
Vol:.(1234567890)

Brain Topography (2023) 36:736–749
https://doi.org/10.1007/s10548-023-00976-7

1 3

RESEARCH

Linear and Non‑linear Analyses of EEG in a Group of ASD Children 
During Resting State Condition

Brenda Y. Angulo‑Ruiz1 · Francisco J. Ruiz‑Martínez1 · Elena I. Rodríguez‑Martínez1 · Anca Ionescu2 · David Saldaña3 · 
Carlos M. Gómez1

Received: 7 February 2023 / Accepted: 6 June 2023 / Published online: 18 June 2023 
© The Author(s) 2023

Abstract
This study analyses the spontaneous electroencephalogram (EEG) brain activity of 14 children diagnosed with Autism 
Spectrum Disorder (ASD) compared to 18 children with normal development, aged 5–11 years. (i) Power Spectral Density 
(PSD), (ii) variability across trials (coefficient of variation: CV), and (iii) complexity (multiscale entropy: MSE) of the brain 
signal analysis were computed on the resting state EEG. PSD (0.5–45 Hz) and CV were averaged over different frequency 
bands (low-delta, delta, theta, alpha, low-beta, high-beta and gamma). MSE were calculated with a coarse-grained procedure 
on 67 time scales and divided into fine, medium and coarse scales. In addition, significant neurophysiological variables were 
correlated with behavioral performance data (Kaufman Brief Intelligence Test (KBIT) and Autism Spectrum Quotient (AQ)). 
Results show increased PSD fast frequency bands (high-beta and gamma), higher variability (CV) and lower complexity 
(MSE) in children with ASD when compared to typically developed children. These results suggest a more variable, less 
complex and, probably, less adaptive neural networks with less capacity to generate optimal responses in ASD children.

Keywords Autism spectrum disorder · Multiscale entropy · Power spectral density · Variability · Resting-state

Introduction

Autism spectrum disorder (ASD) is one of the most preva-
lent neurodevelopmental disorders in childhood. ASD pre-
sents a high degree of heritability (64–91%) (Muhle et al. 
2004; Tick et al. 2016). Its etiology is still unknown and 
although some studies point to genetic alterations, most 
diagnosed children are non-syndromic. The main symptom-
atology is characterized by socio-communicative deficits, 
restricted interests, and stereotyped behaviors (American 
Psychiatric Association 2013). These clinical signs can be 
present as early as 12 months, however, diagnosis is cur-
rently delayed until the age of 4 years or older (Wang et al. 
2013). In the time up to diagnosis, subtle changes in brain 
function may precede behavioral symptoms that indicate 
developmental problems. This leads to the need to find 
potential biomarkers for early detection that would help and 
support diagnosis (Simon et al. 2017). In this sense, non-
invasive techniques for human brain research, such as elec-
troencephalography (EEG), are proposed as an advantageous 
alternative. The resting state condition require little envi-
ronmental demands and subject involvement (Wang et al. 
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2013), which accommodates the clinical characteristics of 
children diagnosed with ASD, such as their high sensitivity 
(Simon et al. 2017).

Neurophysiological studies with EEG which have ana-
lyzed neural correlates of ASD use linear measures, such as 
Power Spectral Density (PSD) (Chan et al. 2007; DiStefano 
et al. 2019; Pierce et al. 2021). The PSD measured as rela-
tive power (relationship between bands) or absolute power 
(degree of electrophysiological activity present in a specific 
band) has supported the U-shaped curve hypothesis in ASD 
patients proposed by Wang et al. (2013). The U-shaped 
curve hypothesis refers to higher power in both low-fre-
quency bands (e.g. delta and theta; Daoust et al. 2004; Chan 
et al. 2007; Pop-Jordanova et al 2010), and high-frequency 
bands, (e.g. beta and gamma; Orekhova et al. 2007; Rojas 
and Wilson 2014), and reduced power in medium-frequency 
bands (e.g. alpha; Dawson et al. 1995; Chan et al. 2007) 
for ASD with respect to controls. Nevertheless, to show the 
complex and variable intrinsic activity underlying neural 
networks, it becomes necessary to complement PSD analy-
ses with other more specific measures of neural activity. In 
recent decades, research has increasingly focused on non-
linear measures of EEG, such as brain signal variability and 
complexity (Takahashi 2013; Garrett et al. 2013; Van Noordt 
and Willoughby 2021).

Variability is one of the most basic measures of the EEG 
signal. It estimates the range of values over which the signal 
oscillates through the standard deviation (SD) or the coef-
ficient of variation (CV) (Garrett et al. 2013; Grady and 
Garrett 2018). Studies have shown variability increase in 
normal development (Garrett et al. 2013; Angulo-Ruiz et al. 
2021), as well as oscillatory and pathological dependencies 
(Reviewed in Angulo-Ruiz et al. 2021, 2022). A previous 
study showed greater relative variability (CV) across trials in 
the delta band in children with attention deficit hyperactivity 
disorder (ADHD) compared to normally developing children 
(Angulo-Ruiz et al. 2022).

Entropy is the main measure of analysis of temporal com-
plexity of brain signals (Kolmogorov 1958; Pincus 1991, 
1995; Richman and Moorman 2000). Among all types of 
entropy (Takahashi 2013), multiscale Entropy (MSE) is one 
of the most direct measures of intrinsic physiological com-
plexity, allowing the detection of long-range temporal corre-
lations, and reflecting atypical EEG patterns in brain disease 
(Costa et al. 2002, 2005, Takahashi 2013, 2009; Mizuno 
et al. 2010; Garrett et al. 2013; Simon et al. 2017; Shen 
et al. 2021). High and sustained values of complexity at all 
scales would indicate optimal system performance, while 
low values would indicate random or a highly predictable 
signal structure (Papaioannou et al. 2021).

