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Abstract
Purpose  To develop and validate an interpretable deep learning model to predict overall and disease-specific survival (OS/
DSS) in clear cell renal cell carcinoma (ccRCC).
Methods  Digitised haematoxylin and eosin-stained slides from The Cancer Genome Atlas were used as a training set for a 
vision transformer (ViT) to extract image features with a self-supervised model called DINO (self-distillation with no labels). 
Extracted features were used in Cox regression models to prognosticate OS and DSS. Kaplan–Meier for univariable evalu-
ation and Cox regression analyses for multivariable evaluation of the DINO-ViT risk groups were performed for prediction 
of OS and DSS. For validation, a cohort from a tertiary care centre was used.
Results  A significant risk stratification was achieved in univariable analysis for OS and DSS in the training (n = 443, log rank 
test, p < 0.01) and validation set (n = 266, p < 0.01). In multivariable analysis, including age, metastatic status, tumour size 
and grading, the DINO-ViT risk stratification was a significant predictor for OS (hazard ratio [HR] 3.03; 95%-confidence 
interval [95%-CI] 2.11–4.35; p < 0.01) and DSS (HR 4.90; 95%-CI 2.78–8.64; p < 0.01) in the training set but only for DSS 
in the validation set (HR 2.31; 95%-CI 1.15–4.65; p = 0.02). DINO-ViT visualisation showed that features were mainly 
extracted from nuclei, cytoplasm, and peritumoural stroma, demonstrating good interpretability.
Conclusion  The DINO-ViT can identify high-risk patients using histological images of ccRCC. This model might improve 
individual risk-adapted renal cancer therapy in the future.

Keywords  Artificial intelligence · Deep learning · Kidney neoplasms · Treatment outcome · Risk assessment · Oncology · 
Survival analysis
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Introduction

Clear cell RCC (ccRCC) shows the worst prognosis after sur-
gery of the three most common RCC histological subtypes 
(papillary, chromophobe and ccRCC) with an estimated 5-year 
survival rate of 75% [1].

The identification and evaluation of biomarkers for better 
risk stratification within the subtypes is an ongoing challenge 
[2–4]. Recently, artificial intelligence (AI)-based image analy-
sis of haematoxylin and eosin-stained (H&E) histopathologi-
cal tissue sections has demonstrated potential as a low-cost 
method to predict genetic mutations and other relevant altera-
tions in oncology, including genitourinary tumours [5–7]. 
Therefore, AI has gained popularity in biomarker research.

One major drawback in the development of many AI mod-
els has been the need to provide the model with labelled data. 
Newer approaches aim for models that can be trained on unla-
belled data such as self-supervised learning models. When 
applied to image recognition, such model is tasked to identify 
image features that serve as meaningful representation for the 
images provided in the dataset. Especially in medical image 
recognition, where labelled images are scarce, this method 
can help to build potentially more accurate and generalisable 
models.

Vision transformer (ViT) is a transparent deep learning 
approach. In contrast to many other deep learning models, ViT 
uses the position of the different objects and their relationship 
to each other. Furthermore, ViT makes use of the concept of 
“attention” by merging input from multiple “attention heads” 
that focus on different image structures. Visualisation of the 
“attention” structures provides a high level of transparency. 
Thus, ViTs are increasingly used in medical research [8–10].

In a recent work, a self-supervised model called DINO 
(self-distillation with no labels) was combined with a ViT [11]. 
This combination was designed to identify recurring structures 
on the images independent of image labels, for example result-
ing in the identification of different animals independent of the 
background [11].

The application of such models in outcome prediction in 
ccRCC has not been investigated. We thus made use of the 
combination of a ViT and DINO (DINO-ViT) to extract image 
features and use the resulting feature vector in a Cox regres-
sion model to predict overall and disease-specific survival (OS/
DSS) directly from H&E histopathological images in ccRCC 
and validate this method on unseen data using an external 
dataset.

Materials and methods

Study population

The framework and reporting of this study were designed 
on the basis of the TRIPOD checklist [12]. For patient/slide 
inclusion, the ccRCC cohort of The Cancer Genome Atlas 
(TCGA-KIRC) (training) and patients from the University 
Medical Centre Mannheim (validation) who had undergone 
partial or radical nephrectomy between 2006 and 2011 were 
screened. The following inclusion criteria were applied for 
the selection:

–	 Histologically confirmed diagnosis of ccRCC​
–	 Availability of a diagnostic H&E-stained slide of the pri-

mary carcinoma used for routine diagnosis
–	 Information on survival status and survival/follow-up 

time

Patients/H&E slides were excluded for the following 
reasons:

–	 H&E slide containing < 250 patches of ccRCC tissue of 
sufficient quality

Since no direct information on DSS is available for the 
TCGA cohort, this information was obtained from a work 
that developed a standardized data set for DSS using an 
approximation for the TCGA KIRC cohort [13]. For the vali-
dation set, data for the type of death were obtained. Missing 
data on DSS were only considered an exclusion criterion for 
the DSS analysis and not for the OS analysis.

