in 

ancers such as human papillomavirus ( ∼8000 bp) in mul- 
iple cancers ( 65 ), hepatitis B virus (HBV) ( ∼3300 bp) in 

i v er cancers ( 66 ) and human T-cell leukemia virus type I
 ∼9000 bp) in adult T-cell leukemia / lymphoma ( 67 ). We 
ave applied nanomonsv to a cell-line, PRC / PRF / 5, known 

o have HBV integration. Since there were no matched con- 
rols for this cell-line, we used BL2009 cell-line as a dummy 

atched control and just focused on HBV integration de- 
ection. We identified 12 HBV integrations. Most of these 
ntegrations were identified by Single breakend SV mod- 
le because the integrations were usually accompanied by 

arge deletions and translocations. Nanomonsv identified 

ot only all the integrations identified in previous studies 
y Illumina short-read platforms but also one new integra- 
ion (Supplementary Data 8). Howe v er, the advantage of 
ong-reads is the ability to reconstruct the HBV insertion 

ite and internal sequence completely. We observed that one 
ntegration had characteristic inverted duplication consist- 
ng of HBV and human genome sequences around the inte- 
ration sites. For example, in the HBV-mediated rearrange- 
ent that connected the TERT gene promoter (known as 

he frequent HBV integration site ( 66 , 68 , 69 )) on chromo-
ome 5 and to the locus of chromosome 13, intermittent 
egments of human and viral sequences formed inverted du- 
lication (Figure 8 B). Furthermore, we identified an HBV- 
ediated rearrangement at chromosome 8 connected to a 

uman Satellite 2 sequence, whose origin was predicted to 

e the one in chromosome 1 by alignment to the CHM13 

 efer ence genome ( 70 ), suggesting that this e v ent is an HBV-
ediated interchromosomal translocation. 

ISCUSSION 

e proposed two approaches for identifying somatic struc- 
ural variations (SVs), Canonical SV module and Single 
reakend SV module. Canonical SV module can identify 

he majority of the SVs identified from short-read platforms 
s well as novel ones. The precision and recall of Canonical 
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Figure 7. Single breakend SVs involving alpha satellite and telomere sequences. ( A ) For each single breakend SV (whose breakpoint was illustrated 
as chromosome:position (direction) in the axis label) linked to alpha satellite sequence, heatmaps depict the consistency of the contig sequence with the 
respecti v e centromere HOR for each chromosome. The color intensity of cells was determined by the deviation from the maximum HOR score across HORs 
within each SV. Single breakpoint SVs that wer e consider ed to be interchromosomal were shown in red. ( B ) Example of complex SVs involving centromere 
sequence affecting RB1 gene in H2009. The inversion within RB1 gene (colored by purple) was identified by Canonical SV module. Single breakend SV 

leading to the alpha satellite region via 105 bp segment, whose exact location of the 105 bp segment could not be identified because it matched to se v eral 
positions in a simple repeat region, was identified by Single breakend SV module. See also Supplementary Figure S19. ( C ) A characteristic example of 
single breakend SV connected to an alpha satellite sequence accompanied by inversion in the vicinity of the breakend on the alpha satellite side. This SV 

could be validated by PCR because we were able to design a pair of primer sequences both of which straddle the cancer-specific breakpoints, and the 
product size was modest ( ∼1000 bp). See also Supplementary Figure S18. ( D ) SVs involving telomere sequences identified by Single breakend SV module. 
Some karyotypes were placed in re v erse (in rev.). 
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B

A

Figure 8. Complex LINE1- and HBV-mediated rearrangements identified by nanomonsv Single breakend SV module. ( A ) Examples of complex SVs with 
multiple LINE1-mediated rearrangements as components. ( B ) Examples of complex HBV integrations. The number pairs listed on the side of each HBV 

segment indicate the start and end coordinates in the HBV sequences (LC533934 and X77700). 
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V module were demonstrated to be superior to the ‘sepa- 
ate detection and subtraction approach’ using existing SV 

etection tools. Furthermore, we have developed a work- 
ow for detecting and classifying single breakend SVs (Sin- 
le breakend SV module). We demonstra ted tha t it could 

dentify complex SVs, such as those involving satellite se- 
uences, LINE1-mediated rearrangement, and viral inte- 
ration, which had been difficult to detect by short reads. 

We could determine the breakpoints of SVs with a single- 
ucleotide resolution with non-templated sequence inser- 
ions to some extent. Currently, most sophisticated algo- 
ithms on short-read platforms support single-nucleotide 
esolution detection using split-read evidence or local as- 
emb ly. Howe v er, there has been little evaluation on the 
esolution of breakpoints of SVs using noisy long-read se- 
uencing data. Identifying breakpoints at single-nucleotide 
esolution allows us to identify micro-homology and non- 
emplated sequence insertions, which can provide us with 

alua ble information a bout the mechanisms that generate 
Vs ( 71 , 72 ). In addition, it is highly preferable for com-
arison and annotation with SVs r egister ed in a public 
atabase. 
In this paper, we did not focus on somatic 

NTR / microsa tellite repea t e xpansion e v ents ( 73 ).
lthough long-read sequencing technology can poten- 

ially improve the detection of repeat expansion events, 
he current frame wor k based on the reference genome 
ay not be appropriate to capture long repeat expansion 

 v ents because the r efer ence genome is not reliable at the
ocation susceptible to these events. One possible approach 

o capture these e v ents may be to list microsatellite and 

NTR r egions befor ehand, count the number of repeats 
sing short tandem repeat aware alignment algorithms, 
nd measure the difference in repeat count profiles between 

umor and matched control data. 
Although the current approach successfully identified so- 
atic SVs and MEIs, detection of those present in the mi- 

ority of cells (subclones) is still challenging with a modest 
equencing depth. One way to deal with this is to perform 

arget region amplification by adapti v e sampling ( 74 , 75 ). 
nother possibility to tackle this problem would be to com- 
ine single-cell sequencing technologies ( 76 ) with long-read 

latforms. 
On the other hand, the interpretation of the detailed 

tructure and properties of complex SVs is not fully auto- 
a ted a t present, and m uch of the work is done manuall y,
hich remains a challenge for processing many samples. For 

his purpose, there is a need to cover and classify more ‘com- 
lex’ forms of SVs. In addition, visualization methods need 

o be de v eloped to facilita te interpreta tion. It will also be
ecessary to establish an appropriate format for describing 

omplex SVs in the future. 
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Single breakend SV module incorporates some assembly.
Howe v er, it cannot detect SVs where both of the break-
points are located in areas where reference genomes are
not well-characterized, such as highly repetiti v e regions. It
will be necessary to obtain and utilize a complete r efer ence
genome for each individual ( 70 ) or consider using a graph
genome that covers a major variation of human genomes
( 30 ). 
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