The MSE studies have shown increases during develop-
ment (McIntosh et al. 2008; Lippe et al. 2009; Garrett et al. 
2013; Van Noordt and Willoughby 2021), increases (in fine 

scales) and decreases (in coarse scales) as a function of the 
scale range during normal development (Szostakiwskyj et al. 
2017; Angulo-Ruiz et al. 2022), as well as decreases with 
normal aging (Takahashi et al. 2009). In addition, recent 
studies report partially shared variance between the MSE 
coarse-graining process and spectral density bands (PSD) in 
both normal (Bosl et al. 2022) and pathological populations 
(Angulo-Ruiz et al. 2022).

Studies of clinical populations have often reported abnor-
mal physiological complexity (Takahashi 2013; Shen et al. 
2021). Lower complexity compared to typical development 
has been described in neurodevelopmental disorders (Chu 
et al. 2017; Angulo-Ruiz et al. 2022). Namely, patterns of 
lower complexity in ASD children (Bosl et al. 2011; Liu 
et al. 2017; Kang et al. 2019) and adults (Catarino et al. 
2011; Milne et  al. 2019) has been reported. However, 
some studies show increased complexity (Bosl et al. 2017; 
Takahashi et al. 2016) and/or possible influences of symp-
tom severity (Takahashi et al. 2016; Hadoush et al. 2019). 
Regardless of the direction of MSE abnormality, these find-
ings could be consistent with inefficient information process-
ing and atypical neural connectivity (McIntosh et al. 2008; 
Takahashi 2013; O'Reilly et al. 2017).

In this context, our study aims to provide an integrative 
approach to the analysis of the EEG brain signal of children 
diagnosed with ASD in comparison to normally developing 
children. We employ spectral power density (PSD), relative 
PSD, EEG power variability across trials (CV) and com-
plexity (MSE) analyses. We hypothesized that children with 
ASD would show lower complexity values compared to the 
normative group, while showing an increase in EEG vari-
ability. For PSD, we expect higher amplitude values in the 
low (low-delta and delta) and high (high beta and gamma) 
frequency bands, and lower values in the middle frequen-
cies (theta and alpha) in the ASD group when compared to 
controls. We expect a possible relationship between PSD 
and MSE suggesting a partially shared common source of 
variance. We aim to characterize differences between the 
ASD and the control groups using these neurophysiological 
metrics and to possibly provide a tool for better classification 
and early diagnosis of ASD.

Methods

Participants

Thirty-four children participated in this study. The initial 
sample of the group diagnosed with ASD consisted of 15 
children. One child was eliminated after signal process-
ing due to EEG artifacts. The age of the 14 children ana-
lyzed was between 5 and 10 years (M = 8.36, SD = 1.22, 1 
female). They were recruited from two private centers in 
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Seville, one dedicated to the evaluation and treatment of 
ASD, and the other from a school with a special education 
program whose parents reported in detail the diagnosis of 
ASD. In both cases, the diagnosis was made by expert psy-
chiatrists and clinical psychologists (not directly involved 
in this study) using CIE-10, DSM-IV, and DSM-V. In each 
referral private center, the diagnosis was confirmed using 
Autism Diagnostic Observation Schedule-Generic (ADOS-
G; Lord et al. 2000).

The typically development or control group was com-
posed of 19 children, who were recruited from different 
schools in Seville. The parents did not report neurological 
diseases, signs of epileptic discharge, learning difficulties, 
or developmental delays in the children. One child was 
excluded due to technical problems, thus the final sample 
was composed of 18 children aged between 5 and 11 years 
(M = 7.89, SD = 1.99, 3 females). There were no significant 
differences between the groups (control and ASD) nei-
ther in age (t(30) = -1.05, p = 0.28, d = 0.39), nor in gender 
(t(30) = -0.79, p = 0.44, d = 0.30). Given the absence of sig-
nificant gender ratio, and the low number of females, the 
gender factor was excluded for further analysis.

Behavioral tests were conducted to all children who par-
ticipated in this study (Table 1). Participant attrition and 
nonresponse (i.e. parents’ incapacity of bringing their child 
to the assessment day or returning the questionnaires) lead 
to some missing psychometric data. SCQ, and AQ were filled 
by ASD tutors or parents.

The clinical group was assessed with the Social Commu-
nication Questionnaire (SCQ-lifetime; Rutter et al. 2003), 
a screening questionnaire for parents based on the Autism 
Diagnostic Interview-Revised (ADI-R; Lord et al. 1994; 
Berument et al. 1999; Yau et al. 2016) to determine the pres-
ence of the disorder. A cut-off point of 15 points was estab-
lished to confirm the presence of the disorder (Mercader and 
Miranda 2016). The total score of the questionnaire showed 
that 10 subjects of the clinical group scored above the cut-
off point and only one scored below. Three parents did not 
return the questionnaire. However, the clinical diagnosis pre-
vailed and all the 14 ASD referred children were included 
for further analysis.

The parent version of the Autism Spectrum Quotient (AQ; 
Baron-Cohen and Wheelwright 2004) was used in both 
groups to measure the expression of autistic characteristics 
and to corroborate the diagnoses made by the clinical cent-
ers. A cut-off point of 76 was established to confirm the 
presence of ASD symptoms (Auyeung et al. 2008). Seven-
teen children from the control group (one missing) and four 
from the ASD group scored below the cut-off point (76). 
While 10 children from the ASD group scored above 76. 
However, the clinical diagnosis prevailed and the 14 children 
with ASD referred were included for further analysis. Total 
AQ scores showed significant differences between groups 
(t(29) = -6.84, p < 0.001, d = 2.41), with ASD group present-
ing a higher mean score (M = 87.64, SD = 22.50) than con-
trol group (M = 42.76, SD = 13.70).