This study was approved by the local ethics committee 
(#2021-862-AF 11). Informed consent was waived for this 
retrospective analysis.

Study design

As depicted in Fig. 1, the basic principle of our method is 
to train the DINO-ViT model to extract feature vectors from 
the images (Fig. 1A) followed by training a Cox regression 
model using the extracted feature vectors for prediction of 
OS and DSS (Fig. 1B), resulting in a low- and high-risk 
stratification. The trained DINO-ViT and Cox regression 
model was then externally validated using a set of our insti-
tution (in-house).

Pre‑processing

Slides from the Mannheim cohort were digitised with 
40-fold magnification using a Leica Aperio AT2 DX 
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scanner, resulting in a whole slide images (WSIs) resolu-
tion of 0.25 µm/px. WSIs from the TCGA-KIRC cohort were 
downloaded from the Genomic Data Commons (GDC) data 
portal. For every WSI, tumour regions were annotated under 
expert pathologists’ supervision (TG, ZP) and subsequently 
tessellated into downscaled square patches of 512px x 512px 
using QuPath 0.2.3 [14]. The Macenko method was used for 
normalising variances in staining colours [15]. Additionally, 
blur-detection was implemented in Python version 3.7.7.

Extracting feature vectors using a DINO self‑supervised ViT

DINO is a newly developed self-supervised learning method 
[11]. The uniqueness of DINO lies in the use of different 
image transformations by applying techniques such as crop-
ping and performing the self-supervised learning process 
from these different presentations of the same image for 
all images in the dataset. This has proven to achieve more 

robust underlying features DINO uses to represent the data-
set. In this study, the dataset consisted of histological images 
of ccRCC. Thus, practically, the model was tasked to find 
recurring structures in the histological images that define 
ccRCC. Since these structures usually have different indi-
vidual morphological manifestations which can be extracted 
by the model using a feature extractor, the output of this 
architecture, a feature vector, should represent the histologi-
cal variety of ccRCC. Similar to the original publication, a 
ViT was used as a backbone for the DINO self-supervised 
learning model. Using this architecture, the model can 
segment the images and define boundaries. This informa-
tion is stored and can be visualised in the built-in attention 
heads. Attention is a mechanism that allows the model to 
selectively focus on certain parts of the input image. Each 
attention head is responsible for computing a different type 
of attention, in our model translating to focusing on dif-
ferent parts of the image that the model considers to be of 

Fig. 1   Workflow and study design. A The pre-processing of the 
included slides is shown. For each slide of the TCGA training and 
in-house test sets, patches were extracted from annotated tumour 
regions. The patches were used as input for the ViT which extracts 
image features resulting in a feature vector of each patch. This was 
done in an unsupervised manner, meaning no labels were provided in 

the training of the ViT. B The resulting feature vectors were used as 
input for the Cox-Hazard regression model. One model for each end-
point (OS and DSS) was trained, again using the TCGA cohort and 
then tested on the in-house cohort. For the slide-level prediction, the 
score per patch was averaged to calculate an average slide score
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importance for the dataset. This Self-attention was thus used 
to attach weight to each region of an image and adjust the 
feature extraction accordingly (Fig. 1A), a process that is 
called attention learning as part of the training of the model.

The model was trained for 300 epochs and used as a self-
supervised feature extractor. For each epoch, the model used 
1000 randomly sampled patches per WSI. During this pro-
cess no label was provided. Finally, the model was used to 
extract a feature vector (384 × 1) for every patch from both 
the TCGA-KIRC and Mannheim cohorts.

Cox regression model

For the survival analysis, the learned representations of 
each histological image, more specifically of every patch, 
were used in the form of a feature vector, the output of the 
DINO-ViT model as described above. A Cox proportional 
hazard model was fitted to predict the endpoints OS and 
DSS using these feature vectors of every patch per WSI from 
the TCGA-KIRC cohort. A cross-validation was conducted 
to determine the value of the parameter “penalizer” based 
on the highest concordance index. The l1_ratio was set to 
1, resulting in a “Least Absolute Shrinkage and Selection 
Operator” (LASSO) regression. The model was fitted for 
the TCGA-KIRC cohort and used to predict a risk score 
for every patch of a WSI. Subsequently, all patches of the 
same WSI were averaged, resulting in a slide level prediction 
(Fig. 1B). The risk score represents the time to death. The 
model was trained using the TCGA cohort. The median of 
the risk scores of all images in the training set was used as 
a threshold to define low- and high-risk groups. The trained 
model was first evaluated on the TCGA training cohort and 
secondly externally validated on unseen data using the vali-
dation set from our institution. The median risk score was 
again used as threshold for the stratification into low- and 
high-risk groups.

