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Mechanism of U6 snRNA oligouridylation by
human TUT1

Seisuke Yamashita 1 & Kozo Tomita 1

U6 snRNA is a catalytic RNA responsible for pre-mRNA splicing reactions and
undergoes various post-transcriptional modifications during its maturation
process. The 3'-oligouridylation of U6 snRNA by the terminal uridylyl-
transferase, TUT1, provides the Lsm-binding site in U6 snRNA for U4/U6 di-
snRNP formation and this ensures pre-mRNA splicing. Here, we present the
crystal structure of human TUT1 (hTUT1) complexed with U6 snRNA, repre-
senting the post-uridylation of U6 snRNA by hTUT1. The N-terminal ZF-RRM
and catalytic palm clamp the single-stranded AUA motif between the 5'-short
stem and the 3'-telestem of U6 snRNA, and the ZF-RRM specifically recognizes
the AUA motif. The ZF and the fingers hold the telestem, and the 3'-end of
U6 snRNA is placed in the catalytic pocket of the palm for oligouridylation. The
oligouridylation of U6 snRNA depends on the internal four-adenosine tract in
the 5'-part of the telestem of U6 snRNA, and hTUT1 adds uridines until the
internal adenosine tract can form base-pairs with the 3'-oligouridine tract.
Together, the recognition of the specific structure and sequence of U6 snRNA
by the multi-domain TUT1 protein and the intrinsic sequence and structure of
U6 snRNA ensure the oligouridylation of U6 snRNA.

In eukaryotes, the pre-mRNA splicing reaction is catalyzed by the
spliceosome, a ribonucleoprotein (RNP) complex. The major spliceo-
some comprises five small RNP complexes—U1, U2, U4, U5, and
U6 snRNPs—and a large number of proteins1. The U6 snRNP enters the
splicing cycle by forming di-U4/U6 snRNPs in a reaction catalyzed by
the p110/SART3 and Lsm2-8 ring protein complexes, which together
promote the annealing of U6 and U4 snRNAs2–4. The di-U4/U6 snRNPs
are used to form the U4/U6·U5 tri-snRNP, which is then recruited into
the pre-spliceosome consisting of the pre-mRNA and the U1 and
U2 snRNPs. The U6 snRNA forms an alternative helix with the
U2 snRNA, and the splicing reactions proceed with the structural
rearrangements of the U6 snRNA. In the splicing reactions, U6 snRNA
catalyzes the trans-esterification splicing reactions by forming the
active site with the coordinating divalent cations for the catalysis5.

U6 snRNA is transcribed by RNA polymerase III. The U6 snRNA
transcript has 5'-short stem and 3'-telestem-internal stem-loop (ISL)
secondary structures, which are separated by a single-stranded region
containing the AUA motif6,7. The U6 snRNA primary transcript

undergoes multiple processing steps, including modifications of the
nucleosides, 5'-γ-phosphate methylation, 3'-oligouridylation, and 3'-
uridine trimming8. The primary transcript of the humanU6 snRNA has
four genome-encoded uridines (4 Us: UUUUOH) at its 3′-end. After
transcription, the 3′-end is oligouridylated by a terminal uridylyl-
transferase (TUTase), TUT1 (TENT1)9–11. Subsequently, the 3'-oligour-
idylated tail is trimmed by Mpn1 (Usb1), a 3′−5′ exonuclease12–14. The
mature U6 snRNA has five uridines with a 2′,3′-cyclic phosphate (5
U > p: UUUUU>p). These 3′-maturation processes protect U6 snRNA
from degradation. The 3'-oligouridylated tail is required for the di-U4/
U6 snRNP formation. The Lsm2-8 ring complexes bind the oligour-
idylated tail of U6 snRNA, and together with p110 facilitate the
annealing of the U6 and U4 snRNAs to form the di-U4/U6 snRNP4,15,16.
The 3′-oligouridylated tail is also required for the U6 snRNA recycling
after the splicing reaction17, and thus contributes to efficient pre-
mRNA splicing in cells.