In addition, the Matrices subtest of the Kaufman Brief 
Intelligence Test (KBIT; Kaufman and Kaufman 2004) 
was employed to measure nonverbal cognitive skills. As 
this measure does not require participants to give a verbal 
response, it is considered the most appropriate given the 
age and diagnosis of the participants. Given the heterogene-
ity and inequality among cognitive profiles typical of this 
clinical population, KBIT scores were only used to charac-
terize the sample and not to exclude individuals due to low 
IQ (Jarrold and Brock 2004; Ruiz-Martínez et al. 2020). 
Direct KBIT scores showed no differences between groups 
(t(29) = 0.813, p = 0.427, d = 0.31).

Following the guidelines of the Declaration of Helsinki, 
written informed consent was obtained from the parents. 
They received both written information and an explanation 
from the researcher about the protocol to be followed (prior 
to the experimental day, see Experimental session). The aim 
of the protocol was to make parents aware of the experimen-
tal requirements of the children, and thus minimize anxiety 
in the session. The experimental protocol was approved by 
the biomedical research ethics committee of the autonomous 
community of Andalucía.

Experimental Session

Before the experimental session each parent was provided 
with a "storyboard" explaining the order of the experimen-
tal session from beginning to end. A photograph of each 
researcher and recording setting was also included. Parents 
of children with ASD were requested to practice at home 
with a swimming cap for 20–30 min while watching a movie 
without sound.

Spontaneous EEG activity was obtained in an eyes-open 
condition for 3 min in a soundproof room decorated with 
child-friendly elements to establish a suitable environment 
for the children. The subjects were instructed to look at a 
cross on the screen and to remain in a relaxed position, blink-
ing as little as possible. Nineteen electrodes according to 

Table 1  Results of descriptive analysis of behavioral psychometric 
tests

Group SCQ KBIT (Matrices subtest) AQ

Control N = 18 (M = 30.22, 
SD = 5.28)

N = 17 
(M = 42.76, 
SD = 13.70)

ASD N = 11 
(M = 21.55, 
SD = 7.16)

N = 13 (M = 28, SD = 8.77) N = 14 
(M = 87.64, 
SD = 22.50)



739Brain Topography (2023) 36:736–749 

1 3

the international 10–20 system were used (ELECTROCAP) 
(Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, 
T5, T6, Cz, Fz, Pz), including a ground electrode. An aver-
age reference was used and due to the high somatosensory 
reactivity of the ASD group, ocular and mastoid electrodes 
were avoided. To record blink artifacts, the signal amplitude 
of the frontal electrodes was used. Data were recorded at a 
gain of 20,000 and at a sampling rate of 1024 Hz in direct 
current using an analog-to-digital acquisition and analysis 
system (ANT) without any filtering. Impedance was kept 
below 10 Kilo-Ohms.

Data Analysis

The EEGLAB toolbox (Delorme and Makeig 2004) and 
the Matlab R2021b software package were employed for 
EEG data analysis. A notch filter of 47–53 Hz was applied 
(EEGLAB function: eegfiltnew) and average reference was 
used. An Artifact Subspace Reconstruction (ASR) algorithm 
(EEGLAB Function: clean rawdata) was used to correct 
portions of data with a standard deviation exceeding by 20 
times the one of the calibration data. To correct for eye, 
blinks, muscle and other movement artefacts, an independ-
ent component analysis (ICA) was performed in EEGLAB 
(Function: pop_runica). Components carrying artefacts 
were tracked by ICLabel classification (Pion-Tonachini et al. 
2019) and removed. All epochs (2000 ms) with ± 120 μV of 
the 19 channels were rejected (EEGLAB Function eegth-
resh). Subjects had a range of selected epoch between 14 
and 90 for analysis (M = 73.69, SD = 19.62), and a range 
of 14 to 18 accepted components (M = 15.66, SD = 1.06). 
There was a significant difference between groups in the 
number of accepted epochs (t(30) = 2.93, p = 0.016, d = 0.99, 
mean control = 81.72, SD = 10.55; mean ASD = 63.36, 
SD = 23.84), but no group differences were found for the 
number of selected components. There was not a significant 
correlations of the number of epochs with age.

LPSD and Relative PSD Analysis

Mean (M) and standard deviation (SD) of the logarithm 
of the absolute PSD (LPSD) across trials were calculated 
with the EEGLAB spectopo function. This uses the Mat-
lab pwelch function while applying a Hamming window. 
LPSD was calculated in 2-s windows with 2048 sampling 
points and a sampling rate of 1024 Hz. The frequency reso-
lution of the LPSD spectrum was 0.5 Hz. LPSD was aver-
aged over different frequency ranges: low-delta (0.5–1 Hz), 
delta (1.5–3 Hz), theta (4–7.5 Hz), alpha (8.5–13 Hz), low-
beta (13.5–20 Hz), high-beta (20.5–30 Hz) and gamma 
(30.5–45 Hz).

To obtain the absolute PSD (LPSD = 10 * Log (PSD)), 
needed for computing the relative PSD, the logarithm of 

the LPSD was removed (PSD =  eLPSD/10). The relative PSD 
spectrum was obtained from absolute PSD. The relative PSD 
of each electrode and subject was calculated according to the 
following formula:

where X(fi) is the relative PSD for a given frequency. PSD 
(fi) is the absolute PSD for a given frequency. ΣPSD(fi) is 
the sum of the absolute PSD at all frequencies considered 
(0.5–45 Hz in 0.5 Hz steps).

Variability Across Trials

To obtain a measure of the variability of PSD across trials, 
the mean of the absolute PSD (M) in a given frequency band 
and its corresponding trial-by-trial standard deviation (SD) 
were divided to obtain the CV across trials (CV = SD/M).