Statistics

A Kaplan–Meier estimator was used to calculate the survival 
function for both risk groups. A log-rank test determined 
the difference between both groups. This was done on the 
TCGA training set and the external validation set after the 
training process was completed. To evaluate the significance 
and clinical relevance of the DINO-ViT-based survival pre-
diction, it was compared with already known prognostically 
relevant clinicopathological parameters using multivariable 
Cox hazard models. Hazard ratios, confidence intervals and 
p values were calculated for each parameter included in the 
multivariable prediction of OS and DSS. The included clini-
cal variables were age, grading (G1/G2 vs. G3/G4), tumour 
stage (T1/T2 vs. T3/T4) and metastasis status (M+ vs. M–). 

Calculations were performed using JMP 15.2.1 (SAS Insti-
tute, Cary, NC, USA).

Results

Patient population

709 patients, with one corresponding WSI each, were 
included in this study. For DSS, n = 7 patients were not 
included in the training TCGA set since no information 
on DSS was available. Detailed patient characteristics are 
shown in Table 1.

DINO‑ViT performance

The ViT low-risk group showed a significantly longer OS 
compared to the high-risk group in the training set (log rank 
test: p < 0.001). As shown in Fig. 2B, DSS in the low-risk 
group was also significantly longer (p < 0.001). In the valida-
tion set, there was a significant difference between groups 
in OS (p < 0.005; Fig. 2C) and DSS (p < 0.001; Fig. 2D).

Table 1   Patient cohorts

G grading, IQR interquartile range, M metastasis, n number, TCGA​ 
The Cancer Genome Atlas

Variable TCGA​ Mannheim validation

Patients (n) 443 266
Age (years)
 Median, IQR 61 (52–69) 64 (56–71)

Sex
 Male, n (%) 287 (65) 186 (70)

Tumour size
 pT1, n (%) 220 (50) 157 (59)
 pT2, n (%) 61 (14) 26 (10)
 pT3, n (%) 151 (34) 79 (30)
 pT4, n (%) 11 (2) 4 (1)

Grading
 G1, n (%) 10 (2) 39 (15)
 G2, n (%) 181 (41) 207 (77)
 G3, n (%) 177 (40) 20 (7)
 G4, n (%) 72 (16) 0 (0)
 GX, n (%) 3 (1) 2 (1)

Metastasis,
 M+, n (%) 70 (16) 26 (10)

Follow-up
 Median follow-up, IQR 

(months)
37 (17–62) 108 (78–124)

 Deaths during follow-up, n (%) 155 (35) 99 (37)



2237World Journal of Urology (2023) 41:2233–2241	

1 3

Subgroup analysis

The established DINO-ViT risk stratification was also exam-
ined in patients with metastases only. With the threshold 
defined in the training process for the entire cohort, a sig-
nificant difference in the Kaplan–Meier analysis could also 
be demonstrated for OS (log rank test: p < 0.01) and DSS 
(p = 0.03) in the TCGA metastatic subgroup. In the small 
subgroup of the validation set, no significant difference was 
found for OS (p = 0.26) and DSS (p = 0.065).

Multivariable analysis

The DINO-ViT risk group was an independent predictor of 
OS in the training set (hazard ratio [HR] 3.03; 95%-con-
fidence interval [95%-CI] 2.11–4.35; p < 0.01) but not in 
the validation set (HR 1.25; 95%-CI 0.76–2.06; p = 0.38; 
Table 2). Independent predictors in the validation set were 
age, grading, TNM tumour size, and the occurrence of 
metastasis. DINO-ViT was an independent predictor of 
DSS in the training (HR 4.90; 95%-CI 2.78–8.64; p < 0.01) 

and validation (HR 2.31; 95%-CI 1.15–4.65; p = 0.02) sets. 
Again, grading, tumour size, and metastasis were significant 
predictors of DSS.