Human TUT1 (hTUT1) specifically oligouridylates U6 snRNA using
UTP as a substrate9–11, and is amember of the TENT family18–20. hTUT1 is
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a multi-domain enzyme consisting of the N-terminal zinc finger (ZF),
the RNA recognition motif (RRM), the central catalytic core domain,
and the C-terminal kinase associated-1 (KA-1) domain21–25. The detailed
mechanism for the nucleotide specificity of hTUT1 was clarified by
structural and biochemical analyses of the catalytic core domain of
hTUT1 complexed with UTP22. However, the detailed mechanisms for
the specific recognition of U6 snRNA by the multiple domains of
hTUT1 are not fully understood. Furthermore, the regulatory
mechanism ensuring the oligouridylation of the 3'-end of U6 snRNA
also remains enigmatic.

Here, we present the crystal structure of a shortened hTUT1
complexed with a short U6 snRNA, representing the post-uridine
addition to the 3'-end of U6 snRNA by hTUT1. Crystallographic and
biochemical studies of hTUT1 have now revealed the molecular
mechanism underlying the specific oligouridylation of the structured
U6 snRNA and the regulation of the 3'-oligouridylation of U6 snRNA
by hTUT1.

Results
Crystallization of the TUT1-U6 snRNA complex
Human TUT1 (hTUT1) is a multi-domain protein consisting of the
N-terminal ZF, RRM, catalytic coredomains (palm and fingers), and the
C-terminal KA-1 domain23. A proline-rich region (PRR), which is less
conserved among vertebrate TUT1 proteins and dispensable for the
oligouridylation of U6 snRNA in vitro22, is present within the palm. The
nuclear localization signal (NLS) is inserted within the C-terminal KA-1
domain (Fig. 1a, Supplementary Fig. 1).

The crystallization trials for the full-length hTUT1 (hTUT1_FL)
complexed with an in vitro transcribed full-length U6 snRNA ending
with four 3'-uridines (3'− 4 Us) were unsuccessful. Thus, we designed a
shorter hTUT1 and a shorter U6 snRNA for the crystallization of the
hTUT1-U6 snRNA complex, based on our previous biochemical and
structural analyses of hTUT122, asdescribedbelow. TheC-terminal KA-1
domain of hTUT1 is bound around the stem of the ISL and the bulged
region between the telestem and the ISL of U6 snRNA22 (Fig. 1b). In
addition, the N-terminal ZF and RRM are bound around the single-
stranded region containing the AUA motif between the 5'-short stem
and 3'-stem (telestem and ISL) (Fig. 1b). While the KA-1 deletion from
hTUT1 decreased the U6 snRNA oligouridylation activity (~20% of
hTUT1_FL) by reducing the hTUT1 affinity forU6 snRNA, theN-terminal
ZF and RRM deletion almost abolished the U6 snRNA oligouridylation
(~<0.2% of hTUT1_FL) by reducing the affinity for RNA as well as the
catalysis in vitro22. Therefore, for a short hTUT1, we designed the
hTUT1 lacking the PRR and the KA-1, hereafter termed hTUT1_ΔC
(Fig. 1a). For a shorter U6 snRNA, we designedU6 snRNA lacking the 5'-
short stem and the ISL and possessing four 3'-Us (U103-U106), here-
after termed U6_mini (Fig. 1b).

hTUT1_ΔColigouridylates U6 snRNA endingwith four 3'-Us (U103-
U106) as efficiently as the hTUT1_FL and rapidly produces U6 snRNA
with six 3'-Us (U103-U108) (Fig. 1c). hTUT1_ΔC also oligouridylates
U6_mini ending with four 3'-Us and produces U6_mini with six 3'-Us,
although the hTUT1_FL oligouridylates U6_mini and produces U6_mini
with six 3'-Us more efficiency and rapidly than hTUT1_ΔC (Fig. 1c). For
the crystallization, several cysteine residues in the hTUT1_ΔC were
replaced with serine or alanine22 (Supplementary Fig. 2) and one of the
catalytic residues, aspartate (Asp218), was replaced with alanine
(Supplementary Fig. 1).