Multiscale Entropy Analysis

Using the Matlab function MultiscaleSampleEntropy (Malik 
2022), we calculate Multiscale Entropy (MSE) for all chan-
nels. Malik (2022) based his function on the MSE method 
of Costa et al. (2005), which calculates sample entropy  (SE; 
Richman and Moorman 2000) at multiple time scales using a 
coarse-grained procedure. MSE measures signal complexity 
(Garrett et al. 2013) by dividing the EEG signal into non-
overlapping windows of a different number of samples. Each 
time scale is defined by averaging the different neighboring 
points (p) of the original time series (of length τ). Thus, the 
repetition frequency of m-point versus m + 1-point patterns 
is evaluated. It is necessary to define a similarity limit (r) 
to delimit the tolerance range in which individual neighbor-
ing points are considered similar (k). This similarity limit 
is normalized by the standard deviation (SD) of the EEG 
k < r × SD (Malik 2022). SE is then calculated for each time 
scale (Malik 2022):

Therefore, MSE is calculated using a coarse-grained pro-
cess that filters out high frequencies with increasing scales 
(Kosciessa et al. 2020; Bosl et al. 2022). This process has 
recently been related to power spectral analysis using Haar 
wavelet approximations (Bosl et al. 2022). Thus, MSE low 
scales would contain all frequencies found in the EEG sig-
nal, whereas high scales would only contain low frequencies 
(Bosl et al. 2022).

Following recommendations provided in previous studies 
on EEG signal complexity (Richman and Moorman 2000; 

X(fi) =
PSD(fi)

∑45

i=0.5
PSD(fi)

∗ 100

SE = log
pm(r)

p(m+1)(r)
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McIntosh et al. 2008; Miskovic et al. 2016; Kloosterman 
et al. 2019; Kosciessa et al. 2020), the parameters used in 
this study were m = 2 and r = 0.5. MSE was calculated for 
67 time scales. The latter corresponding to 30 time points 
obtained by collapsing 67 consecutive sampled points 
(0.97656 ms x 67scales = 65.4 ms), in each 2 s trial. A com-
plete description of the number of points, sample periods 
and frequencies included in each MSE scale are described 
in supplementary table 1.

High complexity would be defined by high values of  SE 
indicating a low repetition of patterns of length “m” over 
“m + 1” and an optimally functioning system (Papaioannou 
et al. 2021). Low complexity would indicate random or high 
similarity of patterns indicating information poverty (McIn-
tosh et al. 2008; Garrett et al. 2013).

Statistical Analysis

ANOVA

To reduce the dimensionality of the data, neighboring elec-
trode values of each calculated parameter (LPSD, CV, rela-
tive PSD and MSE) were collapsed into 9 areas (Fig. 1). 
Also, PSD (logarithm and relative) and CV were collapsed 
into different frequency bands (see Table 2 for the EEG 
frequency ranges used). The MSE, in turn was organized 
based on three different types of scales, corresponding to 
the temporal sampling of scales proposed by Szostakiwskyj 
et al. (2017). Thus, fine scales were considered from scale 1 
(0.98 ms and 2048 time points per trial) to scale 25 (24.4 ms 
and 81 time points), medium scale from scale 26 (25.4 ms 
and 78 time points) to scale 45 (43.9 ms and 45 time points) 
and, finally, coarse scale from scale 46 (44.9 ms and 44 time 
points) to scale 67 (65.4 ms and 30 time points), see sup-
plementary table 1 for parameters of the different scales.

Data were analyzed using Repeated Measures ANO-
VAs (RM-ANOVA) with age (in days) as a covariate in 
the Statistical Package for the Social Sciences 25 (SPSS). 
RM-ANOVAs size effects were directly computed in SPSS 
using eta partial squared (ηp2). In addition, false discovery 
rates (FDR) were used to correct for multiple comparisons 
(Benjamini and Hochberg 1995). Only significant results for 
the factors considered in the RM-ANOVA that included the 
group factor and survived FDR correction were reported and 
discussed, given the main purpose of the report.

For mean PSD (LPSD and relative PSD) and CV, RM-
ANOVA analysis was performed independently for the 
seven frequency bands (low-delta, delta, theta, theta, alpha, 
low-beta, high-beta and gamma). Age in days was used as 
a covariate, group (control and ASD) as a between-subjects 
factor, and anteroposterior (anterior, central and posterior) 
and lateral (left, medial and right) areas as within-subjects 
factors.

For MSE, the between-subjects factor was group (control 
and ASD), the covariate was age (in days) and the within-
subjects factors were scale type (fine, medium and coarse), 
anteroposterior areas (anterior, central and posterior) and 
lateral areas (left, medial and right).

For posthoc analysis, Student's t-tests were computed 
with Cohen's d as the effect size metrics (Cohen 1988). All 
p-values were corrected for multiple comparisons using the 
FDR (Benjamini and Hochberg 1995).

Spearman Correlation Between MSE and Relative PSD

In order to verify the relationship between the spectral 
power (PSD) and the MSE (Bosl et al. 2022), we performed 
a Spearman correlation between relative PSD vs. MSE, with 
age (in days) when controlling correlation by age.

EEG Metrics vs. Behavioral Correlational Analysis

For the behavioral vs. EEG correlation analyses, only group 
significant EEG metrics were used. Psychometric tests used 
for correlation were those completed by both groups (control 
and ASD), such as the KBIT (as a measure of non-verbal 
general intelligence) and the AQ (to characterize subjects 
with ASD). Spearman partial correlations controlling for 
age were performed for all subjects without distinguishing 
between groups, given the small sample size. P-values were 
corrected by FDR (Benjamini and Hochberg 1995).