Visualisation of the DINO‑ViT attention heads

Heads 1, 2, and 5 mainly focused on the peritumoural 
stroma, heads 3 and 4 highlighted the cytoplasm (Fig. 3). 
Head 3 seemed to focus more on the clear cell, whereas head 
4 more on the stained cytoplasm. Head 6 clearly focused 
on the cell nuclei. The recurring identification of these 
structures was quite evident and uniform for all four slides 
demonstrating the capability of the DINO-ViT in identifying 
recurrent structures within histological images.

Discussion

In this work, we investigated the combination of a ViT, 
self-supervised learning using DINO and a LASSO-Cox 
regression analysis to predict survival from H&E-stained 

Fig. 2   Kaplan–Meier analysis for OS and DSS in the training and 
validation sets. A Kaplan–Meier curve and log-rank test for low- 
(green) and high-risk (red) groups for OS in the TCGA training set. 
B Kaplan–Meier curve and log-rank test for low- (green) and high-
risk (red) groups for DSS in the TCGA training set. C Kaplan–Meier 

curve and log-rank test for low- (green) and high-risk (red) groups for 
OS in the Mannheim validation set. D Kaplan–Meier curve and log-
rank test for low- (green) and high-risk (red) groups for DSS in the 
Mannheim validation set. DSS disease-specific survival, OS overall 
survival, TCGA​ The Cancer Genome Atlas
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histological tumour sections of ccRCC. A significant uni- 
and multivariable risk stratification was achieved with the 
training set. The prediction of DSS also remained significant 
in multivariable analysis in the validation cohort.

The DINO-ViT architecture [11] was chosen mainly 
because this model learns recurring structures and image 
features independently of a pre-defined task. In principle, 
these features can, therefore, be used for many different tasks 
and a prediction model can be selected depending on the 
desired outcome. This approach provides robustness in out-
of-distribution data. A similar approach was used by Chen 
et al. [16]. Here, extracted pre-defined image features were 
used in a diagnostic and a survival prediction model. The 
positive results of both studies demonstrate the multiplicity 
of tasks that can be performed with such architectures.

The positive results in univariable analysis show that the 
recurrent image features identified by DINO-ViT have prog-
nostic relevance. Here, the question arises as to the extent at 
which the identified structures correspond to known path-
ological risk factors. Tumour size and grading have been 
shown to be significant prognostic factors for survival in 

RCC [17–19]. The results of multivariable analyses under-
line that our model can extract additional information from 
the histological tumour sections than can be achieved with 
the current pathological classifications, at least for the 
endpoint DSS. Even in subgroup analysis, including only 
patients with metastases, the model achieved a significant 
DSS and OS risk stratification in this high-risk population 
in the TCGA cohort, although it was not designed for this 
purpose and the threshold was not adapted. Probably due to 
the low number of patients, in the external validation cohort, 
there was no significant difference, although a trend for a 
meaningful stratification was seen for DSS. To develop a 
metastasis-specific model using this AI-architecture thus 
seems to be promising.

Visualisation of the ViTs attention heads demonstrated 
that the model identified structures similar to the traditional 
concept of pathological assessment [17]. The possible 
advantage may be that subtle differences in cell or nucleus 
size and shape might be captured that are not represented 
in the established classifications, such as grading G1-G4. 
Several studies indicate that automated grading in RCC 

Table 2   Multivariable OS and 
DSS Cox Hazard model

95%-CI 95% confidence interval, DINO self-distillation with no labels, DSS disease-specific survival, G 
grading, M metastasis, OS overall survival, TCGA​ The Cancer Genome Atlas, ViT vision transformer

Hazard ratio 95%-CI p value

Overall survival
 Training set
  Age (continuous) 1.03 1.01–1.04  < 0.01
  Grading (G3/G4 vs. G1/G2) 1.42 0.96–2.09 0.08
  Tumour size (T3/T4 vs. T1/T2) 1.41 0.97–2.07 0.07
  Metastasis (M+ vs. M–) 2.69 1.85–3.92  < 0.01
  DINO-ViT risk group (High vs. Low) 3.03 2.11–4.35  < 0.01

 Validation set
  Age (continuous) 1.04 1.02–1.06  < 0.01
  Grading (G3/G4 vs. G1/G2) 3.41 1.79–6.50  < 0.01
  Tumour size (T3/T4 vs. T1/T2) 1.76 1.14–2.74 0.01
  Metastasis (M+ vs. M–) 4.22 2.44–7.29  < 0.01
  DINO-ViT risk group (High vs. Low) 1.25 0.76–2.06 0.38