TheX-raydiffractive crystal of hTUT1_ΔCcomplexedwithU6_mini
was obtained, and its structure was analyzed. The crystal belongs to
the space group P6522 and contains one hTUT1_ΔC-U6_mini complex
in the asymmetric unit cell. The initial phase was determined by the
molecular replacement method, using the structures of the catalytic
core domains of hTUT1 (PDB ID: 5WU1 and 5WU6)22 as search models.
Finally, the structure was refined to an Rwork of 30.2% (Rfree = 33.9%) at
3.7 Å resolution. The scaling and refinement statistics are summarized

in Supplementary Table 1, and representative images of the electron
density are shown in Supplementary Fig. 3.

Overall structure of the hTUT1_ΔC-U6_mini complex
The structure of the hTUT1_ΔC-U6_mini complex revealed the exten-
sive interactions between U6_mini and multiple domains of hTUT1_ΔC
(Fig. 1d, e, Supplementary Figs. 4, 5). The linker region (amino acid
residues 135–144) between the RRM and the catalytic core domain of
hTUT1_ΔC was not visible in the present structure. The N-terminal ZF
and the RRM constitute a single domain without any linker between
them (Fig. 1d, e, Supplementary Fig. 5a), and the ZF-RRM and the palm
of hTUT1_ΔC together clamp the 5'-single stranded region containing
the AUAmotif of U6_mini (Fig. 1d, e, Supplementary Fig. 5a–e). The ZF
and the groove loop (amino acid residues 423–427) in the fingers hold
the double-stranded telestem from the major and minor grooves of
the stem region of U6_mini, respectively (Fig. 1d, Supplementary
Fig. 5b, f, g), and the 5'-anchor (amino acid residues 357–371) of the
palm stacks with the base-pair at the top of the telestem (Fig. 1d,
Supplementary Fig. 5d). As a result, the 3'-end of U6_mini is placed into
the catalytic cleft between the palm and fingers (Fig. 1d, e, Supple-
mentary Fig. 5g).

The structure of the catalytic core domain, the palm and fingers,
in the hTUT1_ΔC-U6_mini complex is virtually identical to those of the
previously determined structures of hTUT1 lacking the ZF and KA-1
(hTUT1_ΔZFΔC, Fig. 2a, Supplementary Fig. 6a, b, PDB ID: 5WU6) and
the hTUT1 lacking the ZF and RRM (hTUT1_ΔZF-RRM, Fig. 2b, Sup-
plementary Fig. 6a, b, PDB ID: 5WU1).

The location of the RRM relative to the catalytic core domain in
the structure of hTUT1_ΔZFΔC is different from that in the structure of
the hTUT1_ΔC-U6_mini complex (Fig. 2c, d). The N-terminal ZF-RRM is
connected to the catalytic domain via a flexible linker (Fig. 1d, e) and
canbemobile relative to the catalytic core domain in the absenceof an
RNA substrate22. In the oligouridylation of U6 snRNA by hTUT1, the
mobile N-terminal ZF-RRM binds the single-stranded AUA motif
between the 5'-short stem and the telestem of U6 snRNA, and together
with the palm, clamps the single-stranded region and pulls the tele-
stem of U6 snRNA into the catalytic cleft of hTUT1 for 3'-oligour-
idylation (Figs. 1e, 2d, Supplementary Fig. 6c). As described below, the
ZF-RRM specifically recognizes the single-stranded AUA motif
(A22U23A24) in U6 snRNA. These structural features explain the tight
and stable interaction between hTUT1 and U6 snRNA22.

In the superimposition of the structure of the hTUT1_ΔC-U6_mini
complex onto that of the hTUT1_ΔZF-RRM (Fig. 2e), the C-terminal KA-
1 is close to the tip of the U6_mini loop in the hTUT1_ΔC-U6_mini
complex (Fig. 2e), and the arginine-rich region (RRR) in KA-1 (Supple-
mentary Fig. 1) could interact with the RNA. This structural model is
consistent with previous biochemical data showing that the KA-1 of
hTUT1 binds around the ISL and the bulged region between the tele-
stem and ISL of U6 snRNA (Figs. 1b, 2e) and increases the affinity of
hTUT1 for U6 snRNA through the RRR22. In the oligouridylation of
U6 snRNA by hTUT1, the telestem and ISL of U6 snRNA are held by the
ZF and the fingers and KA-1, respectively (Fig. 2e, f, Supplementary
Fig. 6c). The KA-1 of hTUT1 would prevent the U6 snRNA from dis-
lodging from the surface of hTUT1 for efficient oligouridylation. The
exact RNA recognition mechanism by KA-1 awaits the future determi-
nation of the full-length hTUT1 complexed with U6 snRNA21.