Results

Figure 2 shows the LPSD in all considered areas for the 
control and ASD groups. The RM-ANOVA (Table 2 and 
in summary Table 6) shows main and interaction group 

Fig. 1  Localization and collapse of electrodes by regions. The colors 
indicate the nine defined scalp areas for electrodes collapse
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effects (with FDR correction) of high-beta and gamma 
bands. Mean of high-beta LPSD of ASD (M = −  3.52, 
SD = 2.18) was higher than the LPSD of the control group 
(M = − 4.99, SD = − 1.23). A similar pattern was obtained 
for the gamma band (ASD: M = − 6.95, SD = 2.31; con-
trol: M = − 8.60, SD = − 1.56). All bands showed lateral-
ity x group interaction effects. T-test comparison (Table 2) 
between left and medial areas showed higher mean to ASD 
group in low-delta (M = 0.93, SD = 1.60), delta (M = 0.80, 
SD = 1.18), alpha (M = 0.82, SD = 0.92), and low-beta 
bands (M = 2.05, SD = 1.30) than control group (low-delta: 
M = − 0.52, SD = 1.11; delta: M = − 0.65, SD = 0.92; alpha: 
M = 0.074, SD = 0.753; low-beta: M = 0.97, SD = 0.48). The 
difference between medial and right areas of the mean of 
LPSD was higher in control group in low-delta (M = 0.168, 
SD = 1.25), delta (M = 0.48, SD = 0.91), alpha (M = − 0.07, 
SD = 0.934), and low-beta bands (M = − 1.02, SD = 0.94) 
than ASD group (low-delta: M = − 1.37, SD = 1.63; delta: 
M = −  1.01, SD = 1.25; alpha: M = −  1.02, SD = 1.03; 

low-beta: M = − 2.37, SD = 1.02). The posthoc analyzed 
in the theta band showed higher mean in medial areas 
(p < 0.001) in control group (M = 8.23, SD = 1.25) than 
ASD group (M = 6.20, SD = 1.19). In high-beta and gamma 
bands the mean of LPSD in right areas (high-beta: p = 0.006; 
gamma: p = 0.007) was higher in ASD group (high-beta: 
M = − 2.09, SD = 2.19; gamma: M = − 5.08, SD = 2.52) than 
control group (high-beta: M = − 4.30, SD = 1.50; gamma: 
M = − 7.59, SD = 1.79). Only theta and low-beta bands 
showed an interaction effects between the group with the 
anterior–posterior factor. The central (p = 0.011) and poste-
rior (p = 0.021) areas showed higher mean of LPSD in con-
trol group (central: M = 7.07, SD = 1.35; posterior: M = 8.22, 
SD = 1.52) than ASD group (central: M = 5.67, SD = 1.09; 
posterior: M = 6.97, SD = 1.08) in theta band. The low-beta 
band showed higher differences between anterior and pos-
terior areas in the ASD group (M = 0.37, SD = 1.08) with 
respect to control group (M = − 0.79, SD = 0.951).

Table 2  Significant results were obtained for the logarithm of the PSD (LPSD)

All p-values of the RM-ANOVA and t-test were corrected by FDR correction. The RM-ANOVA factors used were: group of subjects, anterior–
posterior, laterality, and covariate (age in days). The RM-ANOVA was computed independently for each frequency band. The effect size for RM-
ANOVA was computed by eta partial squared (ηp2), and for posthoc t-tests by means of Cohen’s d

BANDS RM-ANOVA t-tests

Low-delta
(0.5–1 Hz)

Within-subjects:
Laterality x group p = 0.006
F(1.81, 52.44) = 6.14, ηp2 = 0.175, power = 0.846

Left-medial: t(30) = − 3.02, p = 0.008, d = 1.15
Medial-right: t(30) = 3.02, p = 0.008, d = 1.06

Delta
(1.5–3 Hz)

Within-subjects:
Laterality x group p < 0.001
F(1.93, 55.82) = 9.75, ηp2 = 0.252, power = 0.974

Left-medial: t(30) = − 3.89, p < 0.001, d = 1.37
Medial-right: t(30) = 3.89, p < 0.001, d = 1.36

Theta
(4–7.5 Hz)

Within-subjects:
Laterality x group p < 0.001
F(1.76, 50.97) = 13.08, ηp2 = 0.311, power = 0.992
Anterior–posterior x group p = 0.055
F(1.94, 56.32) = 4.54, ηp2 = 0.135, power = 0.742

Medial: t(30) = 4.65, p < 0.001, d = 1.66
Central: t(30) = 3.16, p = 0.011, d = 1.14
Posterior: t(30) = 2.60, p = 0.021, d = 0.95

Alpha
(8.5–13 Hz)

Within-subjects:
Laterality x group p = 0.015
F(1.74, 50.53) = 4.85, ηp2 = 0.143, power = 0.737

Left-medial: t(30) = -2.53, p = 0.025, d = 0.89
Medial-right: t(30) = 2.75, p = 0.025, d = 0.97

Low-beta
(13.5–20 Hz)

Within-subjects:
Laterality x group p = 0.002
F(1.99, 57.91) = 7.85, ηp2 = 0.213, power = 0.942
Anterior–posterior x group p = 0.055
F(1.80, 52.31) = 5.19, ηp2 = 0.152, power = 0.778

Left-medial: t(30) = -2.97, p = 0.014, d = 1.10
Medial-right: t(30) = 3.90, p = 0.001, d = 1.38
Anterior–posterior: t(30) = -3.23, p = 0.009, d = 1.14

High-beta
(20.5–30 Hz)

Between-subjects
Group p = 0.042
F(1, 29) = 7.16, ηp2 = 0.198, power = 0.734
Within-subjects:
Laterality x group p = 0.005
F(1.96, 56.89) = 6.22, ηp2 = 0.177, power = 0.873

Right: t(30) = -3.39, p = 0.006, d = 1.18

Gamma
(30.5–45 Hz)

Between-subjects:
Group p = 0.041
F(1,29) = 8.81, ηp2 = 0.233, power = 818
Within-subjects:
Laterality x group p = 0.005
F(1.99, 57.97) = 6.03, ηp2 = 0.172, power = 0.867

Right: t(30) = -3.30, p = 0.007, d = 1.15
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RM-ANOVA for relative PSD (Table 3 and in summary 
Table 6) with FDR correction showed main group effect in 
theta band where the highest relative PSD values were for 
the control group (M = 2.33, SD = 0.44) compared to ASD 
group (M = 1.79, SD = 0.57). No group significant interac-
tion effects were obtained for any frequency band.