Disease specific survival
 Training set
  Age (continuous) 1.01 0.99–1.03 0.40
  Grading (G3/G4 vs. G1/G2) 2.14 1.22–3.76 0.01
  Tumour size (T3/T4 vs. T1/T2) 1.61 0.98–2.65 0.06
  Metastasis (M+ vs. M–) 4.01 2.57–6.24  < 0.01
  DINO-ViT risk group (High vs. Low) 4.90 2.78–8.64  < 0.01

 Validation set
  Age (continuous) 0.98 0.95–1.01 0.22
  Grading (G3/G4 vs. G1/G2) 3.70 1.71–7.99  < 0.01
  Tumour size (T3/T4 vs. T1/T2) 3.48 1.72–7.05  < 0.01
  Metastasis (M+ vs. M–) 6.5 3.32–12.75  < 0.01
  DINO-ViT risk group (High vs. Low) 2.31 1.15–4.65 0.02
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may provide a prognostically more relevant grading than 
manual grading [20, 21]. It has also been shown that certain 
genetic changes can manifest themselves in different pheno-
typic expressions, for example leading to differences in the 
cytoplasm or the stroma in ccRCC [22]. It has already been 
shown that several mutations in different cancer types can 
be detected on the H&E slide by AI [23, 24]. Additionally, 
standardisation and lack of interobserver variability might 
improve the predictive ability.

DINO-ViT thus has the potential to contribute to 
improved cancer outcome prediction, for example as part 
of a multivariable prediction model by adding DINO-ViT 
to an existing model or developing a new, even completely 
AI-based multivariable prediction model.

Similar works

Wulczyn et al. achieved similar results on the TCGA-KIRC 
cohort for predicting DSS using a convolutional neural net-
work (CNN) designed to predict survival data [7]. A signifi-
cant risk stratification into three risk groups was achieved 
which remained significant in multivariable analysis (HR 
1.88; p < 0.01) in addition to the tumour stage (HR 3.20; 
p < 0.01) while age was not a significant predictor. Inter-
estingly, four other tumour types across the TCGA cohorts 
showed significant DSS prediction with Wulczyns’s model 
architecture, while in five other cancer types, such as blad-
der cancer, no significant DSS prediction was achieved. 
Tabibu et al. developed a method in which shape features 
were extracted from RCC histopathology images and sub-
sequently tested for their predictive value of OS [25]. In 
multivariable analysis, it remained a significant predictor 
(HR 2.27; p < 0.01). In contrast to work presented here, no 
external validation was performed in either study and thus, 
the robustness and generalisability on unseen data of these 
interesting architectures remains unclear. An externally 
validated method was developed by Chen et al. as described 
above [16]. The LASSO-Cox model showed a significant 
predictive ability in the validation cohort in multivariable 
analysis. In contrast to our study, however, the extracted 
image features were defined beforehand, while the DINO-
ViT model has the potential to use image structures that 
have not yet been considered relevant. Additionally, the risk 
score threshold used for dividing the cohorts into low- and 
high-risk groups was calculated individually in the training 
and validation sets. In our study, the threshold was defined 
in the training set and this threshold was used for the exter-
nal validation set since a cohort-specific threshold defini-
tion significantly increases the risk of overfitting and might 
overestimate external applicability.

Limitations

The retrospective design of our study is the major limitation 
of this work. Additionally, a larger dataset is necessary to 
enhance the robustness of our algorithm. Also, the clinical 
data appears very robust in the prediction of survival, thus 
the benefit of adding an AI model is not certain in this regard 
and requires further evaluation. While the TCGA-KIRC 
cohort has proven very useful in recent years, it has some 
shortcomings in the clinical follow-up data. The follow-up 
time was shorter with a median of 37 months than in our 
cohort (108 months). A longer follow-up would have helped 
training the Cox hazard model more accurately. Addition-
ally, for TCGA-KIRC data on DSS is incomplete and an 
established approximation of DSS had to be used. Again, 
more accurate data might have resulted in an even more 
robust model. However, the successful external validation 

Fig. 3   Visualisation of the DINO-ViT attention heads. The six differ-
ent attention heads which emerged from the training process of the 
DINO-ViT model are shown. For each attention head, image sections 
of four different patient slides are shown. The respective structure that 
the model identified recurrently and assessed in the attention head is 
coloured red. Scale bar = 50 µm
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in a cohort with precise information on DSS and a follow-up 
of sufficient length confirm the successful training and use 
of this model.

Conclusion

Our externally validated DINO-ViT architecture provides 
elevated level of explainability and interpretability. Thus, if 
this model is improved further and our early results can be 
confirmed in a prospective evaluation, clinical implementa-
tion as an assessment tool to guide therapy or follow-up 
intervals might be feasible with the goal of advancing cur-
rent clinicopathological paradigms.
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