Recognition of the single-stranded AUA motif
The overall structure of the hTUT1_ΔC-U6_mini complex suggests that
hTUT1 recognizes specific structural features of U6 snRNA (Fig. 1,
Supplementary Figs. 4, 5). Indeed, the substitutions of the amino acid
residues that interactwith U6 snRNAdecreased the oligouridylation of
U6 snRNA (Supplementary Fig. 7).

In particular, the single-stranded AUA motif between the 5'-short
stem and the 3'-telestem of U6 snRNA is clamped by the ZF-RRM and
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the palm (Fig. 1d, e), and the A22U23A24 sequence is specifically
recognized by the ZF-RRM through hydrogen-bond and stacking
interactions (Fig. 3a). Asp90 and Lys91 form hydrogen bonds with the
6-NH2 group and the 7-N atom of A22, respectively. Arg124 and the
main-chain carbonyl oxygen of Pro125 form hydrogen bonds with the
4-O and 3-N atoms of U23, respectively. The side-chains of Glu127 and
Phe59 sandwich the U23 base. Gln53 and Arg126 formhydrogen bonds

with the 6-NH2 group and the 7-N atom of A24, respectively. Sub-
stitutions ofGlu53, Asp90, andArg126with alanine all decreased the 3'-
oligouridylation of U6 snRNA (Fig. 3b), while the Arg124Ala mutation
did not affect the reaction. Since the 3-N atomofU23 interacts with the
carbonyloxygenmain chain of Pro125, and theU23base is stackedwith
the side-chains of Glu127 and Phe59, the effect of the Arg124Ala
mutation would not be detected under the tested conditions.
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Fig. 1 | Overall structure of the hTUT1_ΔC-U6_mini complex. a Schematic dia-
grams of full-length human TUT1 (hTUT1_FL) and its variant lacking the
proline-rich region (PRR) and the C-terminal kinase associated 1 (KA-1) domain
(hTUT1_ΔC) used for crystallization. ZF (Zinc finger: yellow), RRM (RNA
recognition motif: orange), PRR (brown), palm (magenta), fingers (green), KA-
1 (cyan), and NLS (blue). b Secondary structures of human U6 snRNA and its
variant U6_mini used for crystallization. Both U6 snRNA and U6_mini have four
3'-uridines (4 Us: U103U104U105U106). U6_mini lacks the 5'-short stem and
internal stem-loop (ISL). The common nucleotide sequences in U6 snRNA and
U6_mini are colored cyan. U6_mini has the 5'-GG sequence for in vitro tran-
scription by T7 RNA polymerase. The ISL is replaced with the UUCG tetraloop,
and U85 is replaced with C85. c In vitro uridylation of U6 snRNA (left) and

U6_mini (right) by hTUT1_FL and hTUT1_ΔC. RNA (200 nM; U6 snRNA or
U6_mini) was incubated with 20 nM hTUT1_FL (or hTUT1_ΔC) in the presence
of 1 mM UTP. The arrowheads are reaction products with six uridines (6 Us) at
their 3'-ends. The experiments were performed twice, and the representative
gel images are shown. Source data are provided as a Source Data file. d The
overall structure of the hTUT1_ΔC-U6_mini complex. ZF, RRM, palm, and fin-
gers are colored as in (a), and U6_mini is colored gray. e Surface representa-
tion of the hTUT1_ΔC-U6_mini complex structure. ZF, RRM, palm, and fingers
are colored as in (d). The 5'-anchor (residues 357-371) in the palm and the
groove loop (residues 423-427) in the fingers are colored red and blue,
respectively. The flexible linker (residues 135-144) between the RRM and the
fingers is depicted as a dashed line.
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To assess the requirement of the AUA motif in U6 snRNA for
efficient uridylation by hTUT1, the mutant RNA substrates were tested
for uridylation by hTUT1. While the addition of the AU sequence to the
5' end of the A22U23A24motif of U6_mini (U6_mini+2) did not increase
the oligouridylation of the RNA by hTUT1_FL, the removal of the AU in
the 5'-single-stranded AUAmotif of U6_mini (U6_mini-2) decreased the
oligouridylation (Fig. 3c, d). Based on gel-shift assays, the estimated Kd