The RM-ANOVA of the CV across trials (Table 4 and 
in summary Table 6) with FDR correction showed group 
main effects in the theta and alpha bands. In the theta 
band, the CV was higher in the ASD group (M = 1.85, 
SD = 0.108) compared to the control group (M = 1.79, 
SD = 0.030). Similarly, the CV in the alpha band was 
higher in the ASD group (M = 1.94, SD = 0.099) than in 
the control group (M = 1.83, SD = 0.060).

Figure 3 shows the MSE results for the control and 
ASD groups. The MSE increases as the scale increases 
for both groups. However, as the MSE values of the con-
trol group exhibit a constant rise, the MSE of the ASD 
group shows a rise in fine scales and a plateau from 
the medium scales upwards. The RM-ANOVA of the 
MSE (Table 5 and in summary Table 6) shows a main 
group effect with the control group presenting a higher 
mean MSE (M = 0.79, SD = 0.059) than the ASD group 
(M = 0.74, SD = 0.082). In addition, group differences in 
the medium scales (t(30) = 2.44, p = 0.030, d = 0.78) and 
coarse scales (t(30) = 3.49, p = 0.005, d = 1.19) are found 

Fig. 2  Logarithm of the Power Spectral Density (LPSD) in control and ASD subjects

Table 3  Significant results obtained in the RM-ANOVA of the rela-
tive PSD with factors: group of subjects, anterior–posterior and later-
ality, and age in days like covariate

The RM-ANOVA was computed independently for each frequency 
bands. For the calculation of relative PSD, the logarithm was elimi-
nated. P-value with FDR correction

BANDS Relative PSD

Theta
(4–7.5 Hz)

Between-subjects:
Group p = 0.029
F(1, 29) = 9.65, ηp2 = 0.250, power = 0.851

Table 4  Significant results obtained in the RM-ANOVA of the Coef-
ficient of variation (CV) across trials with factors: group of subjects, 
anterior–posterior and laterality, and age in days like covariate

The RM-ANOVA was computed independently for each frequency 
bands. For the calculation of CV across trials, the logarithm of the 
LPSD was eliminated. All the p-values with FDR correction

BANDS CV

Theta
(4–7.5 Hz)

Between-subjects:
Group p = 0.044
F(1, 29) = 7.08, ηp2 = 0.196, power = 0.730

Alpha
(8.5–13 Hz)

Between-subjects:
Group p = 0.008
F(1, 29) = 12.79, ηp2 = 0.306, power = 0.933
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based on the interaction effect results (with FDR correc-
tion). The MSE in both medium and coarse scales was 
higher in control group (medium: M = 0.86, SD = 0.077; 
coarse: M = 0.92, SD = 0.062) than ASD group (medium: 
M = 0.79, SD = 0.099; coarse: M = 0.82, SD = 0.101). In 
addition, significant differences were obtained in the inter-
action of the effects of laterality x group factors. These 
differences were due to a higher MSE in controls (left: 
M = 0.79, SD = 0.060; right: M = 0.78, SD = 0.064) than 
in ASD group (left: M = 0.73, SD = 0.084; right: M = 0.72, 
SD = 0.077) for both left (t(30) = 2.48, p = 0.030, d = 0.82) 
and right (t(30) = 2.45, p = 0.030, d = 0.85) lateral areas.

Table 6 shows a summary of the RM-ANOVA results.
Figure 4 shows the results of the Spearman and partial 

correlation (controlling for age) between relative PSD 
(0.5–45 Hz) and MSE (scales 1–67), both with FDR cor-
rection. Significant positive and negative correlations 
are observed both for the control group (positive with 
cutoff for Rho > 0.57, p < 0.015; negative with cutoff for 
Rho > -0.57, p < 0.016) and for the ASD group (positive 
with cutoff for Rho > 0.65, p < 0.014 and negative with 
cutoff for Rho > -0.66, p < 0.013).

The obtained significant positive correlations were 
observed between frequencies higher than 5 Hz and all 
MSE scales. Significant negative correlations were also 
found between low frequencies (< 2.5 Hz) and MSE of 
all the scales considered, in both groups analyzed. The 
calculated partial correlations do not show a maturation 
effect in either group.

Regarding the correlation between EEG neurophysio-
logical metrics (summary in Table 6) and behavioral tests 
(AQ and KBIT), the results lost significance after correc-
tion for multiple comparisons.

Discussion

We analyzed different neurophysiological measures of 
power, variability and complexity of the EEG in resting 
state to observe possible alterations between a group of 
children diagnosed with ASD compared to a normodevel-
opment group. Previous studies using correlational analy-
ses of MSE vs. age have shown an increase in complexity 
with age as a product of better adaptability to cognitive 
demands and possible reconfigurations of the functional 
network produced by a more variable state (McIntosh et al. 
2008, 2010; Van Noordt and Willoughby 2021). A strong 
dependence of age for the PSD has also been previously 
described (Reviewed in Rodriguez-Martinez et al. 2021). 
As such, the present study includes age as a covariate in all 
the statistical analyses to compensate for any change in the 
EEG parameters due to age. Our results show an increase 
in PSD (LPSD and relative) in the theta band in the control 

group and an increase in high frequency bands (high-beta 
and gamma in LPSD) in the ASD group, as well as higher 
variability (CV) across trials, and lower complexity (MSE) 
compared to typically developed children.