values of the ZF-RRM for U6_mini+2, U6_mini (wild) and U6_mini-2
were 258 ± 46, 204 ± 41 and 574 ± 78 nM, respectively (Fig. 3e). Thus,
the decreasedoligouridylation ofU6_mini-2 is due to a reduction in the
affinity of ZF-RRM. Furthermore, the substitution of the A22U23A24
motif in the single-stranded region between the 5'-short stem and 3'-
telestem of U6 snRNA with CCC (AUA/CCC) or GGG (AUA/GGG) also
decreased the oligouridylation by hTUT1_FL (Fig. 3f, g). The gel shift
assays provided estimated Kd values of the ZF-RRM for U6 snRNA,
U6_AUA/CCC and U6_AUA/GGG of 124 ± 21, 290 ± 29 and 258± 20 nM,
respectively (Fig. 3h). The Q53A/R126A and F59A/F94A mutations in
ZF-RMM decrease the affinity for U6 snRNA with A22U23A24 motif
(Supplementary Fig. 8). Altogether, the recognition of the single-
stranded A22U23A24 motif in U6 snRNA by hTUT1 is crucial for its
efficient oligouridylation.

Mechanism of U6 snRNA oligouridylation by hTUT1
In the structure of the hTUT1_ΔC-U6_mini complex, the 3'-terminal uri-
dine ofU6_mini, corresponding toU106 ofU6 snRNA (Fig. 1b), resides in
the incoming UTP-binding site (+1 position) in the catalytic pocket, and
the uridine base stacks with the uridine base of U105 (−1 position, 3'-
priming position) (Fig. 4a, b). The 4-O atom of U106 forms hydrogen
bonds with the conserved histidine (His549) (Fig. 4a), similar to other
TUTases that recognize UTP in the catalytic pocket22,26–28. Thus, the
present structure represents the post-U-addition stage. In the structure

of the hTUT1_ΔC-U6_mini complex, the 5'-anchor (Gln359 and Val361) in
the palm interacts with the bases at the top of the stem region, while the
groove loop (amino acid residues 423 − 427) in the fingers interacts with
the minor groove of the stem (Fig. 4a, b, Supplementary Fig. 5g). As a
result, U105 (−1 position) is directed to the active site of hTUT1.

hTUT1_FL can efficiently uridylate U6 snRNAs endingwith three to
five 3'-uridines (3 Us: U103-U105, 4 Us: U103-U106, and 5 Us: U103-
U107) to produce U6 snRNAs with six 3'-uridines (6 Us: U103-U108).
However, hTUT1_FL cannot produce U6 snRNAs with more than seven
uridines efficiently (Fig. 4c, Supplementary Fig. 9a).

It was assumed that the four-adenine tract (A27—A30) in the tel-
estemofU6 snRNAcoulddefine the number of uridines added to the 3'
end of U6 snRNA, regulate the uridine incorporation and ensure the
oligouridylation. The oligouridylation proceeds until U103—U106 form
a duplex with the four-adenine tract (A27—A30), and U107 and U108
occupy positions −1 and +1 in the catalytic pocket, respectively
(Fig. 4d). In support of this assumption, the U6 snRNA mutant with
four 3'-Us (U103—U105) and a three-adenine tract in the telestem
(delA_4 Us) was oligouridylated efficiently to produce U6 snRNA with
five 3'-Us (Fig. 4e, f, Supplementary Fig. 9b, c). The U6 snRNA mutant
with four 3'-Us and a five-adenine tract in the telestem (insA_4 Us) was
oligouridylated by hTUT1_FL to produce U6 snRNAs with seven 3'-Us
(Fig. 4e, f, Supplementary Fig. 9c, d). Thus, the number of incorporated
uridines is regulated by the four-adenine tract (A27—A30) in the tele-
stem of U6 snRNA.

After the U108 incorporation, the telestem of U6 snRNA translo-
cates, andU107 andU108move to the −2 and −1 positions, respectively
(Fig. 4d). U107 at the −2 position cannot base pair with U26. Thus,
further uridylation rarely occurs, due to the improper geometry of
U108 at the −1 position and the incoming UTP at the +1 position for the
nucleotidyltransfer reaction (Fig. 4d). This would result in the
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inefficient uridylation after U108 addition (Fig. 4c). The U6 snRNA
variants with nucleotide substitutions in the telestem also support the
proposal that the oligouridylation of U6 snRNA depends on the base-
pairings betweennucleotides at positions 27−30and those at positions
103–106 in the telestem of U6 snRNA (Supplementary Fig. 10). Alto-
gether, the oligouridylation by hTUT1 is controlled and ensured by the
intrinsic sequence within the U6 snRNA.

Discussion
In this study, we determined the crystal structure of a short human
TUT1 lacking the C-terminal KA-1, complexed with a short U6 snRNA
consisting of a 5'-single strand AUAmotif and a 3'-telestem (Fig. 1). The
N-terminal ZF-RRM and the palm clamp the single-stranded region
containing the AUA motif of U6 snRNA between the 5'-short stem and
3'-telestem, and the telestem is heldby theZF and thefingers (Fig. 1d, e,
Supplementary Figs. 4, 5). The single-strandedAUAmotif is specifically
recognized by the ZF-RRM (Fig. 3a, Supplementary Fig. 5). As a result,
the 3'-end of the U6 snRNA is placed in the catalytic cleft between the
palm and fingers for the oligouridylation of U6 snRNA. A recent sys-
tematic analysis of RNA-motifs recognized by RNA-binding proteins
showed that hTUT1 interacts with the AUAcu motif in RNA29, and the
motif sequence matches that between the 5'-short stem and 3'-

telestem of U6 snRNA (Fig. 1b). These structural features effectively
explain the previous data showing that theN-terminal ZF-RRMnotonly
increased the affinity of hTUT1 for U6 snRNA but also assisted in the
proper positioning of the 3'-end of U6 snRNA in the catalytic site for
catalysis22. Thus, the recognition of the specific sequence and structure
of U6 snRNA by the multiple domains of hTUT1 facilitates the efficient
oligouridylation of U6 snRNA.

There are three human terminal uridylyltransferases (TUTases):
TUT1, TUT4 and TUT7. While TUT1 and TUT4/7 belong to the TENT
family, their domain compositions and substrate RNAs are
different18,23,30 (Fig. 5a). TUT4 and TUT7 uridylate precursor miRNAs,
mature miRNAs and mRNAs with short A-tails31–35. The uridylation of
precursor let-7 miRNAs regulates the expression of their mature
counterparts36–42. The mechanism of U6 snRNA oligouridylation by
TUT1 (Fig. 5b) is distinct from that of pre-let7 uridylation by TUT4/743.
TUT4/7 itself does not have oligouridylation activity with pre-let7
(Fig. 5c). In the absence of the Lin28 protein, TUT4/7 monouridylates
group II pre-let7 with one 3'-nucleotide overhang41. However, in the
presence of the Lin28 protein, TUT4/7 oligouridylates pre-let7.
Lin28 specifically recognizes the conserved GGAG motif in the term-
inal loop of pre-let7 miRNAs44,45 and recruits the N-terminal Lin28-
interacting module (LIM) of TUT4/7 to pre-let723,40,44–46. The stable
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ternary complex facilitates the processive oligouridylation of pre-let7
by the C-terminal catalytic module (CM) of TUT4/7 (Fig. 5d). The
oligouridylation proceeds in the CM with the assistance of zinc
knuckle 2 (ZK2) in the CM of TUT4/7, which interacts with the uridine
at the −2 position of the oligouridylated tail, thus stabilizing it43