PSD studies have been shown to be a reliable biomarker 
of EEG maturation, with decreases in the absolute val-
ues of brain rhythms throughout development, as well as 
decreases in low frequency bands and increases in high 
frequency bands in the relative PSD (Gasser et al. 1988; 
Segalowitz et al. 2010; Miskovic et al. 2015; Rodríguez-
Martínez et al. 2020, 2021). This would be related with 
the selection of stable neuronal connections during the 
synaptic pruning process, producing an increase in the effi-
ciency of neuronal transmission throughout development 
(Whitford et al. 2007).

Our results showed differences between groups in the 
theta band with higher LPSD and relative PSD values in 
the control group and, in the high-beta and gamma bands 
of LPSD with greater power among the ASD group with 
respect to control. Regarding the alpha band, several stud-
ies reported increased or decreased alpha power in chil-
dren with ASD, high-functioning ASD, or ASD risk popu-
lations (Lazarev et al. 2009; Tierney et al. 2012; Carter 
et al. 2018; DiStefano et al. 2019; Pierce et al. 2021). Our 
results in this band focus mainly on laterality x group 
interactions, where the ASD group presents higher levels 
of LPSD in left vs. medial lateral areas and lower levels 
in medial vs. right areas. However, our results support the 
possible biomarker role of gamma band activity as sug-
gested by Rojas and Wilson (2014). These authors suggest 
gamma activity as a reliable endophenotype of ASD given 
the weakening of perceptual and cognitive functions in the 
autism population. However, the direction of amplitude 
change of gamma activity remains controversial, given that 
certain studies found an increase of gamma power in ASD 
(Orekhova et al. 2007, 2008; Machado et al. 2015), while 
others found a decrease in power (Sheikhani et al. 2009, 
2012; Maxwell et al. 2015; Van Hecke et al. 2015). Present 
results would support the increase in gamma amplitude in 
ASD. These results would partially support the U-shaped 
hypothesis of PSD suggested by Wang et al. (2013) in 
which children with ASD present higher PSD values in 
low and high-frequency bands compared to a control 
group, as well as lower values in mid-frequency bands 
such as the theta band.

EEG signal variability was analyzed based on the abso-
lute PSD CV across trials metric. In this study, the CV, 
which corresponds to a measure of PSD variability across 
trials (Angulo-Ruiz et al. 2021), showed an increase in ASD 
for theta and alpha bands compared to the control group, 
suggesting greater variability of spontaneous EEG in the 
ASD group across trials. Similarly, increased neural signal 
variability has been shown in other clinical populations 
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(Castellanos et al. 2009; Angulo-Ruiz et al. 2022). As CV 
solely corresponds to a first-order measure of variability, 
complexity measurements related to multiplicity of EEG 
patterns at different temporal scales, such as MSE, are more 
suitable for assessing abnormal physiological EEG signals 
(Takahashi 2013; Chu et al. 2017; Papaioannou et al. 2021; 
Shen et al. 2021).

The ASD group shows a slowdown in the increase of 
MSE with scales from the middle scales onwards yield-
ing lower entropy values from these scales with respect to 
controls, implying a defective functional system (McIntosh 
et al. 2008; Papaioannou et al. 2021; Van Noordt and Wil-
loughby 2021). Both increase and decrease of complexity in 

ASD subjects have been shown in the literature. Bosl et al. 
(2017) in EEG, and Takahashi et al. (2016) in Magnetoen-
cephalography (MEG) have reported increases in MSE in the 
ASD group. Lower EEG complexity was also found in this 
clinical group (Bosl et al. 2011; Chu et al. 2017; Liu et al. 
2017; Kang et al. 2019). This reduction of complexity in 
MSE in ASD would imply a reduced adaptability, given the 
reduction of possible patterns in the EEG, possibly related 
to a less variable repertoire of neural network dynamics that 
would impair behavioral adaptation (McIntosh et al. 2008; 
Takahashi 2013; O'Reilly et al. 2017).

The relationship between connectivity and complex-
ity has been shown previously and explained in terms of 
neural connections (Friston 1996; Sporns et al. 2000; Taka-
hashi 2013). Therefore, the large-scale integration effi-
ciency resulting from synchronization between small and 
large neuronal populations evolving in different frequency 
ranges could be reflected in the physiological complexity 
of the signal (Takahashi 2013). Lower entropy values in 
ASD suggests abnormal information processing and con-
nectivity, mainly in long-range neural interactions, given 
the relationship between coarse scales and low frequency 
bands (Szostakiwskyj et al. 2017; Bosl et al. 2022). The lat-
ter argument is supported by the relationship of long range 
connections with low EEG frequencies, and of short range 
connections with high EEG frequencies (Lea-Carnall et al. 
2016). In this sense, abnormal complexity could support the 

Fig. 3  Multiscale Entropy (MSE) for 67 scales in control and ASD subjects. The medium scale is highlighted to differentiate the three types of 
scales

Table 5  Significant results obtained in the RM-ANOVA of MSE with 
factors: group of subjects (controls and ASD), scales (fine, medium, 
and coarse), anterior–posterior, and laterality, and age in days as a 
covariate. All results with FDR correction

Between-subjects
Group p = 0.022
F(1, 29) = 5.83, ηp2 = 0.167, power = 0.646
Within-subjects:
Scales x group p = 0.001
F(1.26, 36.47) = 10.99, ηp2 = 0.275, power = 0.938
Laterality x group p = 0.019
F(1.88, 54.48) = 4.38, ηp2 = 0.131, power = 0.715
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Table 6  Summary of 
RM-ANOVA results for all 
calculated parameters

In brackets: control > ASD (C > ASD) or ASD > control (ASD > C). Diff differences

Parameters Between-subjects Within-subjects (interaction with the group)

LPSD High-beta (ASD > C)
Gamma (ASD > C)