(Fig. 5d). In contrast, the oligouridylation of U6 snRNA proceeds by
hTUT1 alone and does not require additional RNA-binding proteins,
and there is no domain equivalent to ZK2 in TUT4/7 (Fig. 5a). hTUT1
clamps the single-stranded region containing the AUAmotif between
the 5'-short stem and 3'-telestem and forms the stable hTUT1-U6
snRNA complex10. The oligouridylation by hTUT1 is regulated by the
adenine tract in the telestem (Fig. 4e, f, Supplementary Fig. 10). Oli-
gouridylation proceeds until the uridine at the −2 position (U106)
forms a base pair with A27 in the adenine tract in the telestem
(Fig. 4d). hTUT1 utilizes the intrinsic specific sequence, the adenine
tract, to ensure the uridine incorporations onto the 3'-end of
U6 snRNA, instead of using a specific uridine binding domain such as

ZK2 inTUT4/7 (Fig. 5d). Recently, it has been reported that AtURT1, an
Arabidopsis thaliana TUTase, adds two uridines to the 3'-end of
poly(A). Residues L527 and Y592 in URT1 contribute to its preference
for purine over pyrimidine at the -2 position (the 3'-priming position
corresponds to -1) of single-stranded RNA47. This preference enables
URT1 to control the optimal number of uridines and URT1 added two
uridines to the 3′ extremity of polyA. L527 and Y592 of AtURT1 cor-
responds to V361 and G426 of hTUT1, respectively. V361 is located at
the 5'-anchor of hTUT1 and stackswith the bases at the topof the stem
(Fig. 4a). G426 is in groove loopwhich interacts with theminor groove
of the stem (Fig. 4a, Supplementary Fig. 5g). Thus, themechanisms of
controlling the number of uridines added to the 3'-end of RNAs are
different between AtURT1 and hTUT1.

In sum, the intrinsic sequence and structure of U6 snRNA and the
recognition of the U6 snRNA structure by the multi-domain hTUT1
protein together regulate and ensure the oligouridylation of
U6 snRNA, which is essential for the splicing of pre-mRNAs.
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Methods
Plasmids
The synthetic DNA encoding human TUT1 (hTUT1) and its variants
were purchased from Eurofins Genomics (Japan). The nucleotide
sequences of the synthetic hTUT1 gene and its variants are shown in
Supplementary Table 2. The DNA fragments encoding the full-length
hTUT1 and its variants were cloned between the NdeI and XhoI sites of
the pET22b vector (Merck Millipore, Japan; 69744-3CN). The muta-
tions were introduced by the inverse or overlap PCR method. The
nucleotide sequences of the RNAs used in this study are listed in
Supplementary Table 3. oligonucleotide sequences of the primers
used are listed in Supplementary Table 4.

Expression and purification of recombinant proteins
E. coli BL21(DE3) (Novagen, Japan; 69450-3CN) was transformed by
each plasmid, and grown at 37˚C until the A600 reached 1.0. The
expression of the hTUT1 protein or its variants was induced by adding
0.1mM isopropyl-β-D-thiogalactopyranoside (IPTG) and continuing
the culture at 18 °C for 16 h. The cells were harvested and lysed in
buffer, containing 20mM Tris-HCl, pH 7.0, 500mM NaCl, 10mM β-
mercaptoethanol, 20mM imidazole, 0.1mM phenylmethylsulfonyl
fluoride (PMSF) and 5% (v/v) glycerol. The proteins were first purified
on a Ni-NTA agarose column (QIAGEN, Japan; 30210), followed by a
HiTrapHeparin column (GEHealthcare, Japan; 17-0407-01). Finally, the
proteins were purified on a HiLoad 16/60 Superdex 200 column (GE
Healthcare, Japan; 17-1069-01), in buffer containing 20mM Tris-HCl,
pH 7.0, 300mM NaCl, and 10mM β-mercaptoethanol. The purified
proteins were concentrated and stored at −80 °C.