Low-delta:
-Diff. Left-Medial (ASD > C)
-Diff. Medial-Right (C > ASD)
Delta:
-Diff. Left-Medial (ASD > C)
-Diff. Medial-Right (C > ASD)
Theta:
-Medial (C > ASD)
-Central (C > ASD)
-Posterior (C > ASD)
Alpha:
-Diff. Left-Medial (ASD > C)
-Diff. Medial-Right (C > ASD)
Low-beta:
-Diff. Left-Medial (ASD > C)
-Diff. Medial-Right (C > ASD)
-Diff. Anterior–Posterior (ASD > C)
High-beta:
-Right (ASD > C)
Gamma:
-Right (ASD > C)

Relative PSD Theta (C > ASD)
CV Theta (ASD > C)

Alpha (ASD > C)
MSE C > ASD Medium (C > ASD)

Coarse (C > ASD)
Left (C > ASD)
Right (C > ASD)

Fig. 4  A Spearman Correla-
tion between MSE (67 scales) 
and relative PSD (0.5–45 Hz) 
in control and ASD subjects. B 
Partial Spearman Correlation 
controlled for age (in days) for 
both groups of subjects. Signifi-
cant cutoff values for each cor-
relation (with FDR correction) 
are indicated in the graphs. In 
this correlation, we calculated 
up to a total of 67 scales to 
observe the effect of correlation 
with increasing scales



746 Brain Topography (2023) 36:736–749

1 3

theory of local overconnectivity and long-range undercon-
nectivity, which is central to the underlying pathology of 
ASD (Belmonte et al. 2004; Courchesne and Pierce 2005; 
Geschwind and Levitt 2007; Wass 2011) and other neurode-
velopmental disorders such as attention deficit hyperactivity 
disorder (Clarke et al. 2008). Moreover, impaired connectiv-
ity has been found in ASD, such as decrease of electrophysi-
ological connectivity and long-range connections (Rippon 
et al. 2007; Chan et al. 2011; Duffy and Als 2012; Takahashi 
2013; Yuk et al. 2020). Our results support local overcon-
nectivity and long-range underconnectivity hypothesis for 
ASD due to the decrease of MSE coarse scales (decrease in 
long range connectivity), and by the increase of highbeta and 
gamma PSD (increase of local connectivity). Although, it 
must be indicated that this hypothesis remains as controver-
sial, despite a higher support for the long-range undercon-
nectivity hypothesis (O’Reilly et al. 2017).

The MSE decrease in coarse scales suggests lower com-
plexity and greater signal predictability in ASD with respect 
to controls. The relationship between PSD and MSE shown 
in the present report and others (McIntosh et al. 2008, 2010; 
Szostakiwskyj et al. 2017; Bosl et al. 2022; Angulo-Ruiz 
et al. 2022) support the statement about the relationship 
between high frequencies and fine scales, as well as between 
low frequencies and coarse scales, both in the normo-devel-
opmental and clinical group, even when this relationship 
is controlled by age. In this regard, the relation of scales 
and frequency bands in our study with a sampling rate of 
1024 Hz and 67 scales would include in the coarse scales 
(coarsest scale ≤ 7.64 Hz bands): the low-delta, delta, theta 
bands; medium scales: alpha and low-beta bands (in addi-
tion to low frequencies); and in the fine scales, high-beta 
and gamma bands (in addition to low and medium frequen-
cies) (Bosl et al. 2022). The strong relationship between the 
fine scales of the MSE and high-frequency bands would be 
related to local connectivity and/or local processing. The 
same is implied to the relationship between the coarse scales 
and low-frequency bands with global connectivity or long-
range interactions (Szostakiwskyj et al. 2017; Van Noordt 
and Willoughby 2021; Bosl et al. 2022). Present results of 
correlations between MSE and PSD suggest that there is 
some shared variance for these two metrics, in both ASD 
and controls.

The correlation of the EEG metrics with the AQ and 
KBIT test were not significant after correction for multi-
ple comparisons. Other studies have shown a relationship 
between EEG complexity (Bosl et al. 2011), spectral power 
(Carter et al. 2018) and autistic traits and cognitive brain 
capacity (McIntosh et al. 2008). However, given the hetero-
geneity of the disorder, it is possible that there are multiple 
individual neural profiles in ASD and thus multiple path-
ways to its features and symptoms (Milne et al. 2019). The 

small sample size does not permit analysis of differential 
correlational patterns in both groups of subjects.

This work has some limitations that could influence the 
reported results. The low sample size and the limited age 
range could explain the disparity found with other devel-
opmental studies, in which specific developmental patterns 
of power (Segalowitz et al. 2010; Rodríguez-Martínez et al. 
2020; Angulo-Ruiz et al. 2021) and complexity (Szostaki-
wskyj et al. 2017; Angulo-Ruiz et al. 2022) are shown in 
healthy subjects. Likewise, it is important to include more 
women in the studies and to analyze the possible existence 
of gender dependencies, as Huberty et al. (2021) and Cragg 
et al. (2011) found in their spectral power studies. Statistical 
power is another considerable limitation given our sample 
size and low range age, however our results show a mini-
mum power of 0.64 with a large effect size (ηp2 = 0.167), 
and a maximum power of 0.99 with a large effect size 
(ηp2 = 0.311) (Cárdenas-Castro and Arancibia-Martini 
2014). Although the statistical power and effect sizes were 
generally high in this report, the results described should 
be taken with caution due to the sample size. In this sense 
the loss of significance in some metrics could be due to the 
effect of a low sample size. Therefore, it is important to 
consider incorporating a higher number of participants for 
future experiments. Finally, we suggest a longer period than 
3-min resting state recording period for a longer epoch seg-
mentation and a more reliable estimation of MSE.

Conclusions

The higher LPSD values of the ASD group in high-fre-
quency bands, higher variability (CV) across trials, and 
lower EEG complexity (MSE) would indicate abnormal 
functioning at the neural and functional level in ASD, which 
is in line with previous literature on ASD and other neu-
rodevelopmental disorders (Chu et al. 2017; Angulo-Ruiz 
et al. 2022).
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