RNA preparations
Synthetic human U6 snRNA and its variants were synthesized by T7
RNA polymerase using the corresponding DNA fragments as tem-
plates. To prepare U6 snRNA (or its variants) with the homogeneous
3´-end, the DNA fragment encoding the U6 snRNA gene (or its var-
iants) carrying the T7 promoter and the HDV ribozyme sequence
upstream and downstream of the U6 snRNA gene (or its variants)
sequence, respectively48, was used as the template. After in vitro
transcription, the RNA was phenol-chloroform-extracted and dis-
solved in buffer containing 10mMTris-HCl, pH 7.0, and 20mMMgCl2.
The RNA solution was subjected to 15 cycles of incubations (at 60˚C
for 3min and 25 °C for 3min) to self-cleave the RNA by the HDV
ribozyme. The 3'-cyclic phosphate of RNA after the HDV self-cleavage
was removed by T4 kinase (Takara, Japan; 2021 A), in buffer containing
50mM MES, pH 5.8, 20mM MgCl2, and 10mM DTT. Finally, the RNA
was purified by 10% (w/v) polyacrylamide gel electrophoresis under
denaturing conditions. The synthetic oligonucleotide sequences of the
U6 snRNA gene and its variants used for in vitro transcription are listed
in Supplementary Table 2.

Crystallization and structural determination
The crystal used for the structural determinationwas generated by the
sitting drop vapor diffusion method at 4˚C. Before crystallization,
25μM protein and 30μM RNA were mixed in a solution containing
10mM Tris-HCl, pH 7.0, 150mM NaCl, 5mM β-mercaptoethanol,
10mMDTT, and 50mM zinc acetate. A 200 nL portion of the protein-
RNA solution was mixed with 100nL of the reservoir solution, con-
taining 18–20% (w/v) PEG3350, 100mM Bis-Tris, pH 6.4–6.5, 2% (v/v)
Tacsimate, pH 6.0 (Hampton; HR2-827), and 8% (v/v) acetonitrile. The
data set was collected at beamline 17 A at the Photon Factory at KEK,
Japan. The crystals were flash-cooled with the reservoir solution sup-
plemented with 30% (v/v) PEG400. The dataset was indexed, inte-
grated, and scaled with XDS49. The initial phase was determined by
molecular replacement with Phaser50, using the catalytic core struc-
tures of hTUT1 (PDB IDs: 5WU1 and 5WU6)22. The structure was refined

withphenix.refine51 andmanuallymodifiedwithCoot52. Allfigureswere
prepared with PyMOL (http://www.pymol.org).

Uridylation assays
A reaction mixture (30 or 40μL), containing 50mM Tris-HCl, pH 8.5,
100mM NaCl, 10mM MgCl2, 10mM β-mercaptoethanol, 1mM UTP,
and the indicated concentrations of RNA transcript and TUT1 (or its
variants), was incubated at 37 °C. At the indicated time points, a 5μL
portion of the reactionmixturewas withdrawn, and the reactions were
stopped. The RNAs were separated by 10% (w/v) polyacrylamide gel
electrophoresis under denaturing conditions and stained with ethi-
dium bromide. The band intensities were quantified with Gel Doc EZ,
using the Image Lab software (Bio-Rad, Japan).

Gel-shift assay
RNAs (100nM U6_mini and its variants or 50nM U6 snRNA and its
variants) were mixed with various concentrations (0–1000nM) of
hTUT1_ZF-RRM (residues 1-140) or its variants in 10μL of buffer, con-
taining 50mM Tris-Cl, pH 8.5, 100mM NaCl, 10mM MgCl2, 10mM β-
mercaptoethanol, and 10% (v/v) glycerol. Themixturewas incubated at
room temperature for 15min. The RNAs were separated by 6% (w/v) or
8% (w/v) polyacrylamidegel electrophoresis undernative conditions at
room temperature, and the gels were stained with ethidium bromide.
The shifted band intensities were quantified with Gel Doc EZ, using the
Image Lab software (Bio-Rad, Japan).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon reasonable request. The coordinates and
structure factors of hTUT1_ΔC-U6_mini have been deposited in the
Protein Data Bank, under the accession code 8IDF. Source data for the
figures and supplementary figures are provided as a Source Data
file. Source data are provided with this paper